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Abstract

Within this paper we discuss a numerical strategy to solve the elasticity problem upon
unstructured and non conforming meshes, allowing all kinds of flat-faced elements (poly-
gons in 2D and polyhedra in 3D). The core of the formulation relies on two numerical
procedures 1) the Control Volume Function Approximation (CVFA), and 2) the poly-
nomial interpolation in the neighborhood of the control volumes, which is used to solve
the surface integrals resulting from applying the divergence theorem. By comparing the
estimated stress against the analytical stress field of the well known test of an infinite
plate with a hole, we show that this conservative approach is robust and accurate.

Keywords: stress analysis, elasticity, solid mechanics, CVFA, Finite Volume,
unstructured mesh, non conforming mesh

1. Introduction

One of the main aims in engineering is creating tools, structures and systems to
enhance the quality of life in our society. In the course of the creation process, the
design stage is critical for the final outcome. During this stage the engineer have to
predict the prototype response when interacting with the physical world. Many of the
observed phenomena in the physical world, such as solid mechanics, fluid dynamics, heat
diffusion, and others, can be described with Partial Differential Equations (PDEs) by
assuming time and space as a continuum.

Computational Continuum Mechanics (CCM) is the area dedicated to develop nume-
rical methods and heuristics to solve these PDEs. Most of the methods can be classified
into these two families: 1) weighted residual and 2) conservative methods. The Galerkin
formulations are popular and widely used weighted residual methods, such as the Fi-
nite Element Method (FEM), which is a well established technique in Computational
Solid Mechanics (CSM). Alternatively, the Finite Volume Method (FV) and the Con-
trol Volume Function Approximation (CVFA) are common approaches of conservative
methods. The main difference between both families is that weighted residuals meth-
ods do not conserve quantities locally, but globally instead, resulting in linear systems
with commendable numerical properties (symmetrical and well-conditioned matrices, for
example). Nevertheless, due to its conservative nature, the second group is more attrac-
tive for fluid structure interaction ([1, 2]) and multiphysics simulations ([3, 4]), where
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several PDE-solvers must be coupled. For that reason, in recent years FV has been
subject of interest for solving CSM problems.

Most of the CSM non-linear strategies depend on the accuracy of the estimated
stress field for the elasticity problem, such as those for plasticity and damage (see [5, 6]).
Hereafter we refer as elasticity-solver to the numerical computation that calculates the
displacement and stress fields for a given domain and boundary conditions.

In his influential papers, Oñate et al [7, 8], propose a FV format for structural mechan-
ics based on triangular meshes, discussing the cell vertex scheme, the cell centred finite
volume scheme and its corresponding mixed formulations, showing that the cell centred
strategy produces the same symmetrical global stiffness matrix that FEM using linear
triangular elements. Analogously, Bailey et al [9, 10], develop a similar approach, but
using quadrilateral elements to produce cell-centred volumes. Even though, the shapes
of the volumes in both formulations are completely defined by the FEM-like mesh (tri-
angular or quadrilateral) and it is not possible to handle arbitrary polygonal shapes, as
we might expect when receiving the mesh as a read-only input.

Slone et al [11] extends the investigation of [7] by developing a dynamic solver based
on an implicit Newmark scheme for the temporal discretization, with the motivation of
coupling an elasticity-solver with his multi-physics modelling software framework, for
later application to fluid structure interaction.

Another remarkable algorithm is the proposed by Demirdzic et al [12, 13, 14, 15, 16]
The numerical procedure consists in decoupling the strain term into the displacement
Jacobian and its transpose in a cell-centred scheme. The Jacobian is implicitly estimated
by approximating the normal component of each face as the finite difference with re-
spect to the adjacent nodes, while the Jacobian transpose is an explicit average of Taylor
approximations around the same adjacent nodes. This decoupling produces a smaller
memory footprint than FEM because the stiffness matrix is the same for all the com-
ponents. The solution is found by solving one component each iteration in a coordinate
descent minimization. This line of work has shaped most of the state of the art tech-
niques in FV for coupling elasticity-solvers to Computational Fluid Dynamics (CFD)
via finite volume practices (usually associated to CFD), such as the schemes proposed
by [17, 18, 19] However, this segregated algorithm may lead to slow convergence rates
when processing non-linear formulations, for example, when it is required to remove the
positive principal components of the stress tensor in phase-field damage formulations
[20]. In addition, if some non-linear strategy requires multiple iterations of the linear
elasticity-solver, such as finite increments in damage models, the nested iterations will
increase the processing requirements for simple problems. To circumvent this drawback
Cardiff et al [21] presents a fully block coupled direct solution procedure, which does
not require multiple iterations, at expense of decomposing the displacement Jacobian
of any arbitrary face into a) the Jacobian of the displacement normal component, b)
the Jacobian of the displacement tangential component, c) the tangential derivative of
the displacement normal component and d) the tangential derivative of the displacement
tangential component. This decomposition complicates the treatment of the stress tensor
in the iterative non-linear solvers mentioned before for plasticity and damage.

A generalized finite volume framework for elasticity problems on rectangular domains
is proposed by Cavalcante et al [22]. They use higher order displacement approximations
at the expense of fixed axis-aligned grids for discretization.

Nordbotten [23] proposes a generalization of the multi-point flux approximation
2
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Figure 1: (a) The initial body, Ω, with its boundary conditions ∂Ω = ΓN ∪ ΓD. (b) The distorted body
resulting from solving equilibrium in the elasticity equation, with the boundary conditions given by bN
and uD. The boundaries where there are not conditions indicated explicitly, correspond to Neumann
conditions bN = 0.

(MPFA), which he names multi-point stress approximation (MPSA). The MPSA as-
sembles unique linear expressions for the face average stress with more than two points
in order to capture the tangential derivatives. The stress field calculated with this pro-
cedure is piece-wise constant.

In this work, we propose an elasticity-solver based on CVFA techniques (see [24, 25]),
using piece-wise polynomial interpolators for solving the surface integrals on the volumes
boundaries. The polynomials degree can be increased without incrementing the system
degrees of freedom, which make this method more suitable for non-linear models and
dynamic computations. Furthermore, this algorithm can handle polygonal/polyhedral,
unstructured and non conforming meshes, and does not require the decomposition of the
stress tensor.

2. Mathematical model

We consider an arbitrary body, Ω ∈ Rdim, with boundary ∂Ω. The displacement of
a point x ∈ Ω is denoted by u(x) ∈ Rdim. The subscript brackets (·)[] indicates the
component of the vector or matrix. By assuming small deformations and deformation
gradients, the infinitesimal strain tensor, denoted ε(x) ∈ Rdim×dim, is given by

ε =
1

2

(
∇u+ [∇u]

T
)
. (1)

Moreover, by considering isotropic elastic materials, the stress tensor, σ(x) ∈ Rdim×dim,
is defined as

σ = 2µε+ λtr(ε)I, (2)

where I is the identity matrix, tr(·) is the trace, and λ and µ are the Lamé parameters
characterizing the material. These parameters are related with the Young’s modulus, E,
and the Poisson’s ratio, ν, by the following equivalences

µ =
E

2(1 + µ)
, (3)
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and

λ =
νE

(1 + ν)(1− λν)
, (4)

where λν = ν for plane stress analysis, and λν = 2ν for plane strain and the 3D cases.
The strong form of the static linear elasticity equation is

∇ · σ = 0, (5)

The domain boundary ∂Ω = ΓN ∪ ΓD is the union of the boundary with Neumann
conditions, denoted ΓN , and the boundary with Dirichlet conditions, denoted ΓD. The
equation (5) must be satisfied for the given forces bN and displacements uD along the
boundary. The following equations remark these user defined boundary conditions,

(S:BC)

{
σn = bN (x), x ∈ ΓN ,

u = uD(x), x ∈ ΓD,

(6a)

(6b)

The Figure 1 illustrates the initial body with the boundary conditions, and the distorted
body after equilibrium is solved in the elasticity equation.

3. Numerical Method

On this section we go into the details of the numerical procedure by discussing 1) the
discretization with CVFA, 2) the control volumes integration, 3) the subfaces integrals,
4) the simplex-wise polynomial approximation, 5) the pair-wise polynomial approxima-
tion, 6) the homeostatic splines used within the shape functions, 7) the linear system
assembling, 8) how to impose boundary conditions, and 9) two special cases of the for-
mulation.

For the sake of legibility, in some parts of the text we unfold the matrices only for
the bidimensional case, but the very same procedures must be followed for the 3D case.

3.1. Discretization of domain into control volumes

The domain Ω is discretized into N control volumes, denoted Vi, using the Control
Volume Function Approximation (CVFA) proposed by Li et al [24, 25]. The partition
Ph of Ω is defined by

Ph =

N⋃
i=1

Vi, with Vi ∩ Vj = ∅, i 6= j, (7)

where the boundary of each control volume, ∂Vi, is composed by Ni flat faces, denoted
eij ,

∂Vi =

Ni⋃
j=1

eij , with eij ∩ eik = ∅, j 6= k. (8)

The Figure 2 illustrates the partition Ph of Ω into N control volumes defined in the
equations (7) and (8). The Figure 3 shows a three dimensional control volume.
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Figure 2: The partition Ph is the discretization of the domain Ω into N control volumes. The boundary
of the control volumes, ∂Vi, is conformed by Ni flat faces, denoted eij . The unit vector nij is normal to
the face eij . The faces of the volumes adjacent to the boundary ΓN are integrated using the condition
bN .
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Figure 3: The boundary ∂Vi of the three dimensional control volume Vi is subdivided into Ni flat faces,
denoted eij . The unit vector nij is normal to the face eij .
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Every control volume Vi must have a calculation point

xi ∈ Vi ∪ ∂Vi, (9)

which is used to estimate the displacement field. Such a point is the base location to
calculate the stiffness of the volume. In the volumes adjacent to the boundary ΓD, it is
convenient to establish the calculation point over the corresponding boundary face,

xi ∈ ∂Vi ∩ ΓD, (10)

in order to set the Dirichlet condition directly on the point.

3.2. Control volumes integration

The elasticity equation (5) is now integrated over the control volume∫
Vi

∇ · σ dV = 0, (11)

using the divergence theorem we transform the volume integral into a surface integral
over the volume boundary ∫

∂Vi

σn dS = 0. (12)

The evaluation of the surface integrals is based on the approximation of the displacement
field inside the neighborhood of the volume, denoted Bi,

ui(x) =
∑
q∈Bi

ϕqxq, (13)

making use of a group of piece-wise polynomial interpolators, denoted ϕq. We are going
to discuss these interpolators later in this section.

For that reason, the displacement field is decoupled from the stress tensor by using
the strain (1) and stress (2) definitions. Taking advantage of the stress tensor symmetry
σ, we rewrite the stress normal to the boundary as

σn =

[
σ[11] σ[12]

σ[12] σ[22]

] [
n[1]

n[2]

]
=

[
n[1] n[2]

n[2] n[1]

]σ[11]

σ[22]

σ[12]

 = T~σ, (14)

where T is the face orientation matrix and ~σ is the engineering stress vector. Developing
the stress definition (2) component-wise we can decompose it into the constitutive matrix,
denoted D, and the engineering strain vector, denoted ~ε, as follows

~σ =

σ[11]

σ[22]

σ[12]

 =

2µ ε[11] + λ
(
ε[11] + ε[22]

)
2µ ε[22] + λ

(
ε[11] + ε[22]

)
2µ ε[12]

 (15)

=

(2µ+ λ) λ
λ (2µ+ λ)

µ

 ε[11]

ε[22]

2ε[12]

 = D~ε, (16)
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then the components of the strain vector are retrieved from the equation (1), and it is
decomposed into the matrix differential operator S and the displacement function u.

~ε =

 ε[11]

ε[22]

2ε[12]

 =



∂u[1]

∂x[1]
∂u[2]

∂x[2]
∂u[1]

∂x[2]
+
∂u[2]

∂x[1]

 =



∂

∂x[1]
∂

∂x[2]
∂

∂x[2]

∂

∂x[1]


[
u[1]

u[2]

]
= Su, (17)

Summarizing the equations (14), (16) and (17) we have

σn = T~σ = TD~ε = TDSu, (18)

where TDS is the stiffness of the volume boundary.
Once the displacement field is decoupled, we rewrite the equation (12) as∫

∂Vi

TDSu dS = 0. (19)

Using the fact that the control volume boundary is divided into flat faces, as in equation
(8), we split the integral (19) into the sum of the flat faces integrals

Ni∑
j=1

∫
eij

TDSu dS = 0. (20)

Notice that the face orientation T along the flat face, denoted Tij , is constant. Further-
more, if the control volumes are considered to be made of a unique material and the flat
faces to be formed by pairs of adjacent volumes, then the constitutive matrix D along
the flat face, denoted Dij , is also considered constant. The matrix Dij is estimated from
the harmonic average of the Lamé parameters assigned to the adjacent volumes, where
λi and µi are the properties of the volume Vi,

µij =
2µiµj
µi + µj

and λij =
2λiλj
λi + λj

, (21)

With Tij and Dij we simplify the equation (20) as

Ni∑
j=1

TijDijHij = 0, (22)

where Hij is the strain integral along the flat face eij ,

Hij =

∫
eij

Su dS. (23)

The accuracy of the method depends on the correct evaluation of this integral.

7



Vi Vi

(a) (b)

Vk Vk

Vj Vj

Vb

Vc

Vb

Vc

Va Va

Vd Vd

Figure 4: (a) The dotted line illustrates the triangulation of the calculation points of adjacent volumes
to Vi, used by most of the FV methods. (b) The dotted line shows the simplices forming the piece-wise
approximation used to solve the integrals Hij of the control volume Vi.

3.3. Calculating face integrals

The surface integrals Hij along the flat faces eij are calculated using an auxiliary
piece-wise polynomial approximation of the displacement field. This approximation is
based on the simplices (triangles in 2D or tetrahedra in 3D) resulting from the Delaunay
triangulation of the calculation points xi from the neighborhood of Vi. The Delaunay
triangulation is the best triangulation for numerical interpolation, since it maximizes the
minimum angle of the simplices, which means that its quality is maximized as well. We
define the neighborhood Bi of volume Vi as the minimum set of calculation points xj
such that the simplices intersecting Vi does not change if we add another calculation
point to the set. Observe that the neighborhood Bi does not always coincide with the
set of calculation points in volumes adjacent to Vi, as in most of the FV formulations.
Once the neighborhood Bi is triangulated, we ignore the simplices with angles smaller
than 10 degrees, and the simplices formed outside the domain, which commonly appear
in concavities of the boundary ∂Ω. The local set of simplices resulting from the neigh-
borhood of Vi is denoted Pα. The Figure 4 illustrates the difference between (a) the
simplices resulting from the triangulation of the calculation points in adjacent volumes
and (b) those resulting from the triangulation of the proposed neighborhood Bi.

The face eij is subdivided into Nij subfaces, denoted eijk,

eij =

Nij⋃
k=1

eijk, with eijk ∩ eijl = ∅, l 6= k, (24)

these subfaces result from the intersection between Pα and the control volume Vi. The
Figure 4.b illustrates six key points of this approach, 1) the simplices are used to create a
polynomial interpolation of u(x) over the boundary of the control volume, 2) most of the
faces are intersected by several simplices, such faces must be divided into subfaces to be
integrated, 3) some few faces are inside a single simplex, as illustrated in the face formed
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over the face
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Figure 5: (a) The shaded volume Vi is being integrated. The integral over the subface eijk is calculated
using the polynomial approximation of the shaded simplex. The integration point must be mapped to
(b) the normalized space [−1, 1] in order to use the Gauss- Legendre quadrature.

by Vi and Vk, 4) there are volumes that require information of non-adjacent volumes to
calculate its face integrals, such as Vi requires Vk, 5) the dependency between volumes
is not always symmetric, which means that if Vi requires Vk does not implies that Vk
requires Vi, and 6) non conforming meshes are supported, as shown in the faces formed
by Va, Vb, Vc, Vd and Vj .

The integral (23) is now rewritten in terms of the subfaces

Hij =

Nij∑
k=1

∫
eijk

Su dS, (25)

Each subface eijk is bounded by a simplex, where the displacement uijk, and it deriva-
tives, (Su)ijk, are a polynomial interpolation. Hence the integrals in equation (25)
are solved exactly by using the Gauss-Legendre quadrature with the required number of
integration points, denoted Ng, depending on the polynomial degree,∫

eijk

Su dS =

Ng∑
g=1

wg(Su)ijk|xg
. (26)

where wg is the corresponding quadrature weight and (Su)ijk|xg
is the strain evaluation

of the Gauss point with the proper change of interval, denoted xg. The Figure 5 shows
the change of interval required for a 2D face. A 3D face (a polygon) must be subdivided
to be integrated with a triangular quadrature.

Most of the cases, the displacement uijk is interpolated inside the simplices, but in
some geometrical locations these can not be created, in consequence, the displacement
uijk is interpolated pair-wise using the volumes adjacent to the subface eijk. We discuss
both strategies in the following subsections.

3.4. Simplex-wise polynomial approximation

In the general case, the simplices are formed by (dim+1) points. The points forming
the simplex that is bounding the subface eijk are denoted xq, and its displacements uq.
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Figure 6: (a) The simplex formed by the points x1, x2 and x3 in the original space contains an interior
point xg that is mapped to (b) ξg into the normalized 2D-simplex formed by the points ξ1, ξ2 and ξ3.

The shape functions used for the polynomial interpolation are defined into the nor-
malized space. A point in such space is denoted ξ, its dth component is denoted ξ[d], and

the qth point forming the simplex is expressed ξq. The nodes of the normalized simplex
are given by the origin, 0, and the standard basis vectors,

ξq =

{
eq, for q ∈ [1,dim],

0, if q = dim + 1
(27)

where eq is the qth standard basis vector. The Figures 6 and 7 illustrates the original
and the normalized simplices with the corresponding node numeration for 2D and 3D
respectively.

The shape functions, denoted ϕq, are used to interpolate the displacement field inside
the normalized simplex. Such functions are non-negative and are given by

ϕq(ξ) =


Pc
(
ξ[q]

)
, if q ∈ [1,dim],

1−
dim∑
d=1

Pc
(
ξ[d]

)
, for q = dim + 1,

(28a)

(28b)

where Pc(·) is the homeostatic spline, which is the simplest polynomial defined in the
interval [0, 1] that have c derivatives equal to zero in the endpoints of the interval. We
will discuss this spline later.

The set of shape functions is a partition of unity, which means that the sum of the
functions in the set is equal to one into the interpolated domain

dim+1∑
q=1

ϕq(ξ) = 1 for any ξ inside the simplex, (29)

furthermore, these functions are equal to one in its corresponding node, which implies
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Figure 7: (a) The 3D-simplex formed by the points x1, x2, x3 and x4 in the original space contains an
interior point xg that is mapped to (b) ξg into the normalized 3D-simplex formed by the points ξ1, ξ2,
ξ3 and ξ4.

that

ϕq(ξq) = 1 for any ξq forming the simplex, (30)

ϕq(ξp) = 0 for any ξp 6= ξq forming the simplex, (31)

The gradients of the shape functions with respect to the normalized space are denoted
∇ξϕq. The norm of the sum of such gradients is zero∣∣∣∣∣

∣∣∣∣∣
dim+1∑
q=1

∇ξϕq (ξ)

∣∣∣∣∣
∣∣∣∣∣ = 0 for any ξ inside the simplex, (32)

which means that there are not numerical artifacts into the strain field.
Any point inside the simplex can be formulated as a function of a point in the nor-

malized space, p (ξ), by using the shape functions and the points forming the simplex

p (ξ) =

dim+1∑
q=1

ϕq (ξ)xq, (33)

In order to calculate the normalized point, denoted ξg, associated to the integration

point xg = p
(
ξg
)
, we use the shape functions definitions to rewrite the equation (33) in

matrix form

p (ξ) =

[
x3[1]

x3[2]

]
+

[(
x1[1] − x3[1]

) (
x2[1] − x3[1]

)(
x1[2] − x3[2]

) (
x2[2] − x3[2]

)]
Pc (ξ[1]

)
Pc
(
ξ[2]

)
︸ ︷︷ ︸

2D case (triangle)

(34)

= x(dim+1) + J∆ Pc (ξ) , (35)
11



where Pc (ξ) is the vector resulting from evaluating the spline for ξ component-wise, and
J∆ is the distortion matrix given by the concatenation of the following column vector
differences

J∆ =
[
(x1 − x(dim+1)), ..., (xdim − x(dim+1))

]
(36)

Now, from equation (35) we retrieve the point xg as

xg = p
(
ξg
)

= x(dim+1) + J∆ Pc
(
ξg
)
, (37)

and solving for ξg we obtain

ξg = Qc
(

(J∆ )
−1 (

xg − x(dim+1)

))
, (38)

where Qc is the inverse function of Pc applied component-wise to the product of the
matrix-vector operation.

Similar to the approximation in equation (33), within the simplex enclosing the sub-
face eijk, the displacement field evaluated at xg is defined as,

uijk|xg
=

dim+1∑
q=1

ϕq
(
ξg
)
uq (39)

Hence, when calculating the quadrature of equation (26), the strain evaluated at the
integration point is given by

(Su)ijk |xg
=

dim+1∑
q=1

Sϕq(ξg) uq, (40)

=



∂ϕ1

∂x[1]

∂ϕ1

∂x[2]

∂ϕ1

∂x[2]

∂ϕ1

∂x[1]

∂ϕ2

∂x[1]

∂ϕ2

∂x[2]

∂ϕ2

∂x[2]

∂ϕ2

∂x[1]

∂ϕ3

∂x[1]

∂ϕ3

∂x[2]

∂ϕ3

∂x[2]

∂ϕ3

∂x[1]


|xg



u1[1]

u1[2]

u2[1]

u2[2]

u3[1]

u3[2]


(41)

= Bijk|xg
~uijk, (42)

where Bijk|xg
captures the deformation at xg, and ~uijk is the vector with the concate-

nated displacement components of the points forming the simplex.
In order to calculate the deformation matrix Bijk, we require the derivatives of the

shape functions with respect to x, denoted ∇ϕq. These derivatives are calculated by
solving the linear systems resulting from the chain rule

∇ξϕq =


∂ϕq
∂ξ[1]

∂ϕq
∂ξ[2]

 =


∂x[1]

∂ξ[1]

∂x[2]

∂ξ[1]

∂x[1]

∂ξ[2]

∂x[2]

∂ξ[2]



∂ϕq
∂x[1]

∂ϕq
∂x[2]

 = (∇ξp)
T ∇ϕq, (43)
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Complete faces outside simplices

Figure 8: (a) When the calculation points of volumes contiguous to the boundary are in the interior of
such volumes, there will arise subfaces next to the boundary that can not be covered by any simplex.
(b) Portions of the mesh formed by a queue of aligned volumes do not allow the formation of simplices
through that queue and there will be whole faces not covered by any simplex.

where ∇ξp is the geometric jacobian evaluated at ξ. This jacobian relates both spaces,
captures the distortion of the simplex, and is derivated from equation (33),

∇ξp =

dim+1∑
q=1

xq (∇ξϕq)
T
, (44)

The gradients of the shape functions with respect to ξ inside the sum are obtained
straightforward once we have the spline first derivative P ′c. Notice that the geometric
jacobian is equivalent to the distortion matrix J∆ if and only if the homeostatic spline
is Pc(z) = z.

3.5. Pair-wise polynomial approximation

Since we are not making any assumption about the volumes distribution through
the mesh, neither about the internal location of its calculation points, then we have
to deal with portions of the mesh that are no covered by any simplex. The Figure 8
illustrates the two most common cases. The first case takes place in meshes where the
calculation points of volumes contiguous to the boundary are in the interior of such
volumes, producing subfaces not intersected by any simplex, and the second case occurs
when elongated sections of the domain are discretized with a queue of aligned volumes,
where each volume has only two neighbors on opposite faces and no simplex can be
formed.

In such cases, the displacement field within the subface eijk is a pair-wise polynomial
approximation between the adjacent volumes, xi and xj , regardless the dimension

uijk(xg) = (1− Pc (zg))︸ ︷︷ ︸
ϕi

ui + Pc (zg)︸ ︷︷ ︸
ϕj

uj , (45)

where ϕi and ϕj are the shape functions, and zg is the normalized projection of the
integration point xg into the vector which goes from xi to xj , denoted x~ij = (xj − xi) ,

zg =
(xg − xi)

T
x~ij

||x~ij ||2
. (46)
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Figure 9: The gradient of the pairwise approximation is not constant along the face eij , since its normal
is not necessary aligned with x~ij . The integration point is projected into x~ij to evaluate the deformation
matrix.

When calculating the quadrature of equation (26), the pairwise strain is given by

(Su)ijk |xg = Sϕi(ξg) ui + Sϕj(ξg) uj , (47)

=



∂ϕi
∂x[1]

∂ϕi
∂x[2]

∂ϕi
∂x[2]

∂ϕi
∂x[1]

∂ϕj
∂x[1]

∂ϕj
∂x[2]

∂ϕj
∂x[2]

∂ϕj
∂x[1]


|xg


ui[1]

ui[2]

uj[1]

uj[2]

 (48)

= Bijk|xg
~uijk, (49)

In the general case, the gradient is not constant along the face eij , since its normal is
not necessary aligned with x~ij , as illustrated in Figure 9.

This pairwise approximation must be used only when necessary because it can not
capture the deformation orthogonal to x~ij .

3.6. Homeostatic spline

The homeostatic spline is a function of a single variable defined from z = 0 to z = 1,
denoted Pc(z), and curved by the parameter c, which indicates the level of smoothness.
This spline is the simplest polynomial with c derivatives equal to zero at the endpoints
z = 0 and z = 1. The polynomial degree is given by 2c + 1, and such a polynomial
requires Ng = c + 1 integration points to calculate the exact integral in equation (26)
using the Gauss-Legendre quadrature.

When designing this spline, we wanted to gain accuracy by building a piece-wise bell-
shaped interpolation function around the calculation points, inspired on the infinitely
smooth kernels used in other numerical techniques. Therefore, we force the derivatives
of the polynomial to be zero over such points in order to homogenize the function. For
that reason, we use the term homeostatic spline when referring to this spline.

To fulfill the smoothness requisites commented before, we solved a linear system for
calculating the 2c + 2 coefficients of the polynomial. The equations of this system were
obtained by forcing the c derivatives to be zero at the endpoints. Once we solved the
coefficients for the first twenty polynomials, from c = 0 to c = 19, we found out that
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Figure 10: (a) The evolution of the homeostatic spline from c = 0 to c = 6 illustrates the smoothness
requirements at the endpoints of each spline and its (b) first derivatives.

the first half of such coefficients are null, and the entire polynomial can be calculated
directly as

Pc(z) =
1

bc

1+c∑
k=1

(−1)k bk z(k+c), (50)

where bk is the kth not null coefficient

bk =
1

k + c

(
Ck∏
l=1

(1 + c)

l
− 1

)
, (51)

Ck is the number of factors needed to calculate bk

Ck = (c/2)−
∣∣1 + (c/2)− k

∣∣, (52)

and bc is accumulation of the coefficients for normalizing the spline

bc =

1+c∑
k=1

(−1)kbk, (53)

The first derivative is simply calculated as

P ′c(z) =
1

bc

1+c∑
k=1

(−1)k bk (k + c) z(k+c−1) (54)

The Figure 10 shows (a) the evolution of the spline as we increase the smoothness pa-
rameter from c = 0 to c = 6, and (b) the evolution of it first derivative. Smoother
splines produces higher order polynomials which increases the accuracy of the stress field
approximation. This feature is specially important when solving non-linear problems
sensibles to the stress field.

Since the derivatives of the homeostatic spline (50) are zero at the endpoints of the
interval [0, 1], the inverse function is not defined in that points. However, we estimate a
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Figure 11: Curves of the pseudo-inverse Qc for the first seven levels of smoothness. The slope at the
midpoint exposes the null higher derivatives requirement when increasing the polynomial order.

pseudo-inverse within this interval, Qc ≈ P−1
c , by finding the coefficients of a polynomial

of the same degree, 2c+ 1, such that the endpoints coincide with the spline and the first
derivative at the midpoint is equivalent to the inverse of the spline first derivative, that
is

Qc(0) = Pc(0) = 0, Qc(1) = Pc(1) = 1, and Q′c(0.5) =
1

P ′c(0.5)
(55)

The higher derivatives in the midpoint are forced to be zero. Once we calculated the
coefficients for the first twenty polynomials, from c = 0 to c = 19, we found out that the
pseudo-inverse can be approximated directly from the following formulae

Q(z) = a1 z + (a1 − 1)(2c+ 1)

2c∑
k=1

(−1)k ak z
(k+1) (56)

where a1 is the coefficient for z, and ak is the factor that distinguish higher order coeffi-
cients. Such terms are calculated as

a1 =

(
c

2
√

2
+ 1

)2

, and ak = 2(k−1)
k−1∏
l=1

(
2c− l
2 + l

)
, (57)

respectively. The Figure 11 exhibits the curves for the first seven levels of smoothness.
The null higher derivatives requirement is noticeable at the midpoint.

The Figure 12 shows the shape functions for the 2D case. The top displays the
last node function and the bottom the first node function, the function of the second
node is equivalent to that of the first one. The columns separate the first three levels
of smoothness. Top and bottom functions coincides at the edges in order to create a
continuous field, but only the bottom functions decay uniformly from the node to the
opposite edge. The shape functions with c = 0 are the only case where all the shape
functions are indistinguishable, these are planes.

The Figure 13 shows the magnitude of the gradient with respect to the normalized
space. With the same tabular configuration of Figure 12, the columns separate the first

16



0.0

1.0

0.0

1.0

0.0

1.0

3

2

1

3

2

1

3

2

1

0.0

1.0

0.0

1.0

0.0

1.0

3

2

1

3

2

1

3

2

1

c = 0 c =1 c = 2

ϕ
3

ϕ
1

Figure 12: For the bidimensional case, the top displays the last node function and the bottom the first
node function, the function of the second node is equivalent to that of the first one. The columns separate
the first three levels of smoothness.

three levels of smoothness, the top displays the last node gradient and the bottom the
first node gradient, the gradient of the second node is equivalent to that of the first one.
Only the gradient magnitude at the bottom has a uniform variation from the node to the
opposite face, and the value of the node does not contribute to the value of such a face.
On the contrary, in the top can be observed that the value of the node contributes to
the gradient at the opposite face, which means that using c > 0 the continuity on the
stress field is only guaranteed at the calculation points, but not in the simplices edges.

3.7. Assembling volume’s equation

By using the simplex-wise (42) or the pair-wise (49) approximation, the strain face
integral (25) is reformulated as

Hij =

Nij∑
k=1

Ng∑
g=1

wg Bijk|xg
~uijk, (58)
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then, the volume equilibrium equation (22) is

Ni∑
j=1

TijDij

Nij∑
k=1

Ng∑
g=1

wg Bijk|xg
~uijk = 0, (59)

reordering the terms we obtain

Ni∑
j=1

Nij∑
k=1

Ng∑
g=1

wg Kijk|xg
~uijk = 0, (60)

where the matrix

Kijk|xg
= TijDijBijk|xg

, (61)

is the stiffness contribution at the integration point xg, within the subface eijk when
integrating the ith volume. Observe that the stiffness matrix Kijk is rectangular and the
resulting global stiffness matrix is asymmetric.

3.8. Boundary conditions

The Neumann boundary conditions are imposed over the volume faces eij intersecting
the boundary, by replacing the corresponding term in the sum of equation (20) with the
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Figure 14: (a) The initial mesh is equivalent to the Voronoi diagram and the Voronoi centres correspond
to the calculation points xi. (b) The initial mesh is generated from a FEM-like triangular mesh. The
calculation points xi are defined to be the nodes of the triangular mesh, and the volume faces are created
by joining the centroids of the triangles with the midpoint of the segments.

integral of the function provided in (6a),∫
eij

TDSu dS =

∫
eij

bN (x) dS (62)

The Dirichlet conditions are imposed over the volumes calculation points by fixing the
displacement as it is evaluated in the function given in (6b),

ui = uD(xi), (63)

Since the Dirichlet conditions are imposed directly on the calculation points, these points
must be located along the face eij which intersects the boundary with the condition ΓD.

3.9. Special cases

By making some considerations, we identify two special cases where the calculations
can be simplified, in order to increase the performance of the total computation, at the
expense of losing control over the volumes shape. These cases are 1) the Voronoi mesh
assumption and 2) the FV-FEM correlation.

In the first case, we assume that the initial mesh is equivalent to the Voronoi diagram
and that the Voronoi centres correspond to the calculation points xi. Hence, the sub-
division of the neighborhood Bi is already given by the Delaunay triangulation which is
dual to the Voronoi mesh, as illustrated in the Figure 14.a. Moreover, the integrals of
subfaces eijk using pair-wise approximations can be exactly integrated with the midpoint
rule, since the faces are orthogonal to the vector joining the calculation points x~ij , and
the derivatives along the subface are constants.

In the second case, the initial mesh is generated from a FEM-like triangular mesh and
the approximations are assumed to be linear. In such a case, the calculation points xi
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Figure 15: (a) Infinite plate with a hole being stretched along the horizontal axis with a force of f[1] =
10 kPa from each side. (b) Computational domain, a = 0.5m and b = 2m, with axysymmetrical
assumptions used to test the numerical method. The polar coordinates, r and θ, for calculating the
analytical stress field.

are defined to be the nodes of the triangular mesh, and the volume faces are created by
joining the centroids of the triangles with the midpoint of the segments, as presented in
Figure 14.b. This particular version is equivalent to the cell-centred finite volume scheme
introduced by Oñate et al [7], who proved that the global linear system produced by this
FV scheme is identical to that produced by FEM if the same mesh is used.

4. Results

In order to test the numerical performance of the proposed method, we use the well
known analytical experiment of an infinite plate with a circular hole in the origin (see
[26]). In such a experiment, the plate is stretched along the horizontal axis with a
uniform tension of f[1] = 10 kPa from each side, as is shown in Figure 15. The material
is characterized by the Poisson ratio, ν = 0.3, and Young modulus, E = 10 MPa.
Plane stress is assumed with thickness equivalent to the unity. The dimensions of the
computational domain are a = 0.5m and b = 2m. The analytical solution is given by the
following formulae

σ[11] = f[1]

[
1− a2

r2

(
3

2
cos(2θ) + cos(4θ)

)
+

3a4

2r4
cos(4θ)

]
, (64)

σ[22] = f[1]

[
−a

2

r2

(
1

2
cos(2θ)− cos(4θ)

)
− 3a4

2r4
cos(4θ)

]
, (65)

σ[12] = f[1]

[
−a

2

r2

(
1

2
sin(2θ) + sin(4θ)

)
+

3a4

2r4
sin(4θ)

]
, (66)
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Figure 16: (a) Polygonal mesh used for comparison of numerical results. (b) Level sets of σ[11] between
0 to 30 kPa. (c) Level sets of σ[22] between −10 and 6 kPa. (d) Level sets of σ[12] between −10 and
2 kPa.

where the polar coordinates,

r =
√

x2
[1] + x2

[2], and θ = tan−1

(
x[2]

x[1]

)
, (67)

are used within the calculus. The Figure 16 exhibits (a) the discretization of the com-
putational domain into 2411 polygonal volumes used to compare the numerical results
against the analytical stress field. This mesh is not equivalent to the Voronoi diagram.
(b) Level sets of σ[11] between 0 to 30 kPa, with steps of 1 kPa. (c) Level sets of σ[22]

between −10 and 6 kPa, with steps of 0.8 kPa. (d) Level sets of σ[12] between −10
and 2 kPa, with steps of 0.6 kPa.

The Dirichlet conditions are imposed on the bottom and left side of the computational
domain as is shown in the Figure 16.b. Next in order, the analytic stress of equations
(64), (65) and (66) is imposed as Neumann condition over the top and right side of the
computational domain.

The Figure 17.a presents the averaged error as a function of the volumes face length
mean, denoted ∆x, as we might expect, the error is proportional to the mesh refinement.
For a mesh of 478 volumes, the Figure 17.b shows the percentage of the error with
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Figure 17: (a) The averaged error decreasing as a function of mesh size, denoted ∆x. (b) Using a mesh
of 628 volumes, percentage of error for different smoothing levels with respect to the error of c = 0,
which is the linear interpolator, error increases after c = 2.

respect to the error of c = 0, for different smoothing levels, c = 0 correspond the linear
interpolator. Observe that the error of the stress field does not decreases significantly
because we do not increase the degrees of freedom of the linear system, although we built
a better field description, which can be useful when solving non-linear formulations.

5. Conclusions

In this work we discussed a numerical technique to solve the elasticity equation for
unstructured and non conforming meshes formed by elements of any arbitrary polygo-
nal/polyhedral shape. The elasticity-solver is based on a finite volume formulation that,
using the divergence theorem, represent the volume integral of the stress divergence in
terms of the surface integral of the stress over the volume boundary. For considering
the unit vector normal to the boundary as a constant, the boundary is divided into flat
faces. Conforming and non-conforming meshes are processed without distinction. The
displacement field is a piece-wise polynomial approximation surrounding the volumes,
built on the top of the simplices resulting from the Delaunay triangulation of the volume
neighborhood. A pair-wise polynomial interpolation is used for neighborhoods where the
simplices are not the best option, and for 1D problems.

We introduced the homeostatic splines and it pseudo-inverse for higher order polyno-
mial interpolations without the necessity of increasing the discretization points.

Since the stress term is calculated directly on the boundary of the control volumes,
this strategy can be used in fracture formulations where the volumes are treated as
indivisible components and the rupture occurs across the volumes boundaries.

In future work, we will investigate the accuracy of this numerical procedure for solving
non-linear and dynamic models when using higher order homeostatic splines.
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