Sliding Loads and their Effect on the Stress Triaxiality and Lode Parameter Responses of Plates

Dr. Bruce W.T. Quinton

Memorial University of Newfoundland

Dept. of Ocean & Naval Architectural Engineering

Layout

- Motivation
 - Effect of Sliding Ice Loads on Hull Response
- Recent Developments
 - Sliding Load Hull Response
 - Ductile Fracture of Metals
- Current FE Fracture Practice
- Lode and Triaxiality of Plates and Frames subject to Sliding Loads
- Summary

Motivation: Sliding Loads and the Development of Initial Hull Fracture

- Collision & grounding (C&G) scenarios:
 - Much work over last 30 years
 - Various-scale <u>experiments</u>:
 - Plates, grillages, ships, ...
 - Steady-state plate cutting
 - Sliding motion:
 - Rodd (1996): Sled mounted 1/5th scale hull grillage impacting steel cone.
 - Fracture
 - Quinton (2015): Controlled laboratory biaxial indentation of plates and frames.
 - No fracture
 - Nonlinear numerical simulations:
 - Plasticity, fracture, and sometimes complex fluid structure interaction (FSI)
 - Validation:
 - Range: tensile tests to field or laboratory experiments.

- C&G scenarios often consider hull response to steady-state hull fracture.
 - Where development of initial fracture plays a negligible role in the system energy.
- Some scenarios <u>may not attain</u> steady-state hull fracture:
 - Ice-strengthened ships/offshore structures
 - Open-water (non-ice class) ships for accidental impact with:
 - lce, or other soft/blunt objects
 - Grounding on a soft bottom
 - The "impact-to-fracture" phase (i.e. <u>development</u> <u>of hull fracture</u>) generally dominates these scenarios.
 - Does sliding motion affect the initiation of hull fracture?

Relevant Recent Developments

- Path dependent hull response
 - Numerical Prediction: sliding motion affects plastic hull response (Quinton 2008 and Alsos 2008)
 - Experimental confirmation (Quinton 2015)
- Ductile fracture theory for metals
 - Ductile fracture for many metals is a function of triaxiality (Bao & Wierzbicki, 2004)
 - Ductile fracture for some metals is a function of Lode parameter & triaxiality (Bia & Wierzbicki, 2008)
- Finite element codes adopt Lode & triaxiality based fracture models (~2010 ?)

Path Dependent Hull Response: Effect of Sliding Loads?

- Ship and offshore structure design ice loads are invariably stationary loads.
 - Most often statically applied, stationary loads.
 - Real ice loads often slide along the hull.
- In 2008, Quinton and separately Alsos, numerically predicted a "reduced hull structural capacity" for sliding loads causing plastic damage.
 - I.e. path-dependent hull response.

Quinton (2015) Experimental Confirmation: Effect of Sliding Loads on Hull Response

• MLA:

- Steel plates or single frames subject to biaxial indentation.
 - Simultaneous or sequential "normal direction" indentation and "lateral direction" sliding.
- It allowed variations in:
 - Indenter type
 - Ambient temperature
 - Loading rate (in both directions).

Moving Load Apparatus

Steel Plates, Carriage, and Indenters

Apparatus & Test Specimen Particulars

MLA Force Capacities

Vertical Force: 500 kN

Vertical Stroke: 15 cm

Maximum Speed: 100 mm/s

Horizontal Force: 250 kN

• Horizontal Stroke: 1.22 m

Maximum Speed: 185 mm/s

- Sequential or simultaneous vertical and horizontal motions
 - Sequential for these experiments

Steel Plate Specimens

• Length: 1.65 m

I.5 m useable

• Width: 0.55 m

0.4 useable

Thicknesses tested:

• 6.35 mm

12.7 mm

- Material Properties
 - Structural Steel Grade 50W
 - Cold-rolled
 - $\sigma_y = 344 MPa$

Load Details

- Rigid Wheel Load Path "In-Along-Out"
 - Simplest load path so that normal and lateral indentations were decoupled.
 - No friction
 - Except rolling friction between the steel wheel indenter and the plate.
- Displacement control or force control.
- Lateral travel length was from the start position to beyond the +550 mm position (longitudinal direction).

Experiments: Plate & Frame Response to Sliding Loads

Layout

- Motivation
 - Effect of Sliding Ice Loads on Hull Response
- Recent Developments
 - Sliding Load Hull Response
 - Ductile Fracture of Metals
- Current FE Fracture Practice
- Lode and Triaxiality of Plates and Frames subject to Sliding Loads
- Summary

Recent Developments: Ductile Fracture of Metals

- 2004 Bao & Wierzbicki (and others) show that the ductile fracture of many metals depends on triaxiality.
- Triaxiality, η

$$\eta = \frac{p}{\sigma_{vm}} = \frac{\frac{1}{3}I_1}{\sqrt{3J_2}}$$

 $p = \frac{1}{3}I_1$ is hydrostatic stress

 $\sigma_{vm} = \sqrt{3J_2}$ is von Mises equivalent stress

 η = +ve represents a tensile hydrostatic

stress

- Range of triaxiality:
 - Plane stress:
 - Shell and some thick-shell elements:

$$-\frac{1}{3} \le \eta_{shell} \le \frac{1}{3}$$

- 3D stress
 - Solid and some thick shell elements:

$$-\infty \le \eta_{solid} \le \infty$$

but practically:

$$-1 \le \eta_{solid} \le 1$$

Fig. 20. Dependence of the equivalent strain to fracture on the stress triaxiality.

Figure reproduced from:

Bao & Wierzbicki, 2004. On fracture locus in the equivalent strain and stress triaxiality space. Int. Journal of Mech. Sci., vol. 46, pp. 81-98.

Recent Developments: Ductile Fracture of Metals

- 2008 Bai & Wierzbicki showed that the ductile fracture of some metals depends on triaxiality and Lode parameter.
- Lode angle, θ_l

$$\theta_l = \frac{1}{3} \cos^{-1} \left[\frac{3\sqrt{3}}{2} \left(\frac{J_3}{\binom{3}{2}} \right) \right]$$

$$\text{for } 0 \le \theta_l \le \frac{\pi}{3}$$

• Or Lode parameter, ξ

$$\xi = \frac{3\sqrt{3}}{2} \left(\frac{J_3}{J_2^{\left(\frac{3}{2}\right)}} \right)$$
where $-1 \le \xi \le 1$

Bai & Wierzbicki, 2008. A new model of metal plasticity and fracture with pressure and Lode dependence. Int. Journal of Plasticity, vol. 24, pp 1071-1096.

Layout

- Motivation
 - Effect of Sliding Ice Loads on Hull Response
- Recent Developments
 - Sliding Load Hull Response
 - Ductile Fracture of Metals
- Current Practice
- Lode and Triaxiality of Plates and Frames subject to Sliding Loads
- Summary

Current FE Fracture Modeling Practice

- Fracture by material model
 - Failure strain (effective plastic strain)
 - Simple input: fracture strain
 - Failure strain vs. triaxiality
 - Curve of failure strain vs. triaxiality
 - Failure strain vs. triaxiality vs. Lode parameter
 - Table of curves of failure strain vs.
 triaxiality for various Lode parameters
 - Other failure criteria ...
 - Variations on these for strain-rate and temperature
 - •

- Types beyond the scope of this presentation:
 - Cohesive elements
 - Usually zero-volume elements
 - Connects adjacent "normal" elements
 - Disappear when failure criterion/criteria met
 - Other non-traditional FE types:
 - SPH Smoothed Particle Hydrodynamics
 - DEM Discrete Element Method
 - EFG Element Free Galerkin Method
 - XFEM Extended FE Method

Simulation Results:

Lode and Triaxiality of Plates subject to Sliding Loads

Significant States of Stress

Stationary Load Results

- No compression zones (i.e. –ve triaxiality).
- No uniaxial tension or pure shear in way of the indenter.
- No plastic plane strain tension.
- Identified zones of:
 - Equi-biaxial Plane Stress Tension

Sliding Load Results (frictionless)

- There <u>are</u> compressive zones.
- No uniaxial tension or pure shear in way of the indenter.
- Identified zones of:
 - Equi-biaxial Plane Stress Tension
 - Plastic Plane Strain Tension

Figure reproduced from:

Hasan, RZ., Kinsey, BL., and Tsukrov, I., 2011. Effect of Element Types on Failure Prediction

Using a Stress-Based Forming Limit Curve. J. Manuf. Sci. Eng 133(6).

Stationary Load: Equi-biaxial Plane Stress Tension

Stationary Load - Triaxiality

Stationary Load – Lode Parameter

and Applied Science

Equi-biaxial Plane Stress Tension

Lode Parameter: - I

Sliding Load:

Equi-biaxial Plane Stress Tension

quibiaxial Plane Stress Tension

Triaxiality: 2/3

Lode Parameter: -I

Sliding Load: Plastic Plane Strain Tension

Comparison with Solid Elements

Validatin:

Comparison with Experiment

Summary

- It is clear that there is a change in the state of stress due to indenter motion.
- For sliding loads, fracture will occur on the leading side of the indenter.
 - Whereas for stationary loads, it fracture location is often less certain.
- For a material that is not sensitive to Lode parameter, onset of fracture may be predicted correctly for either stationary or moving loads.
- For a material that is sensitive to Lode parameter, onset of fracture may not be predicted correctly by triaxiality alone, for moving loads.

Acknowledgments

- Much of this work was funded by the STePS² project at Memorial University of Newfoundland.
 - Its government and industry partners:
 - Atlantic Canada Opportunities Agency (ACOA) through its Atlantic Innovation Fund (AIF)
 - Research & Development Corporation (RDC) through its Collaborative R&D program
 - American Bureau of Shipping
 - BMT Fleet Technology Ltd.
 - Husky Energy
 - Rolls-Royce
 - Samsung Heavy Industries
 - National Research Council of Canada Ocean, Coastal, River Engineering (formerly the Institute for Ocean Technology)
 - MITACS through their Accelerate program
 - Memorial University of Newfoundland's Offshore Technology Research an NSERC CREATE program.

Thank you

Questions?

