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Abstract. The time-dependent behaviour of quasi-brittle materials can have a significant effect on ser-
viceability and ultimate failure. E.g., in the case of concrete structures, the presence of cracking can
evolve, propagate and gradually widen over time, therefore significantly changing the stress state and
expected structural response. The development of models that can account for the discrete nature of
cracking whilst predicting time-dependent behaviour can be of interest to many practical applications.
The discrete strong discontinuity approach (DSDA) has been validated as a reliable approach for sim-
ulating the cracking phenomenon by directly embedding the traction-separation constitutive relation
within finite elements, therefore enriching standard finite element models with the ability to capture
cracks, where material can separate without the need for remeshing. This work presents a generalisation
to account for the long-term behaviour of cracked quasi-brittle materials, more specifically creep and
shrinkage. To this end, a rate-type creep is first applied through a number of kelvin units; the interaction
of the resulting response from the Kelvin chain system, shrinkage, and discrete cracking is developed
to obtain a suitable constitutive model for the discrete crack simulations. Finally, the formulation is
deployed on a finite element code where the performance of the proposed model is assessed through
representative numerical examples.

1 INTRODUCTION

A wide range of studies can be found in the literature related to the long-term behaviour of concrete
structures [1-11]. Even though satisfactory results can often be obtained, there are many situations where
a more accurate prediction of the time-dependent behaviour for cracked structures can require advanced
models. In this domain, the discrete representation of cracks can better approximate discontinuous stress
fields. With this in mind, this paper implements a finite element model for addressing the time-dependent
behaviour of cracked concrete structures based on the DSDA [12].

2 Discrete strong discontinuity approach

The DSDA [12] can be formulated in the incremental form for a single element with an embedded strong
discontinuity. Accordingly, at time step n+1:[
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where ae is the vector of nodal displacements and we is the vector of nodal jumps at the discontinuity.
The latter is measured at the two additional nodes i and j defined at both ends of the discontinuity – see
Fig. 1 below. In this equation, the following definitions are applied:
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Figure 1: Strong discontinuity embedded on a bilinear element: (a) definitions; (b) crack opening; and (c) free
Body diagram.

The DSDA separates the behaviour of the discrete embedded discontinuity from that of the bulk, and
because of this the time-dependent behaviour can be easily incorporated into the formulation. This
behaviour will be here approximated by a standard chain of components as represented in Fig. 2, where
the bulk has the time-dependent components.

At the integration point level, the total strain can be written as:

∆εn+1, j = ∆ε̃n+1, j +∆ε̂n+1, j +∆ε
cp
n+1, j +∆ε

sh
n+1, j, (4)

where ∆ε̃n+1, j, ∆ε̂n+1, j, ∆ε
cp
n+1, j, and ∆εsh

n+1, j are the increments of enhanced, bulk, creep, and shrinkage
strains, respectively. Note that in the DSDA, the enhanced strain ∆ε̃n+1, j in the cracked domain is zero.
Thus, the stress-strain relation for integration point j at time step n+1 can be written as [13]:
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Figure 2: Constitutive behaviour of the different components.

where Dve is the viscoelastic stress-strain relation matrix defined as:

Dve
n+1, j = Eve

n+1, jG (6)

where G is the stress-strain relation matrix divided by the elastic modulus, E0, and Eve
n+1, j is the vis-

coelastic modulus – see Fig. 2 – given by:
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, (7)

where according to Fig. 2, E0 is the modulus of elasticity of the bulk, and Eµn+1, j represents the spring
stiffness (creep modulus) of the µ-th kelvin unit at the integration point j in the step n+1.

3 Incremental time-dependent strains

The modelling of the time-dependent behaviour based on rate-type creep or differential formulations can
be computationally efficient. Additionally, a rate-type creep method can enable a more straightforward
incorporation of the effects of other components, e.g. shrinkage, temperature, and the nonlinear effects
of cracking and damage [14].

The increment of creep strain is split into viscous and viscoelastic increments, respectively corresponding
to the unrecoverable and recoverable creep strain components, respectively:

∆ε
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f
n+1, j +∆ε

v
n+1, j, (8)

where the viscoelastic strain increment, ∆εv
n+1, j, is calculated using the viscoelastic micro-strain creep

increment, ∆γi+1, as:

∆ε
v
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, (9)

where the micro-strain creep increment is obtained from solving the differential equation related to the
µ-th kelvin unit using the first order exponential algorithm [14]:

∆γµn+1 = γµn+1 − γµn = (1−βµn)

(
σn+1/2

Eµ
− γµn

)
, (10)

with βµn being an auxiliary constant that simplifies the notation:

βµn = e−(∆tn)/τµ , (11)
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where, τµ = ηµ/Eµ is called the retardation time, and νn+1/2 in Eq. (9) is the volume of the solidified
matter at the mid-time of a logarithmic time-step. This is calculated by:

νn+1/2 =

[√
1

tn+1/2
+

q3

q2

]−1

, (12)

where tn+1/2 denotes the mid-time of the logarithmic time-step:

tn+1/2 = t0 +[(tn+1 − t0)(tn − t0)]
0.5 . (13)

The increment of the viscous non-recoverable creep component is calculated by the following equation:

∆ε
f
n+1, j =

Gσn−1/2q4∆tn
tn+1/2

, (14)

where σn−1/2 = σn−1 +∆σ/2, and q3 and q4 are empirical material coefficients.

Shrinkage is treated as the drying component resulting from volume alterations in concrete as a result of
evaporation [14]. Shrinkage is assumed direction independent and the shrinkage shear strain components
are taken as zero. The shrinkage strain is here approximated by:

ε
sh
n =

Atn
B+ tn

, (15)

where A and B are determined from tests, and the shrinkage vector is obtained from εsh
n
[
1 1 0

]T .

4 Case study

An experimental test is here presented to assess the performance of the formulation. The selected exam-
ple is a four-point bending test carried under sustained loads for 380 days [15]. The geometry, reinforce-
ment and the finite element model are represented in Fig. 3

The beam is modelled with 1,190 bilinear and 70 truss elements, respectively representing concrete and
reinforcements. Only one-half of the beam was modelled to take advantage of the symmetry conditions
of the problem – see Fig. 3(c). The characteristic concrete strength at 28 days was fcm = 24.8 MPa and
the modulus of elasticity was Ec = 24950 GPa. The concrete tensile strength was fct = 2.8 MPa at 28
days. The shrinkage constants from Eq. (15) were measured as Ash = 950 µε and Bsh = 45 days. The
concrete fracture energy was taken as 75 N/m and the Poisson’s ratio was assumed as ν = 0.2. Perfect
bond conditions were assumed between the reinforcement and concrete. The self-weight of concrete was
taken as 23.5 kN/m3 and the asymptotic elastic modulus of concrete for creep modelling was taken as
E0 = 1.6E28 = 40GPa. The empirical creep constants were measured by fitting the compliance data from
a small creep test as: q2 = 186.5 µε, q3 = 1.0 µε/MPa, and q4 = 23.7 µε/MPa. The retardation time and
corresponding elastic moduli were taken as the same as in [15,16] (see Table 1). The calculated negative
infinity area of the spectrum was A0 = 52.8 MPa−1.

Fig. 4 compares the results of time-dependent modelling with experimental data. As Fig. 4(a) shows
the mid-span deflection where the proposed model compares relatively well with the experimental data.
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to sustained loading and prone to creep buckling are ana-
lysed including the effects of geometric non-linearity.

6.1. Example 1: four-point bending test under sustained load

Gilbert and Nejadi [13] tested a series of beams and one-
way slabs under sustained load for a period of 380 days to
investigate the growth of cracks with time. Beam 1a is
modelled using the formulation described above with the
dimensions of the beam shown in Fig. 7. The beam was
loaded at age 14 days.

Material tests on standard 150 mm diameter cylinders at
28 days gave the mean concrete strength as fcm = 24.8 MPa
and modulus of elasticity Ec = 24950 GPa. The tensile
strengths were obtained from indirect tension (Brazil) tests
on 150 mm diameter cylinders tested at 14, 21 and 28 days
and were fct.14 = 2.0 MPa, fct.21 = 2.6 MPa and fct.28 =
2.8 MPa, respectively. For FE modelling, the growth of
concrete tensile strength with time was taken from Eq.
(14) with Afct ¼ 4 MPa and Bfct ¼ 12 days. The shrinkage
constants were calculated from measurements on shrinkage
companion specimens giving Ash = 950 le and Bsh = 45
days in Eq. (14). The bond shear stress sb0 was taken as
that determined by Gilbert and Nejadi [13] for their tests
and was sb0 = 4.5 MPa. The concrete fracture energy Gf

was taken as 75 N/m and Poisson’s ratio was assumed to
be m = 0.2. The reinforcing steel was taken as elastic-per-
fectly plastic with a yield strength of 500 MPa and elastic
modulus of 200 GPa. The self-weight of the beam was

included in the analysis using gravity loading with the
weight of the reinforced concrete taken to be 23.5 kN/m3.

For the solidification creep modelling, the asymptotic
elastic modulus of concrete was taken to be E0 =
1.6Ec.28 = 40 GPa. The empirical material constants q2, q3

and q4 were determined by fitting the compliance data
obtained from a creep test under a 5 MPa sustained stress
undertaken in conjunction with the laboratory tests. The
calculated values of the constants were q2 = 186.5 le/
MPa, q3 = 1.0 le/MPa and q4 = 23.7 le/MPa. The Dirich-
let series was discretized into eight Kelvin chain units for
storing the deformation history of the viscoelastic strain.
The corresponding elastic moduli for each link in the chain
Ej and retardation times sj are given in Table 1. The nega-
tive infinity area is A0 = 52.8 MPa�1.

The FE mesh (Fig. 7c) consisted of 199 nodes and is
made up of 108 plain concrete elements, 54 reinforced
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Fig. 7. Details for Gilbert and Nejadi’s [13] beams: (a) elevation; (b) cross-section; and (c) FE mesh.

Table 1
Kelvin chain data used for model corroboration

jth unit sj (days) Ej (MPa)

Gilbert and Nejadi
[13]

Ghali et al. [12] Bradford [7]

1 0.0001 0.08480 0.11054 0.19612
2 0.001 0.07214 0.09404 0.16685
3 0.01 0.06209 0.08094 0.14361
4 0.1 0.05411 0.07054 0.12516
5 1 0.04778 0.06229 0.11051
6 10 0.04276 0.05574 0.09889
7 100 0.03877 0.05054 0.08966
8 1000 0.03560 0.04641 0.08234

K.T. Chong et al. / Computers and Structures 86 (2008) 1305–1317 1311
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Fig. 7. Details for Gilbert and Nejadi’s [13] beams: (a) elevation; (b) cross-section; and (c) FE mesh.
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Figure 3: Four-point bending test: (a) overall geometry; (b) reinforcement details section A-A; (c) finite element
model.

Table 1: Rheologic modelling data

µ τµ(days) Eµ

1 1e-4 0.08480
2 1e-3 0.07214
3 1e-2 0.06209
4 1e-1 0.05411
5 1e0 0.04778
6 1e1 0.04276
7 1e2 0.03877
8 1e3 0.03560

Regarding the maximum crack width shown in Fig. 4(b), some predicted points are closer to the ex-
perimental data than other models. Still, there are some differences that can be related to the perfect
bond conditions assumed in the current implementation. At the last step of the analysis, the maximum
experimental crack width is 0.381 mm, which compares against 0.402 mm and 0.355 mm, respectively,
predicted by the DSDA and by [16]. Figs. 5(a) and (b) show the crack pattern and deflections of the
beam at the beginning of the analysis and after creep has developed..
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(a) (b)

Figure 4: Four-point bending test: (a) Mid-span deflections vs. time; (b) Maximum crack width vs. time.
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Figure 5: Four-point bending test (deflections amplified 20 times) (a) initial deflection (b) time-dependent deflec-
tion after 380 days.

5 CONCLUSIONS

A discrete model was implemented to address the time-dependent behaviour of reinforced concrete struc-
tures. The model was based on the DSDA, which was extended to include creep and shrinkage. The
proposed model was validated against data available on a reinforced concrete beam under a four-point
bending test. The results were compared with the ones obtained in another study using the smeared
crack approach. In general, it was found that both models can provide reasonable estimates. However, it
should be pointed out that a more detailed crack pattern could be presented with the discrete framework.
Additionally, the discrete modelling offers significant potential for future studies based on the explicit
implementations of other components, e.g. the bond-slip and rate-dependency of crack progression.
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[14] Bažant, Z.P. and Jirásek, M. Creep and hygrothermal effects in concrete structures. Springer. (2018)
38:263–282.

[15] Gilbert, R.I. and Nejadi, S. An experimental study of flexural cracking in reinforced concrete mem-
bers under sustained loads. University of New South Wales, School of Civil and Environmental
Engineering. (2004)

[16] Chong, K.T. and Foster, S.J. and Gilbert, R.I. Time-dependent modelling of RC structures us-
ing the cracked membrane model and solidification theory. Computers & structures (2008) 86(11-
12):1305–1317.

7


