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Abstract 
 

We consider the assignment of gates to arriving and departing flights at a large hub 
airport. It is considered to be a highly complex problem even in planning stage when all flight 
arrivals and departures are assumed to be known precisely in advance. There are various 
considerations that are involved while assigning gates to incoming and outgoing flights (such a 
flight pair for the same aircraft is called a turn) at an airport. Different gates have restrictions, 
such as adjacency, last-in-first-out gates and towing requirements, which are known from the 
structure and layout of the airport. When optimizing the gate assignment costs, we consider 
different, and often, conflicting objectives such as maximization of gate rest time between two 
turns, minimization of the cost of towing an aircraft with a long layover, minimization of overall 
costs that includes penalization for not assigning preferred gates to certain turns, among others. 

One of the major contributions of this paper is to mathematically model all these features 
that are observed in the real-life. Further we also attempt to study the problem in both planning 
and operations mode, which has rarely been accomplished in the literature. For planning, we 
sequentially introduce different objectives to our gate assignment problem – such as 
maximization of connection revenues, minimization of zone usage at airport and maximization of 
schedule reliability – and include them to the model along with the relevant constraints. For 
operations, the main consideration is recovery of schedule by minimizing schedule variations and 
maintaining feasibility in the event of major disruptions. Additionally the operations models must 
have very, very short run times, in the order of a few seconds. 

These models are then applied to a real airline at one of its most congested hubs. 
Implementation is done using OPL and computational results for actual data sets are reported. For 
the planning mode, analyst perception of weights for the different objectives in the multi-
objective model is used wherever actual dollar value of the objective coefficient is not available. 
The results are also reported for large, reasonable changes in objective function coefficients. For 
the operations mode, flight delays are simulated and the performance of the model studied. The 
final results indicate that it is possible to solve even large instances of real-life problems to 
optimality within short run times with conventional continuous time assignment model. 

 
 

Keywords 
 
Airport Gate Assignment – Scheduling – Mathematical Modelling 



 3 

1. Introduction 
 
The airline industry has long been a fertile area for applying optimization techniques. This 
paper describes the airport gate assignment problem as experienced by congested hub 
airports and large airline companies. Airport gates are restricted resources and are used by 
incoming and outgoing flights to park the aircraft, disembark the passengers of the incoming 
flight and board the passengers of the outgoing flight. 
 

There are some subtle differences in the airport gate assignment problem encountered 
at different airports across the world. For instance, in many European and Asian airports, it is 
normal to assign an aircraft to a remote bay (also referred to as apron or stands), far away 
from the airport terminal, and then the passengers are disembarked and boarded using shuttle 
buses, in the absence of an available gate. However in US, remote bays are not allowed and 
all passengers are mandatorily required by law to be disembarked and boarded through an 
airport gate. This makes the problem highly restricted as well as complex, because there have 
been instances, especially during major disruptions, when the aircrafts are required to wait on 
the tarmac for a several hours to disembark the passengers. 

 
There are some other differences in the operations of airports across the world. In US, 

airport gates are resources that are owned or leased by a particular airline company for a 
reasonable period of time based on a medium to long term contract. In case an airline falls 
short of gates, it would either have to negotiate and sub-lease gates from a competitor or 
down-size its operations at that airport. On the contrary, airport gates are largely managed by 
the airport authority in Asia and Europe. Thus in the US, the onus of efficient ground 
operations lies entirely with the airline company. 
 

The period of time that an aircraft spends on the ground between an incoming (also 
referred to as arriving) and outgoing (also referred to as departing) flights is called a turn. In 
rest of the paper, we use the term “turn” to refer to a flight combination associated with the 
same aircraft. For every turn, the aircraft is assigned to a gate, and the same gate is utilized 
by many aircrafts over the course of a day. Airport operations team develop gate assignment 
plans using an optimization model that assigns gates to every turn, while balancing 
operational constraints given the fleet and turn information through a station. Each hub 
airport must have a gate plan based on its geography and layout. 

 
While the different optimization criteria of the problem considered by us in this paper 

are explained in detail in section 3, we will now present some features and restrictions of the 
problem that has been observed at our study airports. These features and constraints are not 
restrictive and could be equally applicable for any airport in the world. 
 
• Adjacency constraints: Adjacency constraint is described as a situation when two large 

aircrafts could not be accommodated in adjacent (near-by) gates due to structural or 
space limitation. Thus, when gate A is occupied by aircraft type 1, then the adjacent gate 
B doesn’t allow aircraft type 2 or vice versa. An example would be a situation with gate 
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B11 has a B747 parked on it. At the same time, gate B12 could not have a wide bodied 
B747, B767, B777, or an A340 parked on it. Please refer to Fig 1 for further details. This 
constraint is observed at almost all major airports in the world and has been widely 
studied by the researchers as well. 
 

• Last-In First-Out (LIFO) gates: LIFO gates are observed in a situation where two gates 
are in front of each other. If the second gate is occupied by an aircraft then the aircraft in 
first gate cannot depart or be used. A symbolic representation is shown in Fig 2. This 
constraint is not widely observed at airports and is also not studied extensively by the 
researchers.  

 
 
 
 
 
 

 
 
 
 
 
 

Fig 1: Adjacent gate constraints 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 2: Last-In First-Out (LIFO) constrained gates 
 

• Towing: Towing means that an aircraft is towed away after it arrives at a gate and the 
passengers are allowed to disembark.  It will then be towed out and brought back to a 
gate for departure.  The departure gate may or may not be the same as the arrival gate.  
The purpose of towing is to free up a gate for other turns’ use, so it is only worthwhile to 
tow turns with a long duration, i.e., a long turn time. Note that towing is not allowed for 

Gate #1 Gate #2 

Gate #1
 

Gate #2
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every turn, but only when the turn duration is fairly long, say more than two hours or so. 
Further, every time an aircraft is towed away or towed into a gate, there is a cost 
associated with it. Thus it is imperative to minimize this cost.  A towing operation is 
illustrated in the Fig 3 below. 

Conceptually, a long turn that is towed out or towed in is broken down as two 
separate turns. An arriving flight is combined with a dummy outgoing flight after 
providing adequate time for passenger disembarkment. Similarly a departing flight is 
combined with a dummy incoming flight, providing adequate boarding time. 

 
 

 
 

Fig 3: Towing Representation 
 
• Gate rest: Gate rest is defined as the time duration for which the gate is kept idle 

between a departing flight and the next arriving flight. The purpose of gate rest is to 
ensure that the gate plan remains fairly robust in the event of minor delays in the flight 
schedule. A 10 min gate rest ensures that two successive flights are assigned the same 
gate if and only if the arrival time of the later flight is at least 10 min after the departure 
time of the former in the planning phase. 
 

• Preferred gates: Some gates are perceived to be favorable for certain turns, while some 
others are perceived to be unfavorable. Certain predefined sets of conveniently located 
gates are preferred to be assigned to business markets and premium service flights. It also 
preferred to assign international flights to international gates and domestic flights to 
domestic gates, even if it is possible to disembark and board passengers otherwise. 
Similarly, certain gates could technically handle a particular type of aircraft, but it may 
not be a preferred assignment. Assignment of turns to preferred gates should be 
maximized. 
 

• Unassigned turns: Given that airline companies have peak activities over a small 
window of time period during morning and evening, it is possible that an airline does not 
have adequate number of gates for all the aircrafts that are on the ground. Under such 
situations, either some aircrafts are made to wait till some gate is freed or the airline 
company borrows a gate from its competitors. Both of these are usually not preferred. 
While the first one impacts the customer satisfaction levels, the second one involves a 
certain cost and is subject to availability.  
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With this, we have explained some of the main features and restrictions considered while 
solving an airport gate assignment problem. This paper is organized in the following manner. 
In section 2, we review some of the relevant literature on this topic. Section 3 would describe 
the different objectives considered for our problem. We would also outline the existing gaps 
in the literature on this subject and describe our contribution in plugging those gaps. Section 
4 describes the mathematical model developed by us to solve this problem and section 5 
illustrates the results of the model on a real-life example. Section 6 concludes the paper and 
provides some future directions for research on this topic.  
 
 
2. Literature Review 
 
Airport gate assignment problem, as a planning problem, has been extensively studied in the 
literature for three decades. However we will focus our survey to some of the recent work in 
this field, while mentioning the pioneering research. Since airport gate assignment problem is 
a special case of generalized assignment problem with specific constraints, its complexity is 
similar. The mathematical modeling for this problem has also been generally inspired from 
the modeling techniques for assignment problem. One of the major classifications of the 
research on airport gate assignment problems is along the lines of modeling methodology, 
viz. continuous time model and discrete time interval model. Dorndorf et al. (2007a) provide 
a survey of the state of the art on the airport gate assignment research. 
 

One of the earliest papers reporting the assignment of gates with the objective of 
minimizing average passenger walking distance (for both departing and arriving flights) is 
modeled using a continuous time assignment model by Babic et al (1984). The model assigns 
aircrafts to gates or stands and ensures that larger number of passengers walk less, while 
ensuring that all flights are assigned to a gate or stand. Mangoubi and Mathaisel (1985) also 
present a continuous time gate assignment model that optimizes the average passenger 
walking distance into and out of the terminal. Their model, additionally, also looks at 
aircraft-gate compatibility and the connecting passengers to model the assignment of two 
flights to gates such that the distance between them is kept within a certain limit. However 
the model emerges as a quadratic assignment model which is linearized in a not very 
efficient manner. Thus they employ LP relaxation and greedy heuristics to solve the problem. 
 

Haghani and Chen (1998) formulate a multiple time slot version of the GAP with the 
objective of passenger walking and baggage transport distance minimization as an integer 
program. The problem is formulated as a quadratic assignment problem and is solved using 
an iterative heuristic. Yan and Chang (1998) formulated the airport gate assignment as a 
multi-commodity network flow problem. The objective of this model is to "flow" all the 
airplanes in each network, at a minimum cost, which is equivalent to the minimization of 
total passenger walking distance. An algorithm based on the Lagrangian relaxation, with 
subgradient methods, accompanied by a shortest path algorithm and a Lagrangian heuristic 
was developed to solve the problem. The model was tested using data from a Taiwanese 
airport. 
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Xu and Bailey (2001) propose a tabu search algorithm for a continuous time airport 
gate assignment problem with the objective of minimizing the passenger walking distances, 
in order to reach the connecting flights. Given that the problem has a non-linear (quadratic) 
objective function, a simple tabu search metaheuristic is used to solve the problem. The 
algorithm exploits the special properties of different types of neighborhood moves and 
creates effective candidate list strategies. 

 
Recent research has been focusing on robust gate assignment plans as opposed to 

walking time minimization criteria. Bolat (2000) provide a model for robust gate assignment 
which can be maintained during the real-time operations. This is done by maximizing the gap 
between a departing flight and the next arriving flight. However, the objective function is 
non-linear and hence the problem is solved using a heuristic. Yan et al. (2002) introduce 
flexible buffer times to absorb stochastic delays in gate assignment operations. They propose 
a simulation framework, that is not only able to analyze the effects of stochastic flight delays 
on static gate assignments, but can also evaluate flexible buffer times and real-time gate 
assignment rules. Lim et al. (2005) consider the more realistic situation where flight arrival 
and departure times can change. Although the objective is still to minimize walking distances 
(or travel time), the model considers time slots allotted to aircraft at gates deviate from 
scheduled slots within a time window. The solution approach uses insert and interval 
exchange moves together with a time shift algorithm. These neighborhood moves are used 
within a Tabu search framework. 
 

More recent research on this topic focuses on multiple objectives and other unique 
ways of mathematical formulation. There have also been efforts to combine the problem in 
planning and operations phase to develop stochastic models. Yan and Huo (2001) formulate 
a dual objective 0–1 integer programming model for the aircraft gate assignment. The first 
objective tries to minimize walking times for connecting as well as other passengers while 
the second objective aims to minimizing passenger waiting times in the event the aircraft 
does not find a free gate. Ding et al. (2005) consider the over-constrained gate assignment 
problem which is described as a situation when there are too many flights for the available 
gates. They propose a 0-1 quadratic program model that minimizes the number of ungated 
turns and also minimizes the passenger walking distance. They use a greedy algorithm that 
minimizes the ungated flights, while a neighbourhood search technique called the Interval 
Exchange Move allows flexibility in seeking good solutions within a Tabu search 
framework. 

 
Lim and Wang (2005) attempt to accurately build an evaluation criteria for the ability 

of an aircraft-to-gate assignment to handle uncertainty on aircraft schedule; and to accurately 
and effectively search the most robust airport gate assignment. They develop a stochastic 
programming model and transform it into a binary programming model by introducing the 
unsupervised estimation functions without knowing any information on the real-time arrival 
and departure time of aircrafts in advance. A partition-based search space encoding, two 
neighborhood operators for single or multiple aircrafts reassignment, and a hybrid meta-
heuristic combining a tabu search and a local search are implemented.  
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 Yan and Tang (2007) consider the gate assignment problem in the planning mode 
along with stochastic flight delays that occur in actual operations. They argue that it would 
be sub-optimal to handle the problem in planning and operations separately, without 
addressing the inter-relationship between these two stages. They suggest a heuristic approach 
to solve such a model that includes three components, a stochastic gate assignment model, a 
real-time assignment rule, and penalty adjustment methods. Diepen et al (2007) propose a set 
partitioning formulation. This is done by modeling a series of flights that are to be assigned 
to the same gate. This assignment is called a gate plan. A major advantage of this new 
formulation is that feasibility can be checked easily during the pre-processing stage. 
Furthermore, even cost calculation of a gate plan is also pre-processed. This is also one of the 
few papers that consider the adjacent gate restriction as observed at Schipol airport. 
 
 Dorndorf et al. (2007b) propose two methods to incorporate robustness into the gate 
assignment models through overlap methods and fuzzy sets. Dorndorf et al. (2008) consider 
the multiple objectives of maximization of the total assignment preference score, 
minimization of the number of unassigned flights during overload periods, minimization of 
the number of tows, as well as maximization of the robustness of the resulting schedule with 
respect to flight delays. However they present a unique approach involving simple 
transformation of the flight-gate scheduling problem to a graph problem, i.e., the clique 
partitioning problem (CPP). The algorithm used to solve the CPP is a heuristic based on the 
ejection chain algorithm. 
 

Drexl and Nikulin (2008) consider the multiple objectives of minimizing the number 
of ungated flights and the total passenger walking distances or connection times as well as 
maximization of the total gate assignment preferences. The problem is formulated as a 
quadratic assignment formulation and solved by Pareto simulated annealing in order to get a 
representative approximation for the Pareto front. Hu and Di Paolo (2009) employ genetic 
algorithm to solve the multi-objective airport gate assignment problem. 
 
 To summarize, airport gate assignment in planning mode is an extensively researched 
topic over the last few decades. While the early approaches considered one objective (usually 
minimization of passenger walking times) and formulated the problem as an integer or 
quadratic assignment formulation with continuous time. The researchers in late 1990s started 
to look beyond the continuous time formulation and proposed discrete time interval and 
network formulations. After 2000s, the problem has been formulated with a fresh 
perspective, such as set partitioning approach or a clique partitioning graph model, and the 
focus has been to look at several other objectives which are commonly observed for this 
problem. The objectives considered for the problem have usually been to: 

1. minimize passenger walking times from (or to) the terminal and connecting flight 
gates 

2. minimize the number of ungated turns 
3. minimize the number or costs of towing procedures 
4. maximize (or minimize) the preference of certain turns to be assigned to favorable (or 

unfavorable) gates 
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5. maximize the schedule robustness using different features such as inclusion of 
stochastic delays in the model, increase of idle time between two turns, or inclusion 
of time windows. 

Airport gate assignment in operations mode is studied as a recovery problem in 
conjunction with aircraft, crew and passenger recovery problems. However operational 
objectives before recovery, such as minimizing gate plan deviations and maintaining 
schedule feasibility as specific objectives in the operations are not studied. 
 
 
3. Problem Features and Assumptions 
 
The airport gate assignment problem studied by us in this paper is inspired from a real-life 
case study at Chicago O’Hare, even though not all the restrictions reported in section 1 are 
applicable for this airport. It is indeed an interesting research challenge to study the different 
ways of formulating the airport gate assignment problem in the planning mode. However, it 
is surprising to note that one common thread that runs across the literature is the fact that the 
problem has rarely been solved using exact methods to optimality. In fact we would go on to 
state that heuristic and meta-heuristic techniques have been “over-employed” to solve the 
problem. The perceived reason is that the scale of the problem is often so large that it is not 
possible to solve it to reasonable or acceptable levels of optimality with the mathematical 
formulations themselves. Given that the airline company for which we solve the gate 
assignment problem is among the top 3 in terms of passenger traffic in the world and 
Chicago O’Hare is one of its busiest hubs, we want to show that simple, continuous time 
assignment model with a wide range of multiple objectives can produce high quality 
solutions in reasonable computing times. 
 

In the literature, we found that some of the considerations observed at real airports 
are not considered in the literature. Some features unique to the gate assignment problem 
studied by us include LIFO gates and towing constraints. These constraints have never been 
explicitly modeled for either continuous time assignment models or discrete time slot 
assignment model in any of the papers studied by us. One of the reasons could be that most 
of the solution procedures have eventually relied on heuristics and thus they do not see the 
need for modeling these features as additional constraints. Diepen et al. (2007) do consider 
the adjacent gate constraint, but the constraint is pre-processed in their set-partitioning 
formulation. One of our major contributions in this paper is to conceptually model all these 
physical constraints, viz. adjacent gate constraints, LIFO gate constraints and towing 
constraints, into logical mathematical ones. 
 
 Walking time minimization is one of the earliest objectives considered for the gate 
assignment problem in the literature. It is realized that this problem can be easily modeled as 
a quadratic programming model. While some of the literature attempts to linearize the non-
linear model, most of the other research solves the problem using heuristics – where the non-
linear objective or constraints really don’t matter. We believe that walking time minimization 
is a realistic objective for the airport gate assignment problem; it, however, is not the top 
priority from the business point of view. Most airline companies would like to know how 
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walking time criteria can really impact their bottom-line apart from perceived customer 
satisfaction. In this context, the walking time criteria is really the most important criteria for 
connecting passengers – with especially short connection times. 
 

A passenger with two hour connecting time would not bother to walk a little more 
distance to her gate (which also gives an opportunity for shopping). However a passenger 
with 35 min connection time would be particularly bothered as she has to disembark, walk to 
the connecting flight gate and board the flight within this short time. In particular, airline also 
realizes that if the passenger misses the connection, they would not only have to make 
arrangements for the passenger, but they would also not realize the complete revenue till the 
journey is completed. Such connections are identified as “connections at risk” and it is 
important for the airline to make suitable arrangements – such as making these passengers sit 
on one of the front rows to enable faster disembarking, assigning the connecting flight to a 
“nearby” gate, etc. In this context, our work differs from the other research works in this area 
– even though the underlying model is conceptually the same. Our objective is not to 
minimize the average walking distances, but to maximize the connection realizations through 
our optimal gate assignment model, which we consider as a fresh contribution on this topic. 

 
Robust scheduling has been adequately addressed in the prior works as one of the 

objectives of the airport gate assignment model. Robustness, as a measure, can have different 
definitions. In our paper, we already provide some gate rest between a departing turn and the 
next arriving turn. This is also referred to as idle time in literature. The purpose of this gate 
rest is to absorb any small delays in the outgoing or incoming aircrafts. Another purpose of 
providing gate rest is also to ensure safety. This would ensure that there is sufficient gap 
between the departing and arriving aircraft to minimize the possibility of any accidents. 
Usually, standard gate rest is provided for all turns depending on the type of aircraft 
equipment. We propose to increase the robustness of our planned schedule by increasing the 
gate rest by accounting for the past history of delays. The method followed is quite simple 
and intuitive. We note the past delay patterns for every flight. We choose the kth percentile 
delay of the historical delay in minutes (say, k is 95th percentile of past 300 days of delays) 
for every turn and attempt to add the same to the gate rest corresponding to that turn. Since 
the delays are themselves calculated at flight levels, we choose the maximum of the two 
delays – arriving and departing flight of a turn – to calculate the percentile delay. The key 
word here is “attempt to” because it may be infeasible to provide such a gate rest. For every 
minute of violation of this additional gate rest, there would be an associated penalty. While 
idle time maximization is one of the measures used extensively in literature to increase the 
schedule robustness, we feel that our measure is far more effective as it tries to maximize the 
time between turns to the turns where it is needed the most – instead of adding time to all the 
turns. We feel that this is another major contribution of this paper. 

 
The third objective considered by us is to limit the number of zone usages to 

minimum when the hub activity is thin. While it is expected to be impossible to reduce the 
number of zones during the day times, it is however possible that the number of zones are 
limited during the night times. This objective has not been considered in the airport gate 
assignment so far in the literature and it is indeed one of the contributions of our paper. 
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It is worth highlighting that the recovery procedures considered for the airport gate 
assignment problem in the literature largely focus on the joint schedule recovery for the 
aircrafts, crew and passengers. While it is best to study the recovery models encompassing 
all functions of the airline business, it is often time consuming and helps little at the actual 
time of “fire-fighting” on the ground when a set of aircrafts arrive with large delays. Before 
the schedule is recovered, it is imperative that the arriving and departing aircrafts are 
provided airport gates within the given set of operational constraints. This period between the 
disruption and schedule recovery is handled by ground operations and requires certain robust 
and quick gate assignment models. During operations, we do not bother about the 
profitability of the airline and thus ignore all models which aim to enhance revenues and cut 
down costs. The primary focus is on schedule feasibility and ensuring that there is minimal 
further disruption to the flight schedule. The second important feature of operations model is 
the run time. Though small run times are always desired, it is critical that the operational 
models indeed have very small run times, in the matter of a few seconds. It is not possible to 
wait, say for half-an-hour, for the model to produce an optimal output because the ground 
personnel are literally fighting against the time while managing disrupted flights. 

 
In this context, it is relevant to note that operations models in gate optimization have 

two main objectives. The first basic objective is to minimize the deviation from the planned 
schedule. In the event of delayed arrival and subsequent departure of a large number of turns, 
it is imperative that the assignment to the originally planned gates may no longer be possible. 
Given the fresh arrival and departure times for the turns, the first objective aims to minimize 
the penalty due to reassignment of gates (re-gating). In addition to allowing flight re-gating, 
the operations model also aims to maintain a similar number of departures and arrivals for 
every zone for given predefined time intervals. Any deviation in the number of aircrafts in a 
particular zone on ground with respect to the planned schedule is penalized. All the physical 
and logical constraints of the airport as mentioned in section 1 would be applicable in the 
operations problem as well. Further, the operations model with this objective should be 
capable of handling constraints relating to (1) specific turns that should not be re-gated; 
and/or (2) specific turns that are allowed to be re-gated. 

 
While running the gate assignment model in the operations mode with the above 

mentioned objective, it is quite likely that a scenario emerges when the number of aircrafts 
on ground is actually more than the available gates. This could be a result of several delayed 
arrivals or departures piling up just around the hub peak time. Thus the second objective in 
the operations mode deals with maintaining the schedule feasibility by retiming some of the 
flights to a later time. Care is taken to ensure that the extent of retiming is limited for an 
individual turn while ensuring that such re-timings are minimal and heavily penalized. 

  
So far, we mentioned the different objectives and constraints considered in our 

version of the airport gate assignment problem. We have also highlighted the distinctive 
features in our model which could be considered as fresh contributions on this topic. 
However there are also some inherent assumptions and limitations in our model which are 
described as below: 

• Connection revenue is realized only if the passenger is able to disembark, walk 
between the gates and board before the connecting flight departs. This is a fair 
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assumption and a perfect synopsis of the real instance. However it does not consider 
any additional costs that would be borne if the passenger misses the connection. 

• Disembarking time, walking time between different gates at the airport and boarding 
times are provided as point estimate inputs. This is a strong assumption because 
different passengers may actually take different amounts of time for the same 
sequence of activities. It could especially be true for passengers on wheel chairs and 
passengers travelling with families. However the ensuing model would become 
extremely complicated if pedestrian behavior is to be included in it. 

• Connection revenue is provided as point estimate inputs. This is again a strong 
assumption as the connection revenue might tend to change on a day by day basis. 
The estimates used in the model would be some sort of an average value over a fairly 
long period of time because it would not be possible to change gates for turns on a 
daily basis. 

• For schedule robustness, gate rest accounts for minimum gate rest and a certain 
percentile delay of the flights in the turns. While this increases the schedule 
robustness by some extent, it is certainly not the best way. It would be ideal to model 
the stochastic flight delays into the planning model, but the resulting stochastic MIP 
would be too complex to handle. 

• For the zone minimization objective, it is conveniently assumed that the non-
productive time for the employees to travel within the zone would be same for all the 
gates within the zone and would necessarily be less than the travel time to cross the 
zone. This is a reasonable assumption based on the actual layout of the airport where 
the zones are fairly spread out and inter-zonal distances are usually much more than 
the intra-zonal distances. 

• Some of the papers in the literature allowed for aircraft waiting in the times of 
congestion for the planning problem. However this is assumed to be not possible for 
our problem as per the wishes of the airline company. It is fairly reasonable because 
the gate assignment, at least during the planning stage, should not plan for aircraft 
waiting. This might eventually happen during the real-time operations (when retiming 
certain turns beyond their actual arrival), but it would indeed be a bad plan to allow 
aircraft waiting in the absence of gates. In case a gate plan is highly infeasible, the 
airport operations team would work with the flight scheduling team to move some of 
the flights to non-peak periods while negotiating for more gates with the airport 
authority and the competitors. 

 
We would now describe the mathematical model which is a 0-1 mixed integer 

program (MIP) and would help us produce a feasible gate plan in the light of all the above 
business constraints. 
 
 
4. Mathematical Model 
 
In this paper, we first consider the gate assignment for planning mode where cost 
minimization and revenue maximization are major optimization criteria as opposed to 
feasibility of solutions or walking times for passengers. In the planning mode, flight schedule 
and gate plan are used to arrive at a gate assignment schedule while ensuring that the 
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business constraints are satisfied and the objective function gets an optimal value. We 
develop a basic 0-1 integer program mathematical model formulation with linear objective 
function and constraints that would assign one gate to every flight and ensure that all 
business constraints are satisfied. 
 

As the first objective, we would focus on cost minimization. The different cost 
components in the model relate to the cost of providing unfavorable gates to preferred 
flights, the cost of towing and the cost of an ungated turn. In this model, we would also 
describe all business constraints associated with the problem. Additional objectives of 
connection revenue maximization, minimization of zone usage and robust gate plan would be 
described later. While most of the parameters and decision variables in the problem would be 
described with the first objective, specific parameters and decision variables corresponding 
to the other objectives would be described when those objectives are described. 
 

The following are the data sets for the turn schedule and the airport. 
 
Sets 
 
TURNS: set of turns to be gated represented as i, or j; 
LT: set of long turns for which towing is allowed, represented as t, LT ⊂ TURNS 
GATES:  set of gates represented as k or l; 
ADJACENT:  set of adjacent gate pairs that have the adjacent gate restriction represented as 

(k,l); 
LIFO: set of Last-In-First-Out gate pairs represented as ( Fk , Rl ) to distinguish front 

and rear gates; 
(i1, i2): New turns arising out of a towed turn t; 
Ek:   set of aircraft types that gate k can handle, GATESk ∈  

1
kE , 1

lE :  sets of aircraft types such that when an aircraft of a type in 1
kE is occupying k, 

no aircraft of any type in 1
lE may use adjacent gate l ; and vice versa. 

 
Parameters 
 
α:   minimum gate rest  
C1:  the actual cost of towing an aircraft 
C2: the cost of not assigning a gate to a turn, determined by cost of borrowing a 

gate from a competing airline 
ai:   planned arrival time of turn TURNSi ∈  
bi:   planned departure time of turn TURNSi ∈  
Cik:  notional cost of assigning turn i to gate k 
ei:   aircraft type used by turn TURNSi ∈  
 
Decision Variables 
 

∈ikx  {0,1}:  1 if turn i is assigned to gate k; 0 otherwise 
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∈iy  {0,1}:  1 if turn i is not assigned to any gate; 0 otherwise 
∈tw  {0,1}:  1 if long turn t is towed; 0 otherwise 

 
Objective Function 
 

We start by minimizing all the cost elements in our model – which in this case are the 
cost of assigning unfavorable gates to certain preferred, premium service turns; cost of 
towing a turn and the cost of not assigning a turn to a gate (ungated turn). It may be noted 
that the costs of assigning a gate are symbolic based on the perceived importance of certain 
flights, the cost of towing and the cost of ungated turn are on an actual basis. 
 

ikC  represents how unfavorable would be the assignment of turn i to gate k.  This 
coefficient, usually positive, is affected by a number of business and operational preferences: 

• Some pre-defined sets of conveniently located gates are preferred for turns that 
contain the top business market flights and premium services flights 

• Some international terminal gates are capable of accommodating domestic arrivals, 
but they are less preferred than gates at domestic terminals 

• Some gates are less preferred for some fleet types because of gate features 
 
 
Minimize ∑∑∑∑

∈∈∈ ∈

++
Ti

i
Lt

t
Ti Kk

ikik yCwCxC 21       … (1a) 

 
 
Constraints 
 

A turn has to be assigned to exactly one gate or none. It is also required that the 
assigned gate is capable of handling the aircraft associated with the turn. This is modeled as 
 

1
:

=+∑
∈∈

i
EeGATESk

ik yx
ki

, TURNSi ∈        … (2) 

 
It is possible that the airline company wants a particular turn i’ to be only assigned to 

a certain gate k. This can be modeled as 
 

1
'

' =∑
∈TURNSi

kix ,  GATESk ∈        … (3)  

 
It is possible that the airline does NOT wants a particular turn j’ to be assigned to a 

certain gate l. This can be modeled as 
 

0
'

' =∑
∈TURNSj

ljx ,  GATESk ∈        … (4)  

 



 15 

There cannot be two turns on the same gate at the same time, including the gate rest 
time after the turn has departed. This is referred to as overlap and can be modeled as 

 
1≤+ jkik xx , ,:;, αα +<∧+<∧<∈∈ ijjiji babaaaGATESkTURNSji ji ≠  

        … (5) 
 

Two adjacent gates cannot handle certain types of aircraft types simultaneously. This 
can be logically modeled as 

 
1≤+ jlik xx ,  ( ) jiji baaaADJACENTlkGATESlkTURNSji <∧<∈∈∈ :,;,;,  

   11;;, ljkiij EeEejiba ∈∈≠<∧      … (6) 
 

The following two constraints ensure that no aircraft can exit the front gate as long as 
there is an aircraft in the rear gate and that no aircraft can enter the front gate as long as the 
aircraft in the rear gate has not departed 

 
1≤+ RF jlik xx ,  ( ) ,:,;, jiij

RF baaaLIFOlkTURNSji ≤∧≤∈∈ ji ≠  … (7) 

 
1≤+ RF jlik xx ,  ( ) ,:,;, jiij

RF bbbaLIFOlkTURNSji ≤∧≤∈∈ ji ≠   … (8) 

 
We now introduce the following constraints to represent the towing of a long turn. 

Note that long turn t is broken down into two possible half turns i1 and i2, such that arrival 
time of i1 is same as the arrival time of t and departure time of i2 is same as the departure 
time of t. The first constraint ensures that the long turn is split only if the option of long turn 
is chosen by paying the towing costs and the two half turn get assigned to different gates. 
The next constraint ensures that there is no overlapping for the two half turns arising out of 
breaking a long turn. The last constraint ensures that there are no adjacent gate limitations for 
the half turns. 
 

tkiki wxx ≤−
21

,  :;;, 21 GATESkLTtTURNSii ∈∈∈ 21 ii ≠    … (11) 
 

tjkki wxx ≤−+ 1
1

, :;;,, 21 GATESkLTtTURNSjii ∈∈∈      
   2121 ijji ababijji <+∧<+∧≠∧≠ αα    … (12) 
 

tjlki wxx ≤−+ 1
1

, :),(;;,1 ADJACENTlkLTtTURNSji ∈∈∈  

,
2121 ijji ababijji <+∧<+∧≠∧≠ αα 11 ,

1 ljki EeEe ∈∈  … (13) 
 

This model with objective as (1a) and constraints (2) – (13) would minimize the 
overall operational costs while satisfying all business related constraints. Next we will try to 
extend this model to maximize the passenger revenues by optimizing the connection time for 
“connections at risk”.  
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Though there are stipulated minimum and maximum connection times, it must be 
noted that flights gated at distant gates could possibly result in misconnects if the connection 
time is fairly tight. For a passenger who transfers to a connection flight at the airport, the 
connection time is readily defined as the walking time required from the arrival gate of her 
incoming flight to the departure gate of her outgoing flight. For the planning model, the 
arrival time of the incoming flight and the departure time of the outgoing flight are assumed 
to be fixed as per the published flight schedule. Each flight must be assigned to exactly one 
gate, and there should be sufficient time for passengers boarding at the gate. 
 

When building a 0-1 integer program formulation, one of the key issues is the choice 
of decision variable. We consider the gating plan of an incoming flight connection as well as 
an outgoing flight connection rolled into one variable. Thus, for a flight schedule with 800 
flights and 100 gates, the worst case scenario could result in 6.4bn 0-1 variables. Fortunately, 
every flight does not always present a connection opportunity to passenger with every other 
flight. Incidentally, a flight can potentially connect to barely 20 other flights and, in most 
cases, the connection time is often more than the longest walking time between two gates at 
the airport, which means that there are few “connections at risk”. 

 
We now present an extension to the model given above (1a) – (13) to incorporate this 

objective in the mathematical formulation. As before, we will first define the ADDITIONAL 
sets and parameters and then the ADDITIONAL decision variables, objective function and 
constraints. 
 
Sets: 
 
CNX:  Set of all revenue connections involving turns i and j, i.e., (i,j) 
 
Parameters: 
 

ijREVENUE : Revenue generated by connecting turn i to turn j. Note that (i,j) ∈ CNX 
),( lkWalk : Wholesome walking time including boarding, de-boarding and other 

components of time to move from gate k to gate l 
 
Decision variables: 
 

ijklz : 1 if turn i is assigned to gate k and turn j is assigned to gate l and (i,j) ∈ CNX, 
0 otherwise 

 
Mathematical Model: 
 
Maximize 
 

∑ ∑ ∑
∈ ∈ ∈CNXji GATESk GATESl

ijREVENUE
),(

       … (1b) 
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∑∑ ≤
k

ik
k

ijkl xz

 

GATESlkTURNSjiNXji, ∈∈∈∀ ,;,;C)(    … (15) 

 
∑∑ ≤

l
jl

l
ijkl xz

 

GATESlkTURNSjiNXji, ∈∈∈∀ ,;,;C)(    … (16) 

 
ijkljlik zx+x ≤−1

 

ji blkWalkaGATESlk,TURNSji,NXji, ≤+∈∈∈∀ ),(:,,C)(  
           … (17) 
 

0=ijklz

  

ji blkWalkaGATESlk,TURNSji,NXji, >+∈∈∈∀ ),(:,,C)(  
           … (18) 
 

(1b) is the objective function addition to the existing model to capture the revenue 
maximization. We maximize the overall revenue by realizing the connection revenue 
between flights which are components of turns i and j. Revenue computation would be done 
carefully by looking at the possibility of connection from i to j. 
 

(15) and (16) are upper bounds that ensure zijkl would not take a value of 1 unless both 
turns i and j are assigned to gates k and l respectively. Note that this is a necessary condition 
for this variable to take a value 1, but by no means sufficient. (17) is a lower bound for this 
variable. This variable zijkl is created for only “select” valid connections between turns i and 
j. By “select” connections, we refer to those connections where the connection time is greater 
the minimum time for a passenger to de-board, walk and board another connection while less 
than the maximum time for a passenger to de-board, walk and board another connection for a 
given hub airport. For instance, the maximum time for a passenger to de-plane, walk and 
board another flight at this hub is 41 min for domestic connections irrespective of the aircraft 
type. It is not difficult to prove that we do not sacrifice optimality by such an assumption 
because any connection with connection time less than minimum walking time would never 
materialize even if the corresponding equipments are gated at closest gates. Similarly, there 
would be no adverse impact on the revenue by assigning connecting turns to farthest gates 
(or any other combination of gates) if the total connection time is greater than the maximum 
walking time between two gates at the airport. 
 

(18) would ensure that the decision variable zijkl takes a value 1 if and only if walking 
times between flights involved in turns i and j is less than the difference between departure 
and arrival flights in turns j and i respectively.  
 

Note that these features and constraints are only addition to the existing model. There 
is no change in the basic framework of the old model and the fresh addition only introduces 
several new variables and constraints that would help us solve the objective of maximizing 
connection revenue. 

 
Let us now consider the next objective of minimization of zone usage. There are 

certain time intervals during the day when the number of flights on the ground at a station is 
very less. At such instances, it is preferable to ensure that all flights to be serviced are 
restricted to a limited number of zones so that employees do not waste time walking between 
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different zones. This can be handled as an extension to the model given above. Let us again 
start with introduction additional sets, parameters, decision variables, objective function and 
constraints to the model. 

 
Sets: 
 
ZONE:  Set of all zones, n, such that k ∈ n 
SHIFT: Set of all possible shifts s with a given shift begin, sb and end time, se – e.g., 

00:00 – 4:00AM, 01:00 – 5:00 AM, …, 11:00 PM – 3:00 AM, assuming a 
minimum shift of 4 hours. 

 
This model does not assume any predefined shift timings and would also help the 

airline company realign the shift timings of the employees to extract maximum benefits. 
 
Parameters: 
 
Z_PENALTY: Notional penalty for using a zone 
Big_M: A large number (a number larger than the number of gates in all zones) 
 
Decision variables: 
 
mns:  0-1 binary variable to indicate if a zone n is utilized in shift s 
 
Mathematical model: 
 

∑∑
n s

nsmPENALTYZ _
:Minimize

         … (1c) 

)(:,_
:Subject to

eibeibns
nk i

ik sassbsnsmMBIGx ≤≤∨≤≤∀×≤∑∑
∈

 

  

… (19) 

 
This objective ensures that the zone utilization over any shift time is penalized while 

the constraint checks if a turn is scheduled in a zone for a particular shift. Needless to say, 
the zone minimization models would optimize objective function (1c) with constraint (19) in 
ADDITION to constraints (2) – (13). 
 

Gate rest is a concept that is utilized to improve gate plan robustness. The gate 
assignment plan should consider different minimum gate rest characteristics for different 
type of aircrafts and flight sectors on which the turns operate. It also dynamically considers 
gate rest, given expected inbound arrival delays, or other operational characteristics. It 
should be capable of handling, without excessive disruption, the propagation involved in a 
typical “out of service” aircraft problem. By incorporating these criteria in the Gate 
Assignment Problem (GAP), a robust gate plan can be handed off to airport staff to better 
manage the gate plan during operations. 
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We use the same existing model to optimize gating robustness with a minor change. 
We create a delay variable, delay, for a particular turn to include the extent of flight delay in 
both arrival and departure. delay for a turn i is computed using historical arrival delay and 
departure delay data as: 
delayi = Max(kth percentile Arrival Delayi, kth percentile Departure Delayi) 
 

We use the following additional variable to the existing model which captures the 
amount of gate rest violation from the desired amount and try to minimize the same. 
 
Parameters: 
 
delayi:   Delay factor for turn i 
β:   Desired gate rest (β ≥ α) 
GR_PENALTY: Per minute penalty (notional) for violating gate rest 
 
Decision variable: 
 
gr_violation_ttli: Gate rest violation in minutes for turn i 
 
Mathematical model: 
 

∑
∈TURNSi

ittlviolationgrPENALTYGR ___
:Minimize

      … (1d) 

 

ijiijkik ttlviolationgradelaybxx __)).(1(
:Subject to

≤−++−+ β

 

Turnsji ∈∀ ,   … (20) 

The gate rest maximization model would optimize objective function (1d) with 
constraint (20) in ADDITION to constraints (2) – (13). This completes the mathematical 
model of all the three objectives described for the planning mode in this paper. Now let us 
consider the mathematical models for the operations mode. As opposed to the planning 
mode, the primary optimization criterion in the operations mode is to maintain feasibility and 
minimize the impact of the disruption. This is achieved by minimizing the extent of schedule 
deviations from the planned gating solution and then retiming a limited number of turns that 
could not be gated after the application of the first objective. 
 

Let us now focus on the model to minimize schedule deviations. The primary 
objective of this mathematical model is to provide real time gating solution based on the 
actual arrival and departure time of the turns. Some delays cannot be absorbed by gate rest 
provided in the planning model. If there are several large delays, it could potentially result in 
piling up of flights during a peak hour at the hub airport. Gating of delayed flights in addition 
to the planned schedule put a strain on the resources. To accommodate these delays, some 
flights are re-gated to ensure that minimal flights remain without a gate at the end of the 
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exercise. In addition to re-gating, this model should aim to minimize any zone-wise 
deviations in terms of the number of arrivals and departures based on the planned schedule. 
We propose the following mathematical model to take care of this problem: 
 
Parameters: 
 
plan_gateik: 1 if turn i is assigned to gate k at planning stage, 0 otherwise 
reg_statusi: 0 if turn i is not allowed to be re-gated, 1 otherwise 
REGATE_P: Penalty for re-gating a turn i 
ZONE_P: Penalty for one variation in the sum total turns serviced in a zone 
sch_ai:  Scheduled arrival time of turn i 
sch_bi:  Scheduled departure time of turn i 
 
Decision Variables: 
 
The decision variables xik and yi have the same relevance as used in the planning stage, but 
operations problem is re-run for new / actual arrival and departure times for the turns. 
 

∈ikx  {0,1}:  1 if turn i is assigned to gate k; 0 otherwise 
∈iy  {0,1}:  1 if turn i is not assigned to any gate; 0 otherwise 
∈'

iy  {0,1}:  1 if turn i is re-assigned to a different gate; 0 otherwise 
'
nsz :   an unrestricted integer for all zones, n and all shift periods, s 
'
nsu :   non-negative integer for all zones, n and all shift periods, s 
'
nsv :   non-negative integer for all zones, n and all shift periods, s 

 
Objective Function: 
 
Operations mode would have its objective function, and as mentioned before, the stress is 
really on operational feasibility, rather than optimization. The first two terms in the objective 
function aim to minimize the deviation of the new schedule with respect to the planned 
schedule. The notional costs corresponding to re-gating and zone deviation penalties have 
little significance, as long as these two terms of non-negative and reflect the relative 
importance of the two deviations for the operations personnel. The third term in the objective 
has the same purpose as in the planning, i.e. to ensure as many turns are gated as possible. 
 
Minimize ∑∑∑∑ +++

i
ins

n s
ns

i
i yCvuPZONEyPREGATE .)(__ 2

'''   … (21) 

 
Constraints: 
 
The logical constraints among the set (2) – (13) would be equally applicable for the problem 
in the operations mode and hence would not be ignored. Some constraints, such as (3) and 
(4) enforced by the planners may be ignored, if the airport operations manager so decides. 
For these constraints, the arrival and departure times of the turns, ai and bi, would be 
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replaced by the actual arrival and departure times, sch_ai and sch_bi. In addition, the 
following constraints would also be required. 
 

iiik yy+x −= 1' 1_1_:, =∧=∈∈∀ iik statusreggateplanGATESkTURNSi

 

… (22) 
This constraint ensures that either a turn re-gated or remains un-gated 

 
ijik gateplanx _=  0_:, =∈∈∀ istatusregGATESkTURNSi

 

 

… (23) 
This constraint ensures that planned gate schedule cannot be changed, if not allowed 

 
0' =iy    0_: =∈∀ istatusregTURNSi

   

 

… (24) 
This constraint ensures that if a turn is assigned to its planned gate, it cannot be re-

gated 
 

')_( ns
i

ik
k

ik zxgateplan =−∑∑  )__(:,;, eibeib saschssbschssinkn ≤≤∨≤≤∈∀

 

          

… (25) 
This constraint captures the difference between planned gating and the new gating for 

every zone, by every shift. Each of the '
nsz variable can be negative or positive. 

 
0'' ≥+ nsns uz   sn,∀

 

      

… (26) 
''
nsns vz ≤   sn,∀

 

      

… (27) 
These two constraints ensure that the positive value of '

nsz variable is captured in one 
of them, while the other one remains 0 – due to the minimizing objective. 
 

The model with objective (21) and constraints (2) – (13) and (22) – (27) completes 
the gate assignment model in operations mode. Given that the basic model, without any 
specific profitability objectives (1b), (1c) or (1d) gets solved within a few seconds, it is 
expected that this model too would be solved reasonably fast. This is confirmed in the results 
in section 5. 
 

While clearly the above model suffices as long as all the delayed turns are capable of 
being assigned to a gate. However there is one situation when this model would not be 
adequate. If the disruption causes the schedule to pile up too many turns at the airport during 
the peak hours, it would be impossible to gate all these turns. If there are un-gated turns 
(non-zero yi) in planning stage, it is handled by either rescheduling some flights or leasing 
out new gates at the airport. In operations stage, the only possible solution is to delay the 
assignment of gate to the turn beyond the peak hour, while making it wait at the tarmac. Thus 
the arrival and departure times of certain flights would be retimed (delayed) to ensure that all 
turns eventually get assigned to some gate. We now describe the associated model. 
 
Sets: 
 
TURNS: Here it does not refer to all turns as in the previous models, but only the set of 

turns that are candidates for retiming. We choose all turns that could not be 
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assigned a gate based on the previous operations model and all other turns 
which are on ground after the arrival or before the departure of these turns 

 
Parameters: 
 
α:   minimum gate rest  
RETIME_P: Penalty for retiming a turn i by one minute (separately applied for both arrival 

and departure) 
MGTi: Minimum ground time (or the time that a turn needs to spend on the ground 

for the passengers to disembark, perform aircraft cleaning and boarding) 
 
Decision Variables: 
 
The decision variables xik and yi have the same relevance as used in the planning stage, but 
operations problem is re-run for new / scheduled arrival and departure times for the turns. 
 
pai:  Extent by which turn i is made to wait for gate after its scheduled arrival 
pbi:  Extent of departure delay of turn i beyond its scheduled departure 
 

It may be noted that the scheduled departure or arrival can only be delayed, but not 
advanced. Thus pai and pbi would be non-negative. 
act_ai:  Actual arrival time of turn i (= sch_ai + pai) 
act_bi:  Actual departure time of turn i (= sch_bi + pbi)  
 

Note that the constraints (2) – (13) would no longer be applicable in the same format 
as it is in the planning model or the previous operations model because the arrival and 
departure times themselves are variables in this new model. We would not have the variable 
yi as all turns have to be assigned to a gate through retiming. We also need several auxiliary 
variables to capture overlap, adjacency and LIFO conditions. 

∈ikx  {0,1}:  1 if turn i is assigned to gate k; 0 otherwise 
∈ijolp  {0,1}:  an auxiliary variable to track overlaps between turns i and j 
∈'

iolp  {0,1}:  an auxiliary variable to track overlaps between turns i and j 
∈ijadj  {0,1}:  an auxiliary variable to track adjacency between turns i and j 
∈'

iadj  {0,1}:  an auxiliary variable to track adjacency between turns i and j 
∈ijlf  {0,1}:  an auxiliary variable to track LIFO constraint between turns i and j 
∈'

ilf  {0,1}:  an auxiliary variable to track LIFO constraint between turns i and j 
 
Objective Function: 
 
The primary objective of the retiming model is to minimize the extent of retiming beyond the 
scheduled times of arrival and departures. Scheduled times are indicative of the already 
delayed arrival and departure times due to disruption. 
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Minimize   )(_ i
i

i pbpaPRETIME +∑     … (28) 

 
Constraints: 
 
As already mentioned, constraint sets (2) – (13) would no longer be applicable. Let us 
reformulate the constraint for overlap in this model. 
 

α+−+≤ )1.(__ ijji olpMbactaact
 

TURNSji ∈∀ ,

   

… (29) 
α+−≥ ijji olpMbactaact .__

 

 

TURNSji ∈∀ ,

   

… (30) 

)1.(__ '
ijji olpMaactbact −−≥+α

 
TURNSji ∈∀ ,

   

… (31) 
'.__ ijji olpMaactbact +≤+α

 

 

TURNSji ∈∀ ,

   

… (32) 

1
:

=∑
∈∈ ki EeGATESk
ikx ,    TURNSi ∈      … (33) 

3' ≤+++ ijijjkik olpolpxx
 

 

GATESkTURNSji ∈∈∀ ;,

  

… (34) 

iii pbbschbact += __
 

 

TURNSi ∈∀

    

… (35) 

iii paaschaact += __
 

 

TURNSi ∈∀

    

… (36) 

iii MGTaactbact ≥− __
 

 

TURNSi ∈∀

    

… (37) 
 

These constraints, (29) to (34), ensure that no two turns can be assigned the same gate 
if there is an overlap. The first four constraints ensure that at least one of the olp and olp’ 
variables is 1, with olp = 1 implying that turn i departs before turn j and olp’ = 1 implying 
that turn j departs before turn i. When both olp and olp’ are 1, the turns i and j cannot be 
assigned the same gate. 
 

Constraints (35) and (36) ensure that actual arrival and departure can only be delayed 
beyond the scheduled arrival or departure. Constraint (37) ensures that a delayed arrival stays 
on the ground at least to satisfy its minimum ground time requirement. 
 

Now we would model the adjacency constraints, which are logically written in the 
same way as overlap constraint above.  
 

)1.(__ ijji adjMbactaact −+≤
  

TURNSji ∈∀ ,

   

… (38) 

ijji adjMbactaact .__ −≥
 

  

TURNSji ∈∀ ,

   

… (39) 

)1.(__ '
ijji adjMaactbact −−≥

  
TURNSji ∈∀ ,

   

… (40) 
'.__ ijji adjMaactbact +≤

 

  

TURNSji ∈∀ ,

   

… (41) 

3' ≤+++ ijijjlik adjadjxx
 

( ) :,;,;, ADJACENTlkGATESlkTURNSji ∈∈∈∀

 

      

11;; ljki EeEeji ∈∈≠    … (42) 
 

Constraints (38) – (42) ensure that at least one of adj and adj’ is 1. If the two turns are 
indeed assigned to adjacent gates, adj = 1 implies that turn i departs before turn j and adj’ = 1 
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implies that turn j departs before turn i. When both these variables are 1, the turns cannot be 
assigned to adjacent gate pair (k,l). 
 

Next we try to model the LIFO constraints. 
 

)1.(__ ijji lfMaactaact −−≤
  

TURNSji ∈∀ ,

   

… (43) 

ijji lfMbactaact .__ +≥
 

  

TURNSji ∈∀ ,

   

… (44) 

)1.(__ '
ijji lfMbactbact −+≥

  
TURNSji ∈∀ ,

   

… (45) 
'.__ ijij lfMaactbact −≤

 

  

TURNSji ∈∀ ,

   

… (46) 

3' ≤+++ ijijjlik lflfxx ( ) :,;,;, LIFOlkGATESlkTURNSji RF ∈∈∈∀ ji ≠

 

… (47) 
 

Constraints (43) and (44) ensure that lf variable takes value 1 when a turn occupies 
the front gate, while (45) and (46) ensure that lf’ variable takes value 1 when the front gate is 
empty. Constraint (47) ensures the feasibility of only one scenario. We will now see the 
implementation and performance of these models in the next section. 
 
 
5. Implementation and Results 
 
As we mentioned earlier, the purpose of this entire exercise was to actually optimize the gate 
assignment plan for a large airline at one of its busiest hubs – Chicago O’Hare. The models 
described in Section 4 are implemented in Optimization Programming Language (OPL) and 
run on a SUSE-Linux server with 4 GB RAM. The sample data set used by us had 619 turns 
(including long turns), 25724 flight connection opportunities accounting for revenue of over 
$5.3 mil per day and 73 gates available at the hub airport under consideration. 
 

Input data to the model in the planning mode included the following: 
• Turns data (comprising of turn id, incoming flight id, outgoing flight id, departure 

and arrival times of both incoming and outgoing flights, origin, via and destination 
stations) 

• Flights data (comprising of flight ids, flight numbers, departure and arrival times, 
origin and destination stations, origin and destination stations, reference day) 

• International Routes data (comprising of international stations data) 
• Itinerary (Connection) data (comprising of itinerary id, incoming flight id, outgoing 

flight id, min and max connection times, number of pax, revenue per pax) 
• Station Gate data (comprising of gate information, list of equipments allowed for a 

gate and other miscellaneous restrictions such as adjacency, LIFO or push back) 
• Walking Time data (comprising of gate to gate walking time data, equipment-wise 

deplane data, boarding time data, load-bridge loading time) 
 

We also implemented the following pre-processing strategy to the planning model 
objectives to make the model simpler and eliminate large number of unnecessary variables. 

• Only those connections which are potentially feasible are considered 
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• All connections where the connection time is lesser than walk time between nearest 
gates + boarding time + deplane time + load bridge time are ignored and assumed to 
be lost revenue in any case. 

• All connections whose connection time is greater than walk time between farthest 
gates + boarding time + deplane time + load bridge time are ignored and assumed to 
be realized revenue in any case. 

• Minimum gate rest for long haul and short haul are provided for all cases. 
• The other two levels (Gate rest for long haul, short haul and delays) are given same 

incentive. 
 

The implementation of the above-mentioned pre-processing strategies reduced the 
number of critical (or at risk) connections substantially to just 335. It must be noted that 
while some of the costs and passenger connection revenue numbers are directly used in the 
model based on the actual, some others costs such as the cost of assigning a turn to an 
unfavorable gate or the cost of using a zone or the cost of violating the desired additional 
gate rest to maximize schedule robustness are notional and based on the perceptions of the 
business analyst. 

 
For benchmarking purposes, in our implementation, the first model of cost 

minimization also contains all the business constraints modeled into it. This model is 
considered as base model and the three additional objectives are subsequently added to this 
base. So the model is solved for all the combination of objectives: 

1. Base, with only cost minimization objective 
2. Base plus connection revenue maximization 
3. Base plus zone usage minimization 
4. Base plus gate rest maximization 
5. Base plus connection revenue maximization plus zone minimization 
6. Base plus connection revenue maximization plus gate rest maximization 
7. Base plus zone minimization plus gate rest maximization 
8. All the objectives 

 
While clearly the number of objectives under consideration has a direct correlation 

with the number of variables in the model and thus the problem complexity and run time, 
other factors, such as minimum and desired gate rest times, too have a significant role in the 
complexity. In our example, we noticed that increasing the minimum gate rest by even five 
minutes could explode the run time. We present the results in table 1 to highlight the 
relationship between run-time and minimum gate rest. 
 

Objective Function Value  Minimum Gate Rest Run-Time Optimality Gap Ungated Turns 
$ 7427 5 min – 10 min 10 s 0% - 
$ 7393 10 min – 15 min 29 s 0% - 
$ 7131 15 min – 20 min 177 s 0% - 
$ 6914 20 min – 25 min ≥ 1000 s 4% 3 

Table 1: Results of the MIP model on base case 
 

As shown in the table above, the base model runs within 3 min when the minimum 
gate rest is reasonable and the model finds adequate opportunities to schedule all the turns. 
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For the rest of the study, we would use a minimum gate rest of 10 min for turbo-propeller 
and regional jet (RJ) aircrafts and 15 min for all others. Similarly the desired gate rest is a 0-
5 min add-on to the minimum gate rest and thus maximum of 15 min for propeller and RJ 
aircrafts and 20 min for other larger aircrafts. Note that there is also a historical delay 
component beyond the desired gate rest, both of which can be violated with a penalty. Table 
2 presents the results of the different scenarios, their run time and also the performance of the 
different objectives. Note that the solution provided by the model when a particular objective 
is not specifically chosen can still be better than the worst possible. For example, the 
connection revenue for the base model need not be $0 as the output of the model can still 
manage to realize some revenue when two connecting flights are assigned to gates such that 
walking time criteria would ensure that the passengers would not miss these flights. 
 

Case Objective 
Function ($) 

Run-
Time (s) 

Optimality 
Gap (%) 

Connection 
Revenue (mil. $) 

Zone usage: 
10 PM - 6 AM 

Total gate rest 
violation (min) 

Base 7393 29 0 4.154 9 1258.6 
Connection 

revenue max 5317671 258 0 5.310 9 1270.0 

Zone min 6738 321 0 4.155 3 1258.6 
Gate rest 
(GR) max 7388 8 0 4.154 9 0.2 

Connection 
rev + Zone 5316716 221 < 0.01 5.310 3 1234.7 

Connection 
rev + GR 5317207 254 0.00 5.310 9 14.4 

Zone + GR 6643 > 3600 1.62 4.155 3 0.5 
Conx rev + 
Zone + GR 5316452 1891 < 0.01 5.310 4 14.6 

Table 2: Results of the MIP model on the different combination of objectives 
 

It is clear from table 2 that the results show improvements when a particular objective 
is actually chosen as a criteria for optimization separately and deteriorates slightly when 
more objectives are chosen. For example, the minimum number of zones rise from 3 to 4 or 
total gate rest violation from 0.2 min to 14.4 or 14.6 min when the concerned objective is 
chosen in conjunction with another objective. In any case, the gains from choosing a 
particular objective in the mathematical model are fairly obvious – with connection revenue 
going up by more than 25%, zone usage falling to one-third and gate rest violation being 
reduced to a mere 0.02% to 1.1% from the original violations. 

 
From table 2, it is also amply clear that the dollar contribution due to connection 

revenues have a very high, disproportionate impact in the objective function. From the 
analyst perspective, it is explained by the fact that the connection revenue is a realized 
revenue, while the cost of gate rest violation and zone usage are notional – which is aimed to 
be optimized to the point that it does not impact the revenue in itself. The notional cost 
chosen for one minute of gate rest violation per turn is assumed to be $25. While the cost for 
using one zone for one shift period is assumed to be $50. The third notional cost of assigning 
a preferred gate to certain flights varies from $0 to $50, depending on the importance of the 
markets on which these flights operate. However this cost coefficient does not conflict with 
any of the three main objectives strongly. 
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To understand the sensitivity of these notional cost coefficients in the multi-objective 
function, we would vary these notional costs to evaluate the impact on the corresponding 
objective functions. We choose values from one-hundredth to hundred times the notional 
costs to assess the impact. Thus the gate rest violation per minute was allowed to vary from 
25¢ to $2500 and zone penalization was allowed to vary from 50¢ to $5000. Unsurprisingly, 
there was no difference in connection revenue and the gate rest violation decreased with the 
increase in penalty. Run time for $2500 penalty was 570s, and 1120 s for $0.25 penalty. 
Similar results were noticed for varying the penalization on run time. The results are shown 
in Figures 4 and 5. It is amply clear from this analysis that the model is fairly robust with 
respect to the changes in the notional costs of the different elements. The changes in actual 
gate rest violation or zone usage are much smaller for even very large variances, compared to 
the base scenario when these objectives are not part of the model, implying that there is no 
further need for detailed pareto analysis of the different notional costs. 
 

    
 
Fig 4: Gate rest violation and Zone usage 
change with changes in gate rest penalty 

Fig 5: Gate rest violation and Zone usage 
change with changes in zone usage penalty 

 
 Now let us shift our attention to operations models. One of the possibilities to 
validate the models in operations mode is to create (or simulate) a real disruption to the 
schedule. Typically the impact of disruptions during the morning or evening peaks creates 
more infeasibilities than disruptions at other periods. A cursory glance at the data implies 
that morning peaks are bigger than the evening peaks. 
 

For example, the maximum number of turns on the ground in the morning during an 
hour is 91 between 08:00 – 09:00 AM. On the contrary, the maximum number of turns on the 
ground in the evening during any hour is 83 between 20:00 – 21:00 (8:00 – 9:00 PM). The 
number of available gates is 73 and there are instances of time in the morning when 71 gates 
are occupied, while the maximum occupation in the evening is only 64. 

 
Thus, in order to evaluate the performance of our operations models for the worst 

case scenario, we generate exponentially distributed random delays with λ = 30 min to all 
morning flights till 8:00 AM and apply it to departure time. The extent of delay is kept at 30 
min and not more because we intend to mimic the worst case scenario when the number of 
turns on the ground is very large. This extent of delay is expected to move a large number of 
flights from the high activity non-peak hour of 07:00 – 08:00 AM. Any delay distribution 
with λ in excess of 30 min tends to smoothen the peaks by moving the flights further later in 
the day and, hence, not desirable for validation. After the simulation of delays, the number of 
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turns during 08:00 – 09:00 AM increases to 134, indicating a 50% jump in the morning peak. 
The impact of delay stabilizes after 11:00 AM. The output of the delay simulation is 
presented in Fig 6 below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 6: Number of turns by hour on the ground – with and without delays 
 

For this delayed schedule, we now run the operations model with objective (21) and 
constraints (2) – (13) and (22) – (27). The run time is within a minute. The penalty of not 
gating a turn is kept very high, while the penalties for re-gating and deviations within a zone 
were kept low and lower respectively. After the runs, it was found that a large number of 
turns continued to be assigned to their planned gates. However the schedule stabilized only 
after 1:00 PM even though there were only two turns beyond 11:00 AM that were re-gated. 
About 25% turns till 11 AM were re-gated and 6% turns were retimed. All the other turns are 
were assigned to the planned gates. All turns are eventually assigned to a gate and the 
average extent of retiming was 42 min for the fifteen turns that were retimed. Unfortunately 
it is noticed in the first model that several non-delayed turns (arriving after 8 AM) were re-
gated. To avoid it, we proposed double penalization for re-gating turns that are not already 
delayed. The schedule stabilizes earlier by 11 AM, even though the extent of retiming now 
increases to 54 min. The results of the two models are shown in Fig 7 and 8 respectively.  
 

    
 
 
 
 
 
 
 
 

Fig 7: Results of the operations model with 
normal penalties for re-gating and retiming 

 
 
 
 
 
 
 

Fig 8: Operations model with higher penalty 
for re-gating non-delayed turns 
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6. Conclusion 

 
We have presented the actual airline gating problem as observed by the industry. The 
problem considered in this paper is actually implemented for a very large airline at Chicago 
O’Hare which is also one of the busiest hubs for this airline. One of the major contributions 
of this paper is the mathematical representation of different types of business and operational 
constraints for this problem which have not been done before. 
 

Another important contribution of this paper is to show that simple continuous time 
assignment modeling formulation works fine for even very large, real-life problem instances. 
This is also one of the few papers where optimal or near-optimal solutions are reported for 
the airport gate assignment model. In this paper, we have shown that it is possible to model 
and solve three distinct objectives for the problem including selecting the objectives in any 
combination. The three objectives are: 
• Maximization of connection revenue for particularly those connections which are at risk 
• Minimization of zone usage during sparse operations 
• Maximization of gate plan robustness by providing adequate gate rest based on the 

historical pattern of flight delays 
 

The scale of the problem instance involved over 1200 flights and 70 gates. The total 
connection revenue was in the range for $5.3 mil per day, while the overall revenue from all 
flights at the airport is $40 mil per day for the particular season for which we got the data. 
The largest problem involving all the three objectives taken together was solved to near-
optimality with an optimality gap of less than 0.01% in about 30 min. Other versions of 
problems with fewer objectives get solved more quickly to optimality, usually, within 5 min, 
except one instance. 
 
 One of the major findings of this work is that even simple mathematical formulations 
can perform well on large problem instances if the pre-processing is done cleverly. This 
work will find immense applications in not only other similar problems relating to 
infrastructure assignment in transportation such as assignment of platforms to trains at a 
railway station or assignment of berth terminals to vessels at the ports, but also a host of 
other scheduling problems in different context. This model can be easily extended to 
different job-shop scheduling problems with varied objectives and different side constraints. 
 
 There are several directions on which the future research on this topic can proceed. 
One of the most obvious research directions would be in the area of coming with a pareto 
frontier for the different notional parameters which impact the objective. While some of the 
cost and revenue coefficients in the objective are actual dollar figures, there are some others 
such as the coefficient for unfavorable gate assignments, coefficient for zone usage and 
coefficient for additional gate rest violation per minute, which are simply notional and based 
on the perception of the business analysts. Apart from the coefficients provided to us, we 
also tried to estimate the most optimal solution for zone minimization and schedule 
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robustness by giving a very high penalty for those corresponding coefficients in the model. 
So in our results, we could present the best and the trade-off solutions for the different 
objectives, but we could not build a pareto frontier for every objective. This could be an area 
for subsequent research. 
 
 Operations models have primarily been tried on a single simulation of disruption. 
More varied type of disruptions, as observed from the real data, must be tried. Additionally, 
it must be noted that if the disruption is very high and large number of flights need to be 
retimed, the retiming model is unlikely to run in a few minutes. Thus it may be required to 
try out some heuristics for fixing the timings of certain flights so that the number of variables 
in the second model is not too high for the model. 
 

Another interesting direction would be to explore a stochastic flight delay model into 
the planning model to see if there can be further improvements. Additionally, a simple 
extension of this work can also concentrate of including variability in the rate of walking of 
the different types of passengers. A more advanced study can also include pedestrian 
behavior models within the modeling framework.  
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