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Abstract. This work introduces the concept of an autonomous cooking process based on
Digital Twin methodology. It proposes a hybrid approach of physics-based full order simulations
followed by a data-driven system identification process with low errors. It makes faster-than-
real-time simulations of Digital Twins feasible on a device level, without the need for cloud or
high-performance computing. The concept is universally applicable to various physical processes.

1 INTRODUCTION

Autonomous processes are without question the next big disruptive technology trend. Ambitious
self-driving car projects by major tech companies demonstrate the progress industry has made
in the past decade. In contrast to these well-known endeavours, the present work sheds light
on the yet unconsidered potential of autonomous cooking processes through Digital Twin (DT)
technology. The automation of food processing does not only imply natural industrial benefits
but, more importantly in modern times, environmental and health aspects on larger scales as
well. Intelligent cooking devices may be beneficial in the quest to transform our food system
to help us evolve towards a more environmentally-friendly future. Following the EU Farm
to Fork Strategy and Circular Economy Action Plan, we could reach the sustainability goals
of the European Green Deal 2030 [7]. It becomes clear that a change in our food system
towards less wastage can contribute to our strive to keep global temperatures at safe levels.
For instance, a recent Special Report on Climate Change and Land of the Intergovernmental
Panel on Climate Change (IPCC) attributed eight to ten percent of the total anthropogenic
greenhouse gas emissions to global food loss and wastage [18]. Besides the impact on Climate
Change, it is imperative to reach the sustainable development goals of the United Nations,
e.g. zero hunger [21]. Especially developing countries require safe and healthy meals in large
amounts. Wasting of foods can be related here to the lack of proper processing and preservation
techniques and facilities [8].

In general, autonomous cooking processes can improve our overall food safety, as they may ensure
a more reliable neutralisation of bacterial pathogens. Langsrud [13] disclosed concerning deficits
in our approaches to judge the doneness of our food: “About one third of foodborne illness
outbreaks in Europe are acquired in the home and eating undercooked poultry is among con-
sumption practices associated with illness.” Food processing of large quantities while preserving
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food quality is vital for community catering, e.g. crisis help, canteens, schools and universities.
Although cooking needs experience, workforce and time, we face a shortage of skilled staff in
recent years. Oberhuber [17] concludes that chef and sous-chef were ranked fourth and sixth of
the most unpopular jobs in Germany in 2018. Every third business in gastronomy has difficul-
ties in finding employees. The number of apprentices dropped to the lowest level since 1976 and
every second trainee quits the program [17].

The scenarios mentioned above emphasise some of the potentials of autonomous cooking pro-
cesses. In summary, we strive for positive progress in terms of safe and healthy food production.
It is vital to meet ambitious sustainability goals, minimise the food value chain’s energy con-
sumption and reduce food wastage during industrial processing. This work is applied research
enabling fast transfer to an industrial level. In the following section, we formulate a hybrid
physics-based data-driven Digital Twin framework for autonomous cooking processes. In sec-
tion 3, a model of hygroscopic capillary-porous food is introduced. Our implementation is
benchmarked with results of Ni [16]. Section 4 focusses on data-based non-linear system identi-
fication of the model. We demonstrate how CPU costs are reduced significantly. It enables us
to predict several possible future cooking control paths. In section 5, we summarise our work
and give an outlook on the coupled simulation of food processing devices and cooking physics.

2 A HYBRID PHYSICS-BASED DATA-DRIVEN DIGITAL TWIN

The overall premise of making a process controllable, or even autonomous, is gathering real-time
information on its current state. Sensory equipment cannot capture all relevant information
easily or feasibly. Sometimes it is not possible at all. Considering autonomous cooking, we
may measure the core temperature of our food with simple thermometers. However, cooking
devices cannot measure the food’s sensory properties such as the Mailliard browning progress
(influencing colour and flavour), texture (e.g. tenderness) or residual moisture content. Hence,
it is an open research question on how to gather process-critical information efficiently and
precisely to perform decision making during live operations. It is a substantial criterion of
autonomy to obtain and evaluate this information with none or minimal user-interaction.

2.1 Definition of Digital Twins

In the past years, the concept of a DT has been identified as a possible framework to enable
unknown state information acquisition. Tao’s and Qi’s “Make more digital twins” article in
Nature 2019 [20] puts the focus on DTs as a prosperous research topic at the latest. After
Grieves’ first mention of DTs, their definition has been interpreted, extended and modified by
the research community. For clarity, we will give a summary of our definition hereafter.

The essential notion of a DT is to set up a virtual doppelganger simulation of the real-world
process. Fig. 1 illustrates how simple measurements of the physical process, in our case temper-
atures of food or oven walls, are transferred to the DT. This data forms the boundary and initial
conditions of the simulation model. Previously unknown state information, such as brownness
or tenderness, is generated through simulation and is then handed back to the device’s control
system. The use of DTs during operation implies the need for rapid simulation results on the
virtual side. We motivate the need for faster-than-real-time simulations in the following section.
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Figure 1: Digital Twins for autonomous cooking processes.

2.2 Need for faster-than-real-time simulation

The novelty of the DT concept lies in bi-directional data exchange between the real-world object
and its digital counterpart in real-time. Without this notion, every simulation model could be
a DT. Unfortunately, the latter has been practised over the past years occasionally, leading to
an ambiguous perception of the concept itself. This work stretches the necessity to outreach
the minimum requirement of real-time simulations to make autonomous processes possible. Al-
though real-time data provision permits closed-loop control algorithms, this is not sufficient
for an autonomous process design. It is rather mandatory to predict multiple future scenar-
ios to optimise future operational behaviour. Commonly known techniques are optimal control
and model predictive control. An example of a global optimum criterion could be: Prepare
medium-rare meat, tender, light browning and reach ready-to-eat temperatures within precisely
15 minutes.

Although we saw substantial improvements in hardware (e.g. FLOPS) and software (e.g. solver
algorithms and parallelisation) for simulation, we are – in general – still not able to simulate
large, coupled systems in real-time. It can be assumed that, from today’s point of view, new im-
peratives like high performance or cloud computing will not enable real-time or faster simulations
for these models in the foreseeable future.

2.3 Obtaining high accuracy with physics-based full order models

Physically detailed models can generate high-quality training data. Covering a wide parameter
range provides deep insights into the coupling of heating equipment and cooking physics. The
promotion of faster-than-real-time simulation on the virtual side inherently requires a strategy
to reduce the computational cost at some point. We advocate with our hybrid concept to not
trade-in complexity for performance during physical modelling. We believe that the negative
impact on precision is more prevalent here than at later stages, e.g. during data-driven system
identification. The loss of accuracy is minimal there, as demonstrated in Sec. 4. Our offline
approach does not need to make compromises in CPU capacity, model complexity or time
constraints. Simulations can meet custom quality criteria or follow the state-of-the-art.

3



Maximilian Kannapinn and Michael Schäfer

2.4 Digital Twin based autonomous cooking framework

Coming from the above-mentioned requirements, Fig. 2 shows our derived framework to design
an autonomous cooking process with a DT methodology.
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Figure 2: Concept of hybrid physics-based data-driven Digital Twin framework.

Detailed physics-based simulations form our basis. Models of the food and its physical and
chemical processes consist of primary and secondary quantities. Primary data, dependent in
space (xi) and time (t), can be considered temperature T (xi, t) and moisture concentration
cw (xi, t). Secondary quantities qk like sensory attributes or pathogen deactivation rates can be
modelled with Arrhenius-type ODEs [19]. The surrounding process conditions are characterised
by fluid flow (for buoyancy and forced convection) [6], thermodynamics (conjugate heat transfer
and radiation) [1] and electromagnetics (e.g. microwave heating [12]). The adjacencies have to
be coupled with the food cooking process to link the product and process mechanisms.

A data-driven non-linear system identification process performs the reduction to a Reduced-
Order Model (ROM), compare Sec. 4. Training data Ψi is obtained by evaluating the full-order
model with a wide parameter range for the input (excitation) signal, e.g. the applied heat flux
to the cooking process. Model exchange standard formats like Functional Mockup Unit (FMU)
contain the identified ROM. It can be executed live to produce m estimates of the state Ψ̃i on
the device with minimum system requirements, compare Tab. 1 in Sec. 4.2.

3 FOOD AS POROUS MEDIA

Food processing can be modelled as multi-phase heat and mass transfer in hygroscopic porous
media. The following model is based on well-validated works of Datta [4, 6]. It is not feasible to
simulate gases and liquids within the porous domain’s exact representations. All quantities of
interest are averaged on a sufficiently large Representative Elementary Volume (REV). In order
to formulate relations that are analogous to well-established, non-hygroscopic porous media
equations, a constant equivalent porosity

φ = φg + φw =
Vg

Vtot
+

Vw

Vtot
(1)

is chosen as the sum of gas and water porosity. Porosity is defined as the ratio of a fluid’s volume
Vi (i = gas, water, vapor) to the total volume Vtot of the REV. To account for porosity changes
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due to processing, equivalent variable water and gas saturations

Sw =
Vw

Vw + Vg
=

Vw

φVtot
and Sg =

Vg

Vw + Vg
=

Vg

φVtot
(2)

are defined. The saturations represent the relative volume fraction of the corresponding fluid in
the porous cavity, resulting in Sw + Sg = 1. The concentrations of water, gas (vapor + air) and
vapor are defined as

cw = Sw φ ρw , cg = Sg φ ρg = Sg φ
pMg

RT
, cv = Sg φ ρv , (3)

where the densities ρi are determined employing Ideal Gas law, Mi represent the molecular
weights and R is the universal gas constant.

3.1 Conservation laws

The conservation of mass for gas, vapor and water is modelled by the following convection-
diffusion equations:

∂cg
∂t

+∇ ·
(
−ρg

kg

µg
∇p
)

= İ , (4)

∂cv
∂t

+∇ ·
(
−ρv

kg

µg
∇p− φSg ρgDeff,g∇ωv

)
= İ , (5)

∂cw
∂t

+∇ ·
(
−ρw

kw

µw
∇p−Dw,cw∇cw

)
= −İ . (6)

Three major transport mechanisms can be identified: mass fluxes due to pressure gradients
can be approximated (for Re < 1 ∼ 10) applying Darcy’s law to obtain ~j = −ρi kiµi ∇p, where
ki is permeability, µi is the dynamic viscosity and p is pressure. For vapor, we account for
additional diffusive fluxes due to binary diffusion, where ωv is the mass fraction of vapor and
Deff,g represents the effective gas diffusion coefficient [3]. Unsaturated capillary flow of water
tends to move from locations with higher concentrations to ones of lower concentrations which
is reflected in a variable capillary flow coefficient Dw,cw . The reader is referred to works by
Datta [4, 6] for further details and derivations.

Energy is conserved considering convective and diffusive mass fluxes

(ρcp)eff

∂T

∂t
+
∑
i=g,w

~ji · ∇ (cp,i T ) = ∇ · (keff∇T )− λİ , (7)

where λ is latent heat of evaporation and effective transport coefficients are averaged via

(ρcp)eff = ρs (1− φ) cp,s + ρg Sg φ cp,g + ρw Sw φ cp,w , (8)

keff = ks (1− φ) + kg Sg φ+ kw Sw φ . (9)

The non-equilibrium formulation for distributed evaporation processes

İ = Kevap (ρv,equ. − ρv)Sg φ (10)
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closes the set of equations. The evaporation constant Kevap is the inverse of the time to reach
evaporation equilibrium at molecular level and ρv,equ. = aw psat

Mv
RT is the the equilibrium vapor

density. It relates to the specific food material’s water activity aw and vapor saturation pressure
psat(T ).

3.2 Test case

Let us consider a slice of food with thickness of 0.01 m on a convection oven’s baking plate.
Ignoring corner effects in horizontal directions, we can reduce the problem to a 1D formulation
for simplicity. The only interface to its surroundings is the surface (y = 0 m), where boundary
conditions are prescribed:

p|surf = pamb , (11)

~jv

∣∣∣
surf

= hm φSg (ρv − ρv,oven) , (12)

~jw

∣∣∣
surf

= hm φSw (ρv − ρv,oven) , (13)

~q |surf = hT (Toven − T ) + λhmφSw (ρv − ρv,oven) , (14)

and zero flux elsewhere. To enable comparison with previous implementations, we simulate
a case by Ni [16], also published later by Datta [5], where φ = 0.75, hT = 20 W m−2 K−1,
hm = 0.01 m s−1 and Toven = 450.15 K. Simulations are initialized with p = pamb, Sw = 0.5 and
cv = 0.17 mol m−3.

We monitored the mesh quality and reduced the cell size until the mesh error remained sig-
nificantly below one percent. Calculation of grid convergence and a possible implementation
strategy in simulation software has been shown previously, see [11] for details.

3.3 Discussion of results

The Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE) are chosen
to quantify errors in a robust manner:

MAPE =
1

N

N∑
i=1

|Ri − Fi|
1
2 |Ri + Fi|

× 100 % , RMSE =

√√√√ 1

N

N∑
i=1

(Ri − Fi)2 , (15)

where Ri are realisations of the reference and Fi are forecasts by our simulation at sampled
points in time ti. The evaluation of the implemented model compared to the reference data of
Ni [16] is illustrated in Fig. 3. The obtained results are in very good agreement with reference
data, although the simulations have been originally performed on a custom code without the
non-equilibrium evaporation formulation. Ni used a relatively coarse uniformly spaced grid
with 41 elements and central differencing scheme. As it can be seen in Fig. 3, the deviations
grow constantly over time for temperatures (maximum MAPE = 0.6 %) and water saturations
(maximum MAPE = 3.6 %). We see too much progress of temperature and too few losses
of water saturation. The influence of the non-equilibrium evaporation formulation has been
investigated thoroughly. As Kevap = 1000 s−1 enforces the system to an almost instantaneous
change to equilibrium, we see no significant change in results when further increasing the value.
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Figure 3: Spatial comparison of implemented porous media model with reference data [16].

Remarkable is the difference of factor two in the evaporative mass loss at initialisation of the
simulation. Here, the results of the reference and our model should be identical. Insufficient
digits in the given mass transfer coefficient (MTC) are a possible error source. An MTC hm =
0.0125 m s−1 already shifts all values in the desired window. Here, we see a good example of how
sensitive a food system reacts to fluctuations in heat transfer coefficients (HTC) and MTCs. As
we will see in Sec. 5, it is one of our aims to remove this dependency by treating the food process
and adjacencies in a conjugate manner.

4 NONLINEAR SYSTEM IDENTIFICATION

As it was motivated in Sec. 2, there is a need for substantial speed-up of the simulation model.
In the research project framework, we opt for a non-intrusive ROM implemented in ANSYS
Dynamic ROM Builder. It is a highly accurate data-driven method which does not rely on the
physical model. This feature makes it universally applicable to various kinds of physics. It can
be considered as a Non-linear AutoRegressive eXogenous (NARX) grey-box approach, based on
a generalised ODE system ansatz with successively added additional degrees of freedom to cover
nonlinearities and hysteresis effects [2, 14, 15]. The parameter identification of the ODE system
is accomplished with machine learning approaches [2].
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In the following section, we discuss the impact of excitation signal synthesis on successful system
identification. The system input of the Full Order Model (FOM) presented in Sec. 3 is the oven
temperature. The output of our Single Input Single Output (SISO) case is the core temper-
ature history Tcore(t, y = 0.01 m). Temperature is the obvious first choice for a test setup, as
nonlinearities and progress dependent effects occur.

4.1 Excitation signal and training data synthesis

The successful identification of non-linear dynamic models strongly depends on the provided
training data. We know from fundamental linear dynamics: Its step response can fully charac-
terise a linear model. On the contrary, the input and output spaces of non-linear models have to
be covered systematically. Nelles [15] recommends applying an Amplitude modulated Pseudo-
Random Binary Signal (APBRS). Due to the input signal’s rate constraints – e.g. the oven
temperature cannot change instantly – sined transitions of different frequencies model different
heating rates. A minimum hold time of 500 s for the input allows the process to fulfil its full
response. The remaining settings are: T ∈ [280 K, 450 K], fsine ∈ [0.0017 Hz, 0.0017 Hz]. We can
identify a ROM of the cooking process with only four randomly chosen training cases, compare
Fig. 4. The RMSE for the training cases remains at 0.1 K.
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Figure 4: Trained cases A to D.
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4.2 Performance analysis

The ROM performance is evaluated with five randomly generated, sined APBRS excitation
signals following the design rules outlined above. Fig. 5 illustrates that the errors remain signifi-
cantly low with the MAPE not exceeding 0.3 % at any time. Case G shows the overall maximum
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Figure 5: Comparison of FOM and ROM for untrained cases E to H.

RMSE of 1.2 K. Case H is excited with high oven temperatures during the end of the process,
where the overall maximum error of 2.5 K occurs. The underlying hysteresis of cooking history
appears to be more difficult to capture. The system’s effective thermal conductivity is strongly
impacted by reduced water concentrations, compare progress of Sw in Fig. 3 and composition
of keff in Eq. 9. The limitation of temperatures due to evaporative losses for oven temperatures
above 373.15 K seems to be captured well in all cases. A clear dependency on different rates of
change in the oven temperature cannot be distinguished.

To better rank the non-linear ROM performance, a linear ROM is built with identical training
cases. It cannot follow the temperature-dependent evaporation effects from the first excitation
step and onwards, compare Fig. 6. There is no trend of just over or under-predicting food
temperatures. At different oven temperatures, we see the non-linear model following the different
system dynamics in each step with a maximum error of 0.9 K, which is one order of magnitude
lower than for the linear model.

The obtained speed-up of the ROM is calculated by comparing three cases, see Tab. 1. The data
in the first row origins from a previous study [11]. It symbolises the time for the 3D simulation
of a cooking device. It is a conjugate heat model with a Discrete Transfer radiation model. As
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Figure 6: Comparison of linear and non-linear ROM for case I.

we included no food-specific models, we expect even more than the required two hours CPU
time for a 120 s prediction for a fully coupled model. Secondly, we see the calculation times of
2830 s for the 1D simplified cooking model that we introduced in Sec. 3.

The extracted non-linear ROM was exported as an FMU and executed in an open-loop setup
in ANSYS Twin Builder. The time to predict 10 000 s of real-time was found to be 0.3 s which
equals to a speedup of factor 33 333 compared to real-time simulations. To put it differently,
this means 556 predictions per minute of the following hour.

Table 1: Comparison of prediction time performance of CFD versus ROM.

Type Real-time
CPU

time

CPU load on

16 core Xeon E5 3 GHz
Problem info

Time per

1h prediction

CFD 120 s 7200 s Parallelized, full load 500k DOFs, CHT only 216 000 s

CFD 10 250 s 2830 s Parallelized, full load 1876 DOFs 994 s

DynROM 10 000 s 0.3 s Serial, no noticable CPU load FMU, SISO 0.1 s

5 SUMMARY

This work motivates the need for autonomous cooking processes and proposes the application of
DT methodology. We present a successful implementation of a porous media model to simulate
food processes. It serves to simulate non-measurable quantities of interest. We follow a hybrid
approach: Full order simulations of multi-physical cooking processes form the basis for subse-
quent data-driven system identification. The ROM can reproduce temperature histories of up
to 12 500 s with an average RMSE of less than one Kelvin. The maximum observed deviation
of the non-linear ROM is 2.4 K, although evaporation and hysteresis effects introduce strong
non-linear model behaviour. The RMSE remains one order of magnitude lower than for linear
ROMs.

Based on literature research and to our best knowledge, this work introduces the first DT
based framework for autonomous cooking processes that fulfils real-time data provision. The
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recent review of Verboven [22] marks the dawn of DTs in the Food Science community. Their
realisations of DTs are only post-processing steps included in a vision of cloud-based services.
On the contrary, our approach exceeds the minimum requirement of real-time simulations with
a large margin. The ROM provides more than 550 predictions of one hour real-time per minute.
Faster-than-real-time simulations of DTs provide valuable insights into the current and multiple
possible future states. This potential can be exploited best in optimal control algorithms. Due to
drastically reduced computational costs, the method is available for live on-board autonomous
operations. The rise of high performance or cloud computing is assumed to be too slow to
become a feasible alternative for 3D coupled multi-physical simulations on food processing level
in the foreseeable future. In general, autonomous processes based on DTs can be regarded as
an alternative to the current Internet of Things (IoT) trend of connected devices. There is no
need for communication hardware, security protocols or complex sensor arrays to capture state
information. DTs provide all relevant data offline and on-board.

Outlook: The need for coupled treatment of surrounding process and food Future
works should address the coupled treatment of the food processing device (often modelled as
thermal fluid-structure interaction) and the cooking process itself (heat and mass transfer in
porous media). The coupling with adjacencies is vital for accuracy due to numerous reasons:
In food science, a particular focus lies in the modelling of only food. As illustrated in Fig. 7a,
the food’s surface forms the system boundary. This implies using boundary conditions to model
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Conduction+Convection

[Convection]

[Heat Input]

[] = Modelled Mechanism
=

(a) Food-only modelling.
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Distribution

Interface

(b) Conjugate modelling of food and adjacencies.

Figure 7: Comparison of transfer coefficient modelling and coupled treatment.

convection, evaporation or radiation. HTCs and MTCs represent the heat and mass exchange
with the cooking process. However, these are seldom constant in time and space. Halder [10],
for instance, concludes: “[...] a lumped heat and mass transfer coefficient, which includes the
effects of both diffusive and convective flow, [...] is not expected to be constant over time [...].
[The HTC] varies significantly along the surface”. On top of inherently transient fluctuations
due to buoyancy, we can see a position dependence in cooking devices, e.g. due to flow pattern
induced by the topology.

Moreover, there are food specific impacts: Ibarra [9] for example documented the progress
dependent emissivity of chicken fillets. Almeida [1] determined that the spectral absorbance of
potato is not constant over frequency.
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The coupling of process and product becomes evident with the following example: The heat flux
of an oven is not turned off by disabling the heating system, as passive heating persists due to
the walls’ presence. Therefore, future work should focus on the coupled interaction of device
and food. A possible implementation is illustrated in Fig. 7b. One could envision a coupled
multi-phase model (e.g. Volume Of Fluid method) on one connected domain that also accounts
for the food-specific processes.
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