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We provide an approximate analytical solution for the substrate-microbial dynamics of the organic car-
bon cycle in natural soils under hydro-climatic variable forcing conditions. The model involves mass bal-
ance in two carbon pools: substrate and biomass. The analytical solution is based on a perturbative
solution of concentrations, and can properly reproduce the numerical solutions for the full non-linear
problem in a system evolving towards a steady state regime governed by the amount of labile carbon
supplied to the system. The substrate and the biomass pools exhibit two distinct behaviors depending
on whether the amount of carbon supplied is below or above a given threshold. In the latter case, the
concentration versus time curves are always monotonic. Contrarily, in the former case the C-pool concen-
trations present oscillations, allowing the reproduction of non-monotonic small-scale biomass concen-
tration data in a natural soil, observed so far only in short-term experiments in the rhizosphere. Our
results illustrate the theoretical dependence of oscillations from soil moisture and temperature and
how they may be masked at intermediate scales due to the superposition of solutions with spatially
variable parameters.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Soil biogeochemical cycles, particularly carbon (C), nitrogen (N),
and phosphorous (P), are of particular interest in a number of envi-
ronmental applications involving soil–water interactions [1,7,27].
These include surface–subsurface hydrological inter-exchanges
(e.g., [21,26]), water quality evolution during infiltration [10,12],
and green-house gas emissions (e.g., [23]). Such biogeochemical
cycles are regulated by non-linear dynamic processes acting on
multiple spatial and temporal scales [3,4,15,24].

In the present work we concentrate on the carbon cycle. It
involves the presence of separate pools corresponding to the differ-
ent states where organic carbon can be found. It is widely recog-
nized that carbon decomposition is a process driven by bacteria,
fungi, archaea and other groups, which can be either enhanced or
inhibited by variations in water content and general environmen-
tal conditions taking place at different spatial as well as temporal
scales [24,28]. Currently, several models (of various complexity)
exist to provide the evolution of the C-cycle (and also the N- and
P-cycles) in terms of hydro meteorological conditions. The simplest
model would involve a single carbon pool. However, as explained
in [18], the one C-pool model is not accurate enough to investigate
the evolution of biomass concentration due to changes in external
climate forcing. For multiple-pool models we can also distinguish
between linear and non-linear models. In the former, the decom-
position rate is proportional to the substrate concentration; they
are oversimplistic and unable to reproduce the observed interac-
tions between microbes and their substrate at short time scales
[20]. Different non-linear models have thus been proposed in the
literature, where decomposition is governed by some relationship
between both the concentrations of substrate and biomass activity
[9,16,17,19].

Understanding the dynamics of the interactions atmosphere/
biosphere involving for example the water content variations is
important to better define processes such as soil quality, the respi-
ration process (gas emissions), and the dynamics of the biomass
concentrations. There is a strong non-linear link between the bio-
logical processes taking place at the soil (such as biomass decom-
position and microbial activity) and a number of environmental
factors including soil water content. For example, hydrologic con-
ditions affect many abiotic factors such as soil aeration and nutri-
ent availability so that microbial activity is inhibited at the local
scale (e.g., [26]).

The non-linearities already cited may eventually lead to com-
plex evolution of the concentration of carbon at the different pools,
involving for example the potential oscillatory behavior of the con-
centrations measured as a function of time due to a sudden change
in the conditions. The presence of oscillations provided in the pred-
ator–prey model defined by biomass and their substrate has been
reported in some cases, but the physics of the non-linear fluxes
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Table 1
List of symbols.

Parameter Units Name/description

Cs/Cb M L�3/M L�3 Substrate/Biomass concentration
Cr M L�3 Reference concentration
Xs/Xb �/� Substrate or SOM/Biomass

dimensionless concentration
Xst

s =Xst
b

�/� Substrate/Biomass steady-state
dimensionless concentration

Xs,0/Xb,0 �/� Substrate/Biomass initial
dimensionless concentration

X0s=X0b �/� Substrate/Biomass perturbative
dimensionless concentration

db(=d)/ds �/� Substrate/Biomass perturbative
initial dimensionless
concentration

ADD⁄/ADD M L�3 T�1/� Dimensional/Dimensionless
plant residue supplied

ADD0/ADDs–s �/� Initial/Asymptotic amount of
plant residue supplied

DADD �/� Incremental value of plant
residue supplied

DEC M L�3 T�1 Total decomposition rate
BD M L�3 T�1 Microbial decay (or lysis)
r Respiration rate
k�d=kd T�1/� Dimensional/Dimensionless

biomass decay constant
k�s=ks L3 M�1 T�1/� Dimensional/Dimensionless

potential decomposition rate
kr T�1 Reference reaction rate
u – Coefficient controlling N

availability for decomposition
fD(s,T) – Reducing factor depending on

soil moisture (s) and
temperature (T)

sfc – Soil moisture at field capacity
Tmin/Tref K/K Minimum/Reference

temperature
c – Exponential decay factor

regulating the change in ADD
with time

n – Decay constant
tc – Characteristic dimensionless

time
x – Angular frequency of the

oscillations
a, b, a, b – Different parameters defined in

the text
D – Discriminant
P, Q Auxiliary spatial functions
h�i Expected value
r2

i =ci – Variance/Variogram of spatial
random function i (i = s,b)

k1, k2 Eigenvalues of the system matrix
C1, C2 Integration constants

DEC
rDEC

(1-r)DEC

BD

ADD

DEC=Decomposition
BD= Microbial decay

Fig. 1. The organic carbon two-pool system and their corresponding transfer
processes to account for the redistribution of SOM-C into a biotic (biomass) and an
abiotic (substrate) pools. Plant residual (ADD) and dead microbial mass sustain the
carbon pool (Cs), which is decomposed by microbes (Cb) to obtain food and energy,
with a fraction (r DEC) lost in respiration.
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between pools (also known as compartments) have been only
partially addressed [24,29,30]. Despite it is widely accepted that
oscillations are strongly determined by biomass-substrate interac-
tions, they have only been observed in the rhizosphere at short
time scales [30], and it is still questionable whether they may occur
on a large time scale or when observations are taken at some inter-
mediate to large spatial scale. According to Manzoni and Porporato
[18], in a long term analysis oscillations in C-pool concentrations
may be masked by external climate constraints and substrate
availability.

In this work we used the non-linear simplified C model of
Manzoni and Porporato [18] to illustrate the physics of the oscilla-
tory behavior in carbon-pool concentrations. We started by finding
an approximate analytical solution for this model as a function of
plant residue addition, soil temperature and soil water content.
We then used this solution to derive a closed-form mathematical
condition for oscillations in concentrations versus time to occur
at a given point in the soil. Next, we analyzed which type of ecosys-
tems are most likely to present oscillations in C-pool concentra-
tions by considering typical litter addition values for different
environments and studying the effects of soil moisture, tempera-
ture and nitrogen limitation. Finally, we assumed a log-normal dis-
tribution for the maximum rate of decomposition and microbial
dead, and used this information to investigate under which condi-
tions the upscaling of concentration point value may lead to no ob-
served oscillations at an intermediate scale, illustrating a potential
reason why concentration oscillations at a large scale have not yet
been reported.

2. Problem statement

2.1. The carbon cycle model

Different operational methods exist to divide the carbon organic
matter supplied to a given system into compartments or pools
(e.g., [2]). In all of them, the organic carbon supplied to the soil is
decomposed into one or more abiotic pools and a biotic one [5],
where the latter regulates the fluxes between soil and atmosphere.

In this paper the C-cycle is modelled using two carbon pools fol-
lowing the work of Manzoni and coworkers [20]: the substrate
pool, expressed in terms of substrate concentration Cs [M L�3]
including the litter and the humus fractions of Soil Organic Matter
(SOM-C), and the biomass pool (its concentration denoted by Cb

[M L�3]), accounting for the biotic component. A table of all the
symbols used throughout the paper, with their corresponding
units, is included as Table 1.

The input to the system is provided by addition of plant residue
(or alternatively, litter) expressed as mass of carbon per unit of vol-
ume and time (ADD⁄ [M L�3 T�1]), while the output is given by
microbial respiration, which is expressed as a fraction r of the total
decomposition rate (DEC [M L�3 T�1]). The decomposition rate is
linearly proportional to the product of the two concentrations
(substrate and biomass). The exchange between pools is given by
equilibrium between the fraction of decomposition that does not
result in microbial respiration, and the microbial decay or lysis
(BD), as shown in Fig. 1. The system of ordinary differential equa-
tions (ODEs) describing the carbon balance for the two-pool sys-
tem is given as

dCsðtÞ
dt ¼ ADD� � DEC þ BD

dCbðtÞ
dt ¼ ð1� rÞDEC � BD

(
ð1Þ

The microbial decay is most often modeled as a linear function
of biomass, BD ¼ k�dCb; with k�d [T�1] the biomass decay constant,
being a characteristic of the actual microbial population. As
indicated before, the decomposition rate is linear with respect to
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both concentrations, and therefore it can be modeled as
DEC ¼ uk�s fDðs; TÞCsðtÞCbðtÞ. Here u is a coefficient belonging to
the interval [0,1], indicating whether the system is controlled by
the availability of nitrogen; thus, u is equal to one when N is not
a limitation for decomposition of organic matter, and becomes
smaller than one when the system becomes N-limited (i.e. mi-
crobes need to use N minerals as the source of nitrogen); k�s [L3 -
M�1 T�1] is the potential decomposition rate (which depends on
the actual substrate being supplied); finally fD(s,T) is a dimension-
less reducing factor depending non-linearly of soil moisture (s) and
temperature (T), through fD(s,T) = f1(s)f2(T) as described in Porpora-
to et al. [22]. These functions are themselves modeled as

f1ðsÞ ¼
s=sfc if 0 6 s 6 sfc

sfc=s if sfc < s 6 1

�
ð2Þ

f2ðTÞ ¼

0 for T < Tmin

ðT�TminÞ2

ðTref�TminÞ2
Tmin 6 T 6 Tref

1 T > Tref

8>><
>>: ð3Þ

where sfc is the soil moisture at field capacity, Tmin is a temperature
inhibiting microbial respiration, and Tref is a reference temperature
[13]. We refer to [18] for a thorough explanation of the immobiliza-
tion and mineralization conditions and of the environmental func-
tions, as well as some indications on the range of validity of the
parameters involved in Eqs. (2) and (3).

In order to measure the importance of different rates, we use a
dimensionless version of the model by using a reference concen-
tration Cr [M L�3], and a reference reaction rate kr [T�1], so that
the dimensionless time tr and concentrations Xi (i = s,b) can be de-
fined as follows:

tr ¼ tkr

Xi ¼ Ci=Cr i ¼ s; b
ð4Þ

By inserting expression (4) into Eq. (1), the system of equations
governing the problem in terms of dimensionless concentrations is
rewritten. The subindex r in the dimensionless time (4) is dropped
here and in the remaining of the text for simplicity.

dXsðtÞ
dt ¼ ADD�uksfDXsðtÞXbðtÞ þ kdXbðtÞ

dXbðtÞ
dt ¼ ð1� rÞuksfDXsðtÞXbðtÞ � kdXbðtÞ

(
ð5Þ

where the following dimensionless parameters have been included

ADD ¼ ADD�

krCr
; ks ¼

k�s Cr

kr
; kd ¼

k�d
kr

ð6Þ

It should be noted that in a general problem ks, kr could be time
dependent as a consequence of changes in the biochemical system
such as aging. Such changes take place at large time scales, and so
it is considered here that in the characteristic time where (5) holds,
temporal variations in such parameters are negligible.

2.2. Steady state solution

By imposing steady state conditions in Eq. (5), the following
expression for the steady state concentrations can be derived

Xst
s ðs; TÞ ¼

kd

ð1� rÞksufDðs; TÞ
Xst

b ¼
ADDs—sð1� rÞ

kdr
ð7Þ

ADDs—s corresponds to the asymptotic amount of plant residue sup-
plied; it is assumed constant since otherwise the solution would not
reach an steady-state value. The solution could also be used for var-
iable ADD if the time variations take place at a scale much larger
than the time needed by the system to reach steady-state.
For steady state conditions, the substrate pool concentration
depends on soil moisture and temperature as an inverse depen-
dency upon fD(s,T). It also depends on whether N becomes a limit-
ing factor for organic matter decomposition, so that the smaller the
u value, the larger the asymptotic concentrations remaining at the
substrate pool. The biomass pool, instead, depends linearly on the
external input of plant residue supplied, and it is mostly controlled
by the respiration rate.

2.3. Semi-analytical solution for an exponential ADD input

By using a fist-order perturbation approach, it is possible to de-
rive an (approximate) fully analytical solution for a number of
problems with varying boundary and initial conditions. First, a sys-
tem in dynamic equilibrium is considered, indicating that the plant
residue or litter input, ADD0, is equilibrated with the losses due to
respiration; the dimensionless concentrations in the two carbon
pools are then given by (7). Then a variation in the supply takes
place following an exponential function, asymptotically reaching
a value ADDs–s. The solution is derived in Appendix A, and reported
here as Eqs. (8) and (9). It indicates that the evolution of the sub-
strate and biomass pool concentrations are both given as combina-
tions of an exponential decay term (with a decay constant n = �a/2,
equivalent to a characteristic dimensionless time tc ¼ 2=jaj), multi-
plied by sinusoidal functions with an angular frequency of the
oscillations x ¼ 1

2

ffiffiffiffiffiffi
jDj

p
,

XsðtÞ ¼ Xst
s þ a expð�ctÞ

þ 2bffiffiffiffiffiffi
jDj

p d� b� aa
2b

� �
exp

at
2

� �
sin

1
2

ffiffiffiffiffiffi
jDj

p
t

� �

� a exp
at
2

� �
cos

1
2

ffiffiffiffiffiffi
jDj

p
t

� �
ð8Þ

XbðtÞ ¼ Xst
b;1 þ b expð�ctÞ þ �2abdþ 2abbþ aa2 þ ajDj

2b
ffiffiffiffiffiffi
jDj

p
� exp

at
2

� �
sin

1
2

ffiffiffiffiffiffi
jDj

p
t

� �
þ ðd� bÞ

� exp
at
2

� �
cos

1
2

ffiffiffiffiffiffi
jDj

p
t

� �
ð9Þ

where c is the exponential decay factor regulating the change in
ADD with time, d is the difference between the (dimensionless)
biomass concentration at steady state (Eq. (7)) and the initial
one, a, b, a, b are coefficients given respectively by a ¼
� ADDs—s fDksuð1�rÞ

kdr ; b ¼ � kdr
ð1�rÞ ; a ¼

cDADD
c2þac�abð1�rÞ ; b ¼ � ð1�rÞaDADD

c2þac�abð1�rÞ ;

and D ¼ a2 � 4abð1� rÞ is the discriminant of the characteristic
polynomial of the system of equations. The solution presented
in Eqs. (8) and (9) is only valid for the case D < 0. A more general
solution, valid also for positive D values is also reported in
Appendix A.

As stated before, other solutions could be obtained by varying
either the boundary or the initial conditions. Appendix B reports
the solution corresponding to a problem where no changes in the
input take place, but where the system is initially not in
equilibrium.

3. Discussion

The advantage of an analytical approximation providing an
explicit solution for the SOM-C pool concentrations with respect
to a fully numerical one is the possibility of analyzing directly
the impact of the different parameters in the solution. Further-
more, it is possible to fully account for the combination of param-
eters resulting in an oscillatory (non-monotonic) solution, and in



Table 2
Parameters used in the different plots used as examples in this paper (unless different
values are reported in the text).

Parameter kd [d�1] ks [d�1] u [-] sfc [�] T½K� ¼ Tref

Value 8.5 10�3 6.5 10�5 1 0.3 293.15
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such a case, to understand the interplay between the exponential
decreasing part and the sinusoidal part in Eqs. (8) and (9). In the
following subsections several points are discussed: (i) a close-form
inequality to warrant the presence of oscillations of the solution at
the local scale; (ii) the performance of the analytical solution; (iii)
the impact of different environmental factors in the solution; and
(iv) the upscaling of the analytical solution when parameters are
assumed spatially and temporally heterogeneous.
3.1. Validity of the approximate solution

The closed form analytical solutions presented throughout this
paper are based on a combination of a perturbation expansion fol-
lowed by a closure (elimination of high order terms). Thus, it is
necessary to investigate the range of validity of the approximate
solution. This depends on the error introduced in the solution by
neglecting the product of perturbations of the two dimensionless
concentrations. Both at time zero and for infinite times the pertur-
bation X 0s is zero, and so the approximate solution is exact. On the
other hand, the approximation deteriorates at short (but non-zero)
times.

The solution provided by Eqs. (8) and (9) is then tested by com-
paring it to that obtained from a high-resolution numerical code
designed to solve the full system of partial differential equations
(5) with no approximations. The code uses the MATLAB’s standard
solver for ODEs (ODE45) with an explicit method implementing a
Runge–Kutta algorithm, with a variable time step for efficient
Fig. 2. Comparison of the analytical (approximation) solution and the exact one (obtaine
(with respect to the initial value) in ADD values (top), the analytical solution provides a ve
(bottom), but the main features are captured.
computation. This numerical solution can be considered as exact
for all practical purposes. The parameters used for the comparison
are considered constant and known, and are extracted from a sa-
vanna region characterized by [24], and summarized in Table 2;
furthermore c!1, equivalent to a sudden change in the ADD va-
lue. Two different values of DADD are used in the simulations,
ranging from a small jump to quite a large one (relative to the ini-
tial value ADD0).

The results of the comparison are presented as Fig. 2. Three sig-
nificant features must be highlighted: First, the analytical solution
is capable of properly reproducing the presence of oscillations in
the concentration versus time function, in particular in terms of
frequency and phase of oscillations; this is remarkably important
because it renders the criterion to distinguish between oscillatory
and monotonic behavior presented in the next section to be robust
and highly insensitive to the value of DADD. Second, both numeri-
cal and analytical solutions seem to approach steady-state condi-
tions at a similar rate; this means that the characteristic time to
reach steady state given by the analytical solution is a good esti-
mate of its true value regardless the degree of the DADD jump.
Third, the exact amplitude of the oscillations is not perfectly repro-
duced, and the match deteriorates when large initial perturbations
are imposed to the system.

3.2. The condition for oscillations to occur

The critical condition for an oscillatory behavior to occur can be
obtained in closed form by imposing that the discriminant is neg-
ative (i.e. D < 0, implying that the eigenvalues of the characteristic
matrix are complex numbers with a non-zero imaginary part). For
a given ecosystem, this condition can be used to determine the
range of the external plant residue input (ADD�) that will promote
oscillations in the temporal evolution of concentrations in the
SOM-C system. This condition can be written (in dimensional
quantities) as
d by a numerical approach). The perturbation approach implies that for small jumps
ry good match to the true solution. The agreement deteriorates for large ADD jumps



Fig. 3. (A) Mapping in the ADD� vs. soil moisture space showing the combination of
values where oscillations are likely to occur (shaded); (B) similar plot for the impact
of the respiration rate (r), for a fixed soil moisture s ¼ sfc value. Additional
parameters values presented in Table 2. If the combination of parameters can be
displayed in a non-shaded area, a monotonic variation in the concentrations is
expected.

Fig. 4. Mapping in the ADD� vs. temperature space showing the combination of
values where oscillations would occur (shaded area); we assume Tmin = 273.15 K,
and a Tref value of 293.15 K. Additional parameters values are displayed in Table 2.

Fig. 5. Mapping in the ADD� vs. soil moisture space showing the combination of
values where D ¼ 0 for different u values corresponding for different N-limited
conditions. The areas where oscillations occur are always located below the lines
drawn. Additional parameters values are displayed in Table 2.
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0 < ADD� <
4k�2d r2

ufDk�s ð1� rÞ ð10Þ

For values of ADD� outside the range of Eq. (10), the SOM-C pool
concentrations experience a monotonic, non-oscillatory, behavior
from its initial value to the asymptotically reached steady-state
one. This is expected to occur in systems where the plant residue
input is rich in labile organic carbon. However, even for plant
residue inputs belonging to the range defined in (10), oscillations
in C-concentrations with time may not be ‘‘visible’’ given that
the exponential decreasing term may overcome the sinusoidal
term in (8) and (9), so that the small errors in the measurements
may mask the actual oscillations.

Using again the parameters from Table 2, Fig. 3A presents a map
in the ADD� vs. soil moisture (s) space showing the combination of
values (shaded zone) where oscillations would occur (i.e., D < 0),
and that where a monotonic behavior is expected ðD > 0Þ. The
two zones are separated by a solid line expressing the change in
behavior, displaying a minimum at soil moisture s ¼ sfc . Since
according to [25] for natural systems the value of the critical plant
residue input can be estimated to be in the range of 0–16 gC/m3/d,
it is to be expected that in most cases oscillations at the local scale
should be the rule rather than the exception.

Fig. 3B additionally displays the impact of the variations in the
respiration rate (r) upon the behavioral solution (oscillating vs.
non-oscillating). For small r values the system becomes stable for
almost all combinations of the remaining parameters; it implies
that no carbon is removed from the system (i.e., high microbial up-
take and low respiration) and it is mostly a redistribution problem
with a comparative negligible substrate pool, producing an almost
linear accumulation of carbon in the biomass; such an unphysical
result could be avoided by incorporating additional decomposition
terms in (5). Another extreme case is to consider a very large value
of r, indicating that no decomposition ends up in increasing the
biomass pool concentration (no carbon is metabolized), so that this
pool is non-existing (thus becoming a degenerative solution). This
aspect could be relevant in some real problems, although the study
of factors regulating respiration rates is still lacking in the
literature.

Fig. 4 includes the impact of temperature in the oscillatory
behavior of the solution. When T is close to Tmin the system cannot
reach monotonically a steady solution for any combination of
parameters. Apparently this result contradicts the observed system
dynamics in chronically cold systems, like tundra, where decompo-
sition is consistently slow and inherently stable (e.g., [8,11]) asso-
ciated to the fact that cold temperatures do not give favorable
conditions for organic matter decomposition. The actual explana-
tion is given by the fact that D, and thus x is very small, resulting
in a very large period of the oscillations that could be wrongly mis-
taken with a monotonic behavior.

Figs. 3 and 4 are representative of a system with low substrate
C:N ratio (i.e., u ¼ 1). However, in natural systems N may be the
limiting factor (e.g., [14]). Under N-limiting conditions, microbes
need to use the mineral pools as a source of nitrogen and if this
source is not enough to match the C:N ratio of the microbes,
decomposition must be reduced to meet the actual availability of
N. The model here presented does not try to mimic explicitly the
N-dynamics, and so all dependence of nitrogen on the C-cycle is ac-
counted by means of the u factor. The net effect of N being totally
or partially a limiting factor in the C-cycle (u < 1) is inversely seen
in the threshold value in Eq. (10). The area where we are prone to
find an oscillatory solution increases with decreasing u values (see
Fig. 5). Notice that u ¼ 0 would be a degenerative (unphysical)
solution.



Fig. 6. (A) shape of the ADD� supply function for different c values, and (B) the
corresponding evolution of the biomass pool (normalized) concentration versus
time. The remaining parameters are those in Table 2. The largest the c value
(indicating larger derivative at very small times), the larger the amplitude of the
oscillations, and the earlier the peak of the first oscillation occurs.
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The analysis presented so far indicates that oscillations in the
concentration evolution with time may be enhanced when the
environmental conditions are far from standard reference condi-
tions and are associated to conditions which are adverse to micro-
bial activity. In summary, it thus should be expected that
oscillations prevail in systems that are either (1) very dry or very
close to saturation conditions, (2) for large respiration rates, (3)
when the soil temperature is very low, or (4) when the system is
N-limited.

3.3. Competition between n and c

The analytical solution presented has two characteristic times
associated to the parameters characterizing the exponentials, i.e.,
c and n. The former characterizes the shape of the organic matter
supply function, while the latter combines the different parame-
ters dealing with the decomposition of organic matter into the
different pools and characterizes the respond of the system.
Depending on the value of the parameters, a very distinct behavior
of the solution can be observed. For a fixed n value, a value of
c!1 implies a sudden (instantaneous) change in the supply of
organic carbon. In such a case, a ¼ b ¼ 0; C1 ¼ �C2 ¼ d=

ffiffiffiffiffiffi
jDj

p
;

and the solution for the concentration values as a function of time
(assuming D < 0) simplifies to

XsðtÞ ¼ Xst
s þ

2bdffiffiffiffiffiffi
jDj

p exp
at
2

� �
sin

1
2

ffiffiffiffiffiffi
jDj

p
t

� �
ð11Þ

XbðtÞ ¼ Xst
b;1 �

adffiffiffiffiffiffi
jDj

p exp
at
2

� �
sin

1
2

ffiffiffiffiffiffi
jDj

p
t

� �

þ d exp
at
2

� �
cos

1
2

ffiffiffiffiffiffi
jDj

p
t

� �
ð12Þ

that is, the system responds by trying to reach steady state at some
characteristic time tc ¼ 2=jaj. The other limiting case would be that
of c! 0. In such a case the system degenerates to the following
solution

XsðtÞ ¼ Xst
s ; XbðtÞ ¼ Xst

b;1 þ
DADD

b
expð�ctÞ ð13Þ

indicating that the solution displays a constant concentration for
the substrate pool and a monotonic behavior for the biomass pool,
fully driven by the external function controlling plant residue input.
No oscillations are observed in this case regardless of the combina-
tion of parameters.

An example of this behavior is shown in Fig. 6. Fig. 6B shows the
evolution of the biomass pool (normalized) concentration versus
time for different values of c. For better identification Fig. 6A shows
the function of ADD supply for the different c values. The remain-
ing parameters are those in Table 2. The figure shows the transition
in behavior related to the analyzed range of c values.

3.4. Competition between exponential decay and sinusoidal
oscillations

From (8) and (9), the evolution in time of the substrate and bio-
mass pool concentrations is given by a combination of an exponen-
tial and a sinusoidal function. The former is controlled by the value
of n (assuming a large c) and the latter by that of x. Assuming that
all other parameters are constant, oscillations are more visible
when kd is large, since it results in low values of n, with little
impact on x. The opposite occurs for large ks values, resulting in
the exponential being the dominant behavior so that oscillations
are hardly visible and could be obscured in experimental data even
at point scale. An example of the two types of behavior can be seen
in Fig. 7. On the top row an example of a low oscillating solution
(large relative ks value) is presented; the bottom row shows an
example corresponding to a large kd value.
3.5. Local-scale solutions

The solution procedure can be extended to generate a suite of
analytical explicit solutions with different initial conditions, allow-
ing a fast calibration of the different parameters involved in the
(two-pool) model under specific conditions. We compare here an
analytical solution with data coming from a real site. The test site
and the experiment is described in Zelenev et al. [29], and was
already analyzed by Manzoni and Porporato [18] transforming
the raw data into temporal evolution of concentration. The raw
data correspond to biomass concentration measures at the plant-
root scale (thus can be considered point measurements), and are
presented in Fig. 8. Albeit some noise is present, the authors de-
scribed the data as displaying an oscillatory behavior. Oscillations
show a wavelength close to 250 h and a slow decay in peak con-
centration with time (about 5% reduction after two cycles).

Based on the description of the experimental setup provided by
[29] and [18], the model presented in Appendix B that assumes a
constant ADD input in a system that is initially not in equilibrium
was fitted. From the experiment description it was considered
u ¼ fD ¼ 1, and dB ¼ 0. The respiration rate was set at a fixed value
of r ¼ 0:6. A sensitivity analysis (not shown) indicates that the
solution is highly sensitive to k�s and ds, while k�d can span a wide
range of values without affecting the final solution. Thus,
k�d ¼ 0:9d�1 was fixed (similar to the value reported in [18]). The
values of k�s ; ds were calibrated manually until the L2 distance
between the experimental data and the analytical solution pre-
sented in (B.6) was minimized. It should be noted that no data



Fig. 7. Performance of the analytical solution for the evaluation of dimensionless concentrations of microbial (Xb) and substrate (Xs) pools as a function of time. Assuming a
sudden jump in plant residue input DADD = 1 gC/m3/d with k�d = 0.0085 d�1 (top row) and 0.085 d�1 (bottom). Continuous lines refer to the numerical solution, while dotted
lines are those obtained by direct substitution of the parameters in Eqs. (8) and (9). The parameter values used in this comparison are: u ¼ 1; k�s = 6.5 10�5 d�1; ADD0 = 1 gC/
m3/d; r = 0.6; sfc ¼ 0:3. Notice all figures display a different vertical legend to emphasize the qualitative behavior.

Fig. 8. Data (points) of biomass concentration evolution with time presented in
[18] modified from the original data reported by [29]. Best fitting obtained with
equation (B.6) with k�s = 8.5 10�4 d�1; k�d = 0.9 d�1. Additional parameter values are
presented in the text body. Best fit is obtained by manually minimizing the L2 norm
between analytical solution and data points.
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was available in the experiment regarding the evolution of Xs with
time.

3.6. Spatial variations of concentrations and large-scale solution

The solutions presented so far can be considered local, indicat-
ing that they are valid at a point support volume and cannot be di-
rectly generalized for larger scales. The steady-state solution is
considered first. At each individual point in the soil surface the val-
ues for all the parameters r; kd; ks, fD are assumed. All these param-
eters are spatially variable, so that the steady-state concentrations
can be rewritten as

Xst
s ðxÞ ¼ PðxÞ; Xst

b ðxÞ ¼ ADDðxÞ � QðxÞ ð14Þ

where P, Q are different combination of parameters, derivable from
the analogy between Eqs. (14) and (7), and that now are considered
spatially random functions. The input plant residue may also be
spatially variable. Assuming ADD is a random variable uncorrelated
to the different soil parameters, the mean, variance and variogram
(assuming the three functions ADD, P, Q are statistically stationary)
are written as

hXst
s i ¼ hPi; hXst

b i ¼ hADDihQi ð15Þ

r2
Xs
¼ r2

M ; r2
Xb
¼ r2

ADDr
2
N þ hADDi2r2

N þ hNi
2r2

ADD ð16Þ

cXs
¼ cP ; cXb

¼ cQ ðr2
ADD þ hADDi2Þ þ cADD r2

Q þ hQi
2

� �
� cQcADD ð17Þ

Since both kd; ks can be seen as multiplicative processes (simi-
lar, for example, to grain surface areas distribution), and thus ame-
nable to be hypothesized to follow a lognormal (LN) distribution.
Evidences in the literature indicate that degradation rates might
actually be modeled with a LN distribution (e.g. [6]), consistent
with our hypothesis. As a direct consequence P, Q are also lognor-
mal. Contrarily, reports about the spatial distribution of ADD are
not available in the literature.

From equation (17) the variogram of Xb is expressed as a com-
bination of cQ ; cADD. Thus, the integral scale of Xb is governed by the
smallest of the two integral scales of ADD;Q . An upscaling process
is now considered. It is assumed that (A.7) is the solution at the
point scale, and further that the study area is large compared to
the integral scales of the random functions. Then, a moderately
large number (over 100) of sampling points are drawn randomly
from this large monitored area. On the average this is equivalent
to drawing 100 independent identically distributed values of the
random variable.



Fig. 9. Example of spatial upscaling for biomass concentration; five selected curves
assumed valid at the local scale (top) and the corresponding average (bottom).
While individual curves might display oscillations for very large times, such
oscillations are cancelled out in the average curve. Each curve has been drawn using
constant parameters (defined in the text) except k�s which is considered random and
drawn from a lognormal distribution LN(�9.64, 1.0) [d�1].

Fig. 10. Example of spatial upscaling for biomass concentration; five selected local
scale curves (top) and the corresponding average (bottom). Each curve has been
drawn using constant parameters (defined in the text) except k�d = LN(�2.47, 1.0)
[d�1].
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Two cases are considered, varying just one parameter in each
one, with the remaining parameters set fixed. In the first one the
parameter varying is k�s , with each individual realization drawn
from a lognormal distribution k�s ¼ LNð�9:64;1:0Þ [d�1]. The
remaining (fixed) parameters are: u ¼ 1; fD ¼ 1; r = 0.6; sfc ¼ 0:3;
c!1; ADD0 = 1 gC/m3/d; ADDs–s = 2 gC/m3/d; and k�d = 0.085d�1.
Fig. 9 displays 5 (out of the 100) selected curves showing how each
individual realization of the biomass concentration function may
display an oscillatory behavior extending for large times. On the
contrary, the average value shows a very different shape, where
oscillations are mitigated. This indicates that in general an average
value for k�s would not be capable to reproduce the average behav-
ior. The reason is that the average solution involves the sum of
sinusoidal curves of different (and random) wavelengths. This is
known to produce solutions where sinusoidal effects are cancelled
out.

In the second example the random variable is k�d, also consid-
ered lognormal and k�d ¼ LNð�2:47;1:0Þ [d�1]. We further fix
k�s ¼ 6:510�5 d�1, while the remaining parameters are equal to
those of the previous example. The behavior of the solution is quite
different, since now the individual realizations are relatively simi-
lar between them. The upscaled curve then resembles the shape of
the individual curves (Fig. 10).

As a consequence of these two examples, it can be concluded
that in some cases it would be easier to observe oscillations in bio-
mass pool concentrations at the small scale, but it would be much
more difficult to visualize or measure such oscillations when mea-
surements are taken at some large scale.
4. Conclusions

This work provides a mathematical linearized solution for the
evolution of substrate and microbial pool concentrations related
to the presence of plant residue or litter input. The biogeochemical
model involves decomposition rate from substrate to biomass, bio-
mass decay and an output from the system due to respiration. A
condition for the occurrence of oscillations in the pools concentra-
tions as a function of time is provided. It is shown that the occur-
rence of fluctuations is linked to environmental conditions and
changes in input conditions.

The analytical model allows a detailed study of the sensitivity of
the solution to the different parameters. Whenever the conditions
for oscillations occur, the concentration curve is a combination of
exponential and sinusoidal functions. Whether the solution is con-
trolled by one or the other depends on the combination of param-
eters. Assuming all the other parameters constant, oscillations are
more visible when the biomass decay constant kd is large com-
pared to the rate of microbial production; the opposite occurs for
large potential decomposition rate ks, resulting in the exponential
being the dominant behavior so that oscillations are hardly visible
and could be obscured in experimental data even at point scale.
Regarding the environmental parameters, oscillations in concen-
trations are likely to occur when the environmental conditions
are associated to adverse conditions for microbial activity, either
very dry or else very close to saturation conditions, for large respi-
ration rates, and also when the soil temperature is very low or
when the system is N-limited.

The analytical solutions presented in this paper allow fast cal-
ibration of the different parameters involved in the two-pool
model to reproduce the observations at some local scale. The
analytical solution allows direct upscaling, providing explicit
solutions for the means, standard deviations and variograms of
SOM-C pool concentrations. Depending on the combination of
parameters, the upscaling process involving the superposition
of sinusoidal functions of different wave length, may result in
a fast smoothing of oscillations. The upscaling process can be
the reason while despite the environmental conditions most
likely result in oscillating solutions, the average concentrations
at intermediate to large scales would most likely not display
oscillations.
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Appendix A

The system of Eq. (5) can be solved analytically considering a
perturbations approach around the steady-state conditions. Such
conditions can only be achieved if the plant residue input ADD is
considered constant after a certain time or else approaching a con-
stant value (denoted as ADDs—s) asymptotically. The substrate car-
bon pool concentrations can thus be defined as their respective
steady values plus a perturbation X 0i (i = s,b). We consider an expo-
nential function for the plant residue input from an initial value
ADD0 to a value ADDs—sð¼ ADD0 þ DADDÞ, so that

ADDðtÞ ¼ ADDs—s þ ðADD0 � ADDs—sÞ expð�ctÞ ðA:1Þ

with c ½T�1� characterizing the exponential function. The solution in
this appendix assumes that the system is in initial equilibrium. We
then write the biomass concentration as Xst

b ¼ Xb;0 þ d. The steady
value of Xs, does not change from the initial value, Xst

s ¼ Xs;0, but
an oscillatory behavior of concentrations is observed in some cases
(i.e., whenever condition (10) is satisfied). The perturbation ap-
proach starts then by defining

XsðtÞ ¼ X0sðtÞ þ Xst
s

XbðtÞ ¼ X0bðtÞ þ Xst
b

(
ðA:2Þ

Now, from (5) and assuming that the product of fluctuations is
small with respect to the remaining terms in the expansion, i.e.
X 0sðtÞ � X

0
bðtÞ � 0, and after some algebra we can write the governing

system of equations in terms of fluctuations

dX 0s=dt

dX0b=dt

 !
¼

a b

�ð1� rÞa 0

� �
X0s
X0b

 !
þ
�DADD expð�ctÞ

0

� �

ðA:3Þ

with

a ¼ �ADDs—sfDðsÞksuð1� rÞ
kdr

; b ¼ � kdr
ð1� rÞ ðA:4Þ

Notice that both a and b are negative values. Assuming that soil
moisture is constant and not varying in time, the general solution
for the fluctuations components is:

X0sðtÞ ¼ C1b expðk1tÞ þ C2b expðk2tÞ þ a expð�ctÞ

X0bðtÞ ¼ C1 � a
2þ

ffiffiffi
D
p

2

� �
expðk1tÞ þ C2 � a

2�
ffiffiffi
D
p

2

� �
expðk2tÞ þ b expð�ctÞ

ðA:5Þ

where,

k1 ¼ 1
2 ðaþ

ffiffiffiffi
D
p
Þ; k2 ¼ 1

2 ða�
ffiffiffiffi
D
p
Þ; D ¼ a2 � 4abð1� rÞ;

a ¼ cDADD
c2þac�abð1�rÞ ; b ¼ � ð1�rÞaDADD

c2þac�abð1�rÞ ;

C1 ¼ 1ffiffiffi
D
p d� b� a

2b aþ
ffiffiffiffi
D
p� �� �

; C2 ¼ 1ffiffiffi
D
p �dþ bþ a

2b a�
ffiffiffiffi
D
p� �� �

:

ðA:6Þ

The behavior of the solution is mostly controlled by the sign of
D. A positive D implies that both eigenvalues of the system matrix
(i.e., k1; k2) are real and negative, and then concentrations converge
exponentially to their final steady-state values. On the contrary
D < 0 imply complex conjugate eigenvalues, and in such a case
concentrations display damped oscillations. In the latter case the
pool concentrations can be rewritten as

XsðtÞ ¼ Xst
s þ a expð�ctÞ

þ 2bffiffiffiffiffiffi
jDj

p d� b� aa
2b

� �
exp

at
2

� �
sin

1
2

ffiffiffiffiffiffi
jDj

p
t

� �

� a exp
at
2

� �
cos

1
2

ffiffiffiffiffiffi
jDj

p
t

� �
XbðtÞ

¼ Xst
b;1 þ b expð�ctÞ þ �2abdþ 2abbþ aa2 þ ajDj

2b
ffiffiffiffiffiffi
jDj

p
� exp

at
2

� �
sin

1
2

ffiffiffiffiffiffi
jDj

p
t

� �
þ ðd� bÞ

� exp
at
2

� �
cos

1
2

ffiffiffiffiffiffi
jDj

p
t

� �
ðA:7Þ
Appendix B

For a system which is initially not in equilibrium in either of the
SOM-C pools, an explicit analytical solution can be derived for the
evolution of concentrations with time. The system to solve is

dX 0s=dt

dX0b=dt

 !
¼

a b

�ð1� rÞa 0

� �
X0s
X 0b

 !
þ

0
0

� �
ðB:1Þ

subject to

X0sð0Þ ¼ dS; X0Bð0Þ ¼ dB ðB:2Þ

The solution of the system is:

X0s ¼
i exp at

2

� 	 ffiffiffiffiffiffiffi
�D
p

dS cos 1
2

ffiffiffiffiffiffiffi
�D
p

t
� �

þ ð2bdB þ adSÞ sin 1
2

ffiffiffiffiffiffiffi
�D
p

t
� �� �

ffiffiffiffi
D
p ðB:3Þ

X0b ¼
i exp at

2

� 	 ffiffiffiffiffiffiffi
�D
p

dB cos 1
2

ffiffiffiffiffiffiffi
�D
p

t
� �

þ ð�adB � 2ð1� rÞadSÞ sin 1
2

ffiffiffiffiffiffiffi
�D
p

t
� �� �

ffiffiffiffi
D
p

ðB:4Þ

with all parameters defined in (A.6). A particular case of the above
solution is given when the initial conditions consists in an increase
of the substrate pool. In this case dB is zero and a simpler version of
the solution exists:

X0s ¼
dSffiffiffiffi
D
p exp

at
2

� �
�

ffiffiffiffi
D
p

Cosh
1
2

ffiffiffiffi
D
p

t
� �

� aSinh
1
2

ffiffiffiffi
D
p

t
� �� �

ðB:5Þ

X0b ¼
�2ið1� rÞa exp at

2

� 	
dS sin 1

2

ffiffiffiffi
D
p

t
� �

ffiffiffiffi
D
p ðB:6Þ
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