Adaptive mixed isogeometric analysis of a highly convective benchmark problem for the Boussinesq equations

Abdullah Abdulhaque¹, Trond Kvamsdal², Mukesh Kumar³ and Arne Morten Kvarving⁴

¹ Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim, abdullah.abdulhaque@ntnu.no
² Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim, trond.kvamsdal@ntnu.no
³ Department of Mathematics, College of Charleston, South Carolina, USA, kumarm@cofc.edu
⁴ Department of Applied Mathematics and Cybernetics SINTEF Digital, Norway
e-mail: arne.morten.kvarving@sintef.no

Key Words: Isogeometric Analysis, Adaptive Finite Element Method, Recovery Estimation, Buoyancy-driven Flow

ABSTRACT

In this article, we study a special benchmark problem for the Boussinesq equations. This is the Navier-Stokes equations coupled with the Advection-Diffusion equation, and it is used for modelling buoyancy-driven flow. The solution process is mixed isogeometric discretization combined with adaptive mesh refinement [4]. We discretize the equation system with the recently proposed isogeometric versions of the Taylor-Hood, Sub-Grid and Raviart-Thomas elements [1]. The adaptive refinement is based on LR B-splines [2] and recovery estimators [3]. We investigate the suitability of our adaptive methods for Rayleigh numbers in the range 10^4-10^5, by comparing with high-resolution reference solution.

REFERENCES