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Abstract: The homogeneous surface diffusion model (HSDM) is widely used for adsorption modeling of aqueous solutions. The Biot
number is usually used to characterize model behavior. However, some limitations of this characterization have been reported recently,
and the Stanton number has been proposed as a complement to be considered. In this work, a detailed dimensionless analysis of HSDM
is presented and limit behaviors of the model are characterized, confirming but extending previous results. An accurate and efficient numerical
solver is used for these purposes. The intraparticle diffusion equation is reduced to a system of two ordinary differential equations, the
transport—reaction equation is discretized by using a discontinuous Galerkin method, and the overall system evolution is integrated
with a time-marching scheme. This approach facilitates the simulation of HSDM with a wide range of dimensionless numbers and with
a correct treatment of shocks. which appear with nonlinear adsorption isotherms and with large Biot numbers and small surface diftusivity
modulus. The approach is applied to simulate the breakthrough curves of granular ferric hydroxide. Published experimental data is adequately

simulated.
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Introduction

The homogeneous surface diffusion model (HSDM) has been used
extensively for adsorption modeling processes in porous media. It
is a dual-resistance model that includes the influence on adsorption
of film mass transfer (of the adsorbate diluted in interstitial fluid
into the adsorbent particles) and of intraparticle diffusion (of the
solid-phase adsorbate inside the adsorbent particles). A general de-
scription of HSDM and various practical applications, in particular
those related to wastewater treatment can be found, for example, in
the work of Weber and Smith (1986, 1987) and Brusseau and
Gillham (1989). Other adsorption models as the homogeneous pore
diffusion model (HPDM) or the heterogeneous pore-surface diffu-
sion model (PSDM) share main characteristics with HSDM, see
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Crittenden et al. (1987), Zhang and Ritter (1997) and Zeng et al.
(2008) for detailed presentations.

The HSDM behavior has been characterized in the Biot number,
Bi, by several authors (Lee et al. 1983; Hand et al. 1983, 1984;
Traegner and Suidan 1989b). The Biot number is the ratio between
the film mass-transfer rate and the intraparticle surface diffusion.
The literature describes three regions in which the relative impor-
tance of the two processes is different. In one region, Bi < 10°,
film mass transfer dominates, and in another, Bi > 102, surface
diffusion dominates. In between those two regions, both processes
have a significant influence on the results. These limits have been
referenced in several papers dealing with completely mixed flow
problems (Hand et al. 1983; Traegner and Suidan 1989a, b), which,
in turn, have been referenced in subsequent studies (Roy et al.
1993; Flora et al. 1998; Baup et al. 2000; Chang et al. 2004;
Badruzzaman et al. 2004). More recently, similar limits have been
referenced in the characterization of generic adsorbents using
shallow-bed reactors (Sonetaka et al. 2009a, b). References to
these, or similar limits, have been less frequent in works dealing
with HSDM plug-flow problems (Lee et al. 1983; Hand et al.
1984; Brattebo and Odegaard 1986; Sperlich et al. 2005, 2008;
Genz et al. 2008), although HSDM is also widely used in problems
of this sort (Oimstead and Weber 1990; Smith 1996; Rahman et al.
2003). Other works have also used Bi to characterize HSDM results
(Smith 1997; Wolborska 1999).

Despite that HSDM has become popular, the behavior of this
model has not yet been completely characterized. Further analysis
of the relationships between the limit behaviors of the model and
the values of key dimensionless numbers is required. Model behav-
ior description based only on the Bi is not enough. The need to
complement the limits of Bi has been explicitly highlighted by
Sperlich et al. (2008) in a study that simulated breakthrough curves
(BTCs), that is, the concentration outlet of a plug-flow fixed-bed



test with granular ferric hydroxide (GFH) using the HSDM. The
Stanton number, St, which is the ratio between film mass-transfer
rate and flow velocity, was proposed as a complement to Bi in the
characterization of HSDM results.

Here, a dimensionless analysis of HSDM is presented, with the
aim of confirming influences of dimensionless numbers on BTCs.
Results are obtained with an efficient new HSDM solver that can
adequately simulate shocks, such as those found with nonlinear iso-
therms and with large values of Bi and small values of the surface
diffusivity modulus, Ed. The intraparticle diffusion equation is re-
duced to a system of two ordinary differential equations (ODEs) by
using a Galerkin approximation with two polynomials as base func-
tions. This system of ODE:s is coupled with the partial differential
equation representing transport—reaction, which is discretized spa-
tially with a discontinuous Galerkin scheme (Sherwin et al. 2006;
Casoni et al. 2013). The overall system is time-integrated with the
standard forward Euler method. The method is able to simulate the
evolution of either smooth or steep concentration profiles without
affecting stability.

An outline of the paper follows. The dimensionless numbers and
the mathematical model are presented in “Mathematical Model.”
Key points of the numerical solver are summarized in “Numerical
Solver.” In “Results”, the influence of dimensionless numbers on
BTCs is assessed and the limit behaviors of HSDM are character-
ized. In “GFH Characterization with HSDM.” the benefits of the
presented approach are demonstrated by simulating GFH BTCs,
previously analyzed in the literature (Sperlich et al. 2008). The
paper ends with the main conclusions.

Mathematical Model

The HSDM involves two partial differential equations that re-
present physical processes at two different scales: the macroscale,
which is a porous media with a fluid in movement throughout a
matrix of adsorbent particles; and the microscale, which represents
the adsorbent particles, assumed to be spherical and also porous
themselves. The velocity field of the macroscale flow is considered
given. Flow and adsorption are considered uncoupled, a hypothesis
that is equivalent to considering the fluid density constant.

The first partial differential equation is an unsteady transport-
reaction equation that depends on the macroscale coordinates. It
takes into account convection, diffusion, and adsorption of compo-
nents diluted in the interparticle fluid into the adsorbent particles.
The second partial differential equation is an unsteady ditfusion
equation, expressed in the radius of a spherical microscale particle.
Both partial differential equations are evolving in time and hence,
time-dependent. The intraparticle diffusion equation takes into
account the fluid-solid phase change and the solid diffusion of ad-
sorbed mass inside the particles. Isothermal equilibrium between
solid and fluid phases is considered, with a functional relation-
ship between diluted and adsorbed mass. Both partial differential
equations are coupled through the adsorption term of the transport-
reaction equation and the external boundary condition of the intra-
particle diffusion equation.

The problem can be expressed in a dimensionless form by intro-
ducing the dimensionless variables r = t'V/L, x = x’/L, and the
field v =v’/V, with L and V as the reference values of length
and velocity, and ¢, x', and v’ equal to, time, standard spatial
coordinates and flow velocity in the macroscale porous media,
respectively. The unknowns are c(x,1) =c¢’(x',t")/c,s and
qp(x,1) = qp(x’,1")/Grs, Where ¢’ and g are equal to concentra-
tion of adsorbate in porous media fluid and the mean value of ad-
sorbed mass in the adsorbent particles, respectively. The parameters
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Cot and ¢y are the corresponding reference values of both
unknowns.
The dimensionless numbers of the model are the following:
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where Pe = Peclet number; D = interparticle diffusion; re, =
porosity ratio; £f and £, = the inter- and intraparticle porosities;
D, = solute distribution parameter (defined as the ratio of the ad-
sorbed mass and the interparticle diluted mass, in steady-state con-
ditions and equilibrium); p, = density of clean particles; k; = film
mass-transfer coefficient; R = particle radius; D¢ = intraparticle sur-
face diffusion; and L(gp) = Freundlich isotherm function, which
depends on the parameters A’ and n.

With this notation in mind, the dimensionless macroscale equa-
tion can be written as
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where V = gradient with respect to x. Highly adsorbent media are
characterized by large values of D,,. In such cases, the second part
of reaction term can be neglected (that proportional to r. , which
represents mass diluted in intraparticle porosity) hence, simplify-
ing Eq. (2).

The dimensionless intraparticle diffusion equation is given in
radial coordinates and can be expressed as

p, 2 Eu'-a—(za—") (3)
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where ¢(r, ;x) = dimensionless adsorbed mass profile inside the

particle, which depends on r and ¢ for a given x. Eq. (3) is com-

plemented by symmetry and Robin-type boundary conditions for

the center of the particle and for the particle surface, respectively
9q
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where gg(x,1) = g(1,1;x) = gp(x".1")/ g, and g, = value of the
adsorbed mass on external particle surfaces. Egs. (3) and (4) are a
boundary value problem in r that has to be solved for each x.

Numerical Solver

The system of partial differential Eqs. (2)-(4) defines the HSDM
model. Several approaches have been proposed to solve the model
numerically, most of which are finite difference schemes for the
two equations (Weber and Crittenden 1975; Oimstead and Weber
1990; Smith 1991; Sun et al. 1996; Basagaoglu et al. 2000; Sperlich
et al. 2008; Sonetaka et al. 2009a, b) or mixed methods: finite dif-
ference schemes for the transport-reaction equation and orthogonal
collocation schemes for the intraparticle diffusion equation (Baup
et al. 2000) or Laplace transformation and orthogonal collocation
schemes (Roy et al. 1993). Analytical approximations have also
been presented for simplified problems (Hand et al. 1984; Sperlich
et al. 2008).

A novel approach is proposed in this paper: the intraparticle
diffusion equation is reduced to a system of two ODEs, the



transport-reaction equation is discretized by using a discontinuous
Galerkin (DG) method, and the overall system evolution is inte-
grated with a time-marching scheme. Thanks to the DG method,
it is possible to transport smooth but also nonsmooth variations
of the solution by introducing an element-by-element variable dif-
fusion, in contrast with classical stabilized finite differences and
finite elements schemes that tend to spread the solution with higher
gradients along the whole domain, obtaining hence, smooth sharp
profiles. As shown in next section, the proposal approximate
adequately model solutions for a wide range of dimensionless
numbers.

To simplify Egs. (3) and (4) into an ODE system, a Galerkin
spatial discretization is applied. Intraparticle diffusion g(r,1;x)
is approximated by a polynomial of degree m > 2 in r

34+ m
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(5)
The unknown of Egs. (3) and (4) changes from ¢(r,;x) to the

couple of variables gp(x, 1) and gg(x,1). After some arithmetical
operations, the following system of two coupled ODEs is obtained:
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Eq. (6) is explicitly coupled with transport-reaction Eq. (2)
through ¢(x, 1) and gp(x, 1). The overall system, Egs. (2) and (6),
is linear for linear isotherms, n = 1.

A polynomial of degree m was used to simplify the intraparticle
diffusion equation in reducing the microscale model by Galerkin
approximation. Second-order approximation, m = 2, works fine
in many situations, but some authors have analyzed different
contexts and models and concluded by proposing degrees
higher than two (Li and Yang 1999; Sircar and Hufton 2000;

Basagaoglu et al. 2000; Gadre et al. 2005). To obtain a more
accurate approximation, a variable value of m, function of
& = log(Ed) = log(St/Bi), is proposed in this paper. The value
of m is fixed equal to two for £ >0 (or equivalently St > Bi),
and the following expression is proposed for £ <0 (St < Bi):

m(€) = 0.389- & —0.336 - £ +1.275- &2+ 2 )

Eq. (7) was adjusted by comparing the results of the reduced
model, Eq. (6), with those of the full intraparticle model, Egs. (3)
and (4). A continuous feed test with a dimensionless final time
equal to D, was used for comparison. The test is defined imposing
c(x,1) = 1 in Eq. (4) or in Eq. (6). Both problems were solved nu-
merically with very high precision. The evolution of mean adsorbed
mass, ¢p, was used to measure the goodness of the approximation.
The best m values were chosen for each set of dimensionless num-
bers. The following values were used to adjust Eq. (7): m(0) = 2,
m(—1) =3, m(-2) = 16, m(—3) = 54, and dm/d¢|;_, =0 to
present a smooth transition at £ = 0. The proposal is independent
of Bi; thus, it should be applied for all values of Bi. However, tests
showed that the problem can be adequately simulated with m = 2
for Bi < 10.

The spatial discretization of the transport—reaction equation is
performed by using the Local Discontinuous Galerkin (LDG)
scheme (Cockburn and Shu 1998; Sherwin et al. 2006). It is
well known that DG methods are well-suited for hyperbolic and
convection-dominated problems, thanks to their natural stabiliza-
tion caused by numerical fluxes. This fact also makes them a good
approach for the treatment of sharp profiles. Morevover, the dis-
continuous nature of the method allows to add local stabilization
and to change the interpolation within each element hence, adapt-
ing the approximation to the solution profile along the spatial and
time discretization. In HSDM simulations, nonlinear isotherms
and a wide range of values of dimensionless numbers lead the
profiles of the unknowns, ¢, gp, and gy to contain shocks and
sharp profiles.

The simulation of shocks and the advection of sharp fronts con-
stitute a key problem in numerical methods (Harten 1983; Shu
1988; Dawson and Aizinger 2005) because they lead to spurious
oscillations and unstable solutions unless a specific mechanism is
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Fig. 1. Breakthrough curves of ¢. gp. and gg — gp for D, from 2 to 10° and n = 1: (a) Bi = 10 and St = 10%; (b) Bi = 10? and St = 10
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used. In this work, the artificial diffusion method for DG approx-
imations is used (Casoni et al. 2013). Although DG schemes
introduce a natural dissipative mechanism through the jump terms
(Persson and Peraire 2006; Huerta et al. 2012), an improved stabi-
lization technique is needed when strong shocks are present to
avoid Gibbs oscillations. The introduction of an artificial diffusion
method combined with a sensor based on the smoothness of the
solution makes it possible to introduce a minimum, but enough,
amount of diffusion to avoid spurious oscillations only in the re-
gions where sharp gradients are detected. This is in contrast with
standard finite differences and finite-element numerical methods, in
which either the dissipative effect takes place along the whole do-
main and hence, the sharp profile is lost, either add a paramenter-
dependent diffusion that is not robust and must be tuned depending
on the problem. For more details see (Donea and Huerta 2003).

All the simulations in this paper were performed with a mesh
of 100 linear elements. The following sections show that this is
enough for simple plug-tlow simulations. Higher degrees can be
easily applied (Casoni et al. 2013). Time integration of the overall
system is done by using the forward Euler method. Higher-order
time-marching schemes are also possible.
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Results

From the HSDM formulation presented previously, Egs. (2) and (6)
are used here to simulate breakthrough curves (BTCs) and to char-
acterize the limit behaviors of the model in plug-flow conditions.

A reference dimensionless plug-flow problem is defined in a
one-dimensional macroscale domain, x € [0, 1], with a constant
flow velocity field » = 1, a large value of Pe, 10°, isotherm equi-
librium between Grer and Crry Grer = L(Crer)s and r., = 0, consis-
tently with the hypothesis of highly absorbent media, D, > 1. The
dimensionless final time #;, is fixed equal to 2D,

The influence on the BTCs of D, n, Ed, Bi, and St is assessed in
detail in the following subsections.

Influence of D, and n

The influence of D, and n on the BTCs is assessed comparing re-
sults for different values of both parameters and for the pairs of
values Bi = 10 and St = 10> and Bi = 10° and St = 10. Fig. 1
shows the BTCs obtained with Dg from2—10° and n = 1,and Fig.2
shows the results for the nonlinear cases n = (0.2 and n = 0.8.
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Fig. 2. Breakthrough curves of ¢, gp. and gz — gp for D, from 2 to 10%: (a) Bi = 10, St = 10% and n = 0.2; (b) Bi = 10°, St = 10 and n = 0.2;

(c) Bi= 10, St = 107 and n = 0.8; (d) Bi = 10°, St = 10 and n = 0.8
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The BTCs of ¢, the standard concentration outlet, but also the evo-
lution of gp and the difference ¢ — ¢p at the end of the domain, are
shown. The difference gr — gp is a measure of the uniformity dis-
tribution of the adsorbed mass inside the particles.
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Fig. 3. Continous feed test, adsorbed mass inside particles at tg, = D,
for n =1 and Ed from 10~ to 10!
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In left-hand cases depicted in Figs. 1 and 2, Bi = 10 and
St = 102, adsorption is faster than convection. St = 10? indicates
that film mass transfer process is two orders of magnitude faster
than convection, and Bi = 10 indicates that internal diffusion is
just one order of magnitude slower than film mass transfer (and
therefore, one order of magnitude faster than convection, Ed =
St/Bi = 10). In this situation, the BTCs of ¢ and ¢p are indistin-
guishable and consistently with this, the difference gz — gp is close
to zero. This difference is larger for the nonlinear case, especially
for lower values of n. However, the general behavior of the model
in ¢ and ¢p is similar.

Instead, in right-hand cases shown in Figs. | and 2, film mass
transfer process is one order of magnitude faster than convection,
St= 10, but Ed = St/Bi = 1072 indicates that internal surface
diffusion is two orders of magnitude slower than convection
(Bi = 107 indicates that it is three orders of magnitude slower than
film mass transfer). Fast film mass transfer and slow internal dif-
fusion processes are identified in right-hand side of Figs. 1 and 2,
through a smoother BTC of ¢ than of ¢, a step at an early stage of
the BTC of ¢, and larger values of g, — ¢gp than previous fast ad-
sortion cases. In this situation, the two adsorption processes occur
at different time-scales, separated by convection process, and BTCs
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Fig. 4. Breakthrough curves of ¢ and ¢p for Bi = 107!, n = 1, 0.2 and 0.8 and St from 1072 and 10*: (a) n=1; (b) n=0.2; (c) n = 0.8
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reflect it. Large film mass transfer induces a fast growing of g,
from zero to 1, but low values of Ed keep differences between
qp and g large because internal diffussion does not have influence
at this time scale. Diferences gp — gy reduce with time, asymptoti-
cally to zero.

Values of D, can be very large in highly adsorbent media, up to
10°. Because the final simulating time is proportional to D,, sim-
ulation of highly adsorbent media can be expected to involve a
large computational time. As shown in left-hand cases of Figs. 1
and 2, the solutions of fast adsorption processes are smooth waves
traveling at a constant velocity equal to l/(l + D, ), which, for
large values of D,, is approximately D;'. The BTCs of ¢ and
gp for D, = 107 'md D,= 10° are mdxstmguishab]e. In this study,
unless expllcntly mdlcated D, = = 10° is considered. The wavefront
position computed with this V’l]lle will present an negligible delay
of up to 10~ with respect to results computed with higher values
of D,,.

Fmally, notice that low values of n have relevant influence on
shape and smoothness of BTC, but they have not on the general
conclusions of this subsection about model behavior and influence
of D, on results. Nonlinearity does not change the overall dimen-
sionless behavior of the model.
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Influence of Ed

Before going further in the analysis of BTCs, in this subsection, the
influence of Ed is assessed simulating continous feed conditions.
The adsorbed mass inside particles at t, = D, for the linear case,
n = 1, and different values of Ed and Bi are presented in Fig. 3. The
final adsorbed mass is close to one in all cases with fast adsorption
processess: Bi < 10 (faster internal diffusion than film mass trans-
fer) and St = EdBi > 10° (faster film mass transfer than fixed prob-
lem time-scale); and Bi> 10° and Ed > 10° (faster film mass
transfer than internal diffusion and this than problem time-scale).
The ﬁnal adsorbed mass is close to zero in all cases with slow

Keepmg the Bi value fixed, the larger the value of Ed, the faster
the adsorption and larger the portion of adsorption capacity used
during the time scale given by D, In the opposite direction,
lower values of Ed preclude slower adsorption, and in this case,
just a reduced part of the adsorption capacity is used, see Ed <
1072 in Fig. 3. These results are coherent with those obtained
before; compare with results of Figs. 1 and 2. At the time-scale

given by D, small internal surface diffusions limit adsorption
significatively.
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Fig. 5. Differences between breakthrough curves of ¢ and ¢p computed with Bi = 10° and Bi = 10! for n = 1, 0.2, and 0.8 and common values of

St from 1072 and 10*: (@) n=1; (b) n = 0.2; (¢c) n = 0.8
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Influence of Bi and St

The BTCs obtained with small and large values of Bi are presented
and analyzed for a wide range of and St and linear and nonlin-
ear cases.

Fig. 4 shows BTCs for the cases Bi = 107!, St from 1072 to 10?
(Ed = St/Bi from 103 to 10%), and n = 1, 0.8 and 0.2. Large val-
ues of St imply fast, even instantaneous, adsorption, and both ¢ and
gp BTCs correspond to a front traveling at velocity D", as results
presented in the left-hand side of Figs. 1 and 2. Small values of St
imply slow adsorption. The wavefront is smooth and just part of the
medium is filled with adsorbent at this time scale. In the limit case
of no adsorption, St = 0, a wavefront traveling at a velocity of one
(much faster than D) is obtained. A sharp front is found just at the
beginning of the BTC% at a dimensionless time equal to one. This
later case corresponds to a pure convection problem, and it is found
in Fig. 4 for St = 1072,

Results for linear and nonlinear cases present similar shapes
of the BTCs and similar transitions between the limit behaviors
(instantaneous adsorption and no adsorption). Main differences are
the sharpness of the front, which is accentuated for the nonlinear
cases (low values of n), and the value of St that can be considered
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instantaneous adsorption. This value of St decreases with n: St =
10? for n = 1 and 0.8 and 10' for n = 0.2. It reduces inversely to
nonlinearity. Transition between limit behaviors in St is more
abrupt for nonlinear problems than for linear ones.

Similar BTCs are found with Bi= 10°. Fig. 5 shows the differ-
ences between the results obtained with Bi= 10° and those ob-
tained with Bi= 107! (depicted in Fig. 4) for the same values of
St and n. Error is less than 5% for all cases and during all time
intervals, exceeding the limit of 2% of error only for specific values
of St and punctual instants. Differences between the results ob-
tained with smaller pairs of Bi (i.e., 107! with respect to 1072)
are also reduced. Therefore, a limit behavior is found for Bi < 107,
that is, when film mass transfer dominates the problem. In this limit
case, BTCs depend only on St, which relates film mass transfer and
convection velocities. It ranges from instantaneous adsorption to no
adsorption (pure convection).

On the other hand, large values of Bi correspond to film mass
transfer process faster than internal diffusion, and hence, internal
surface diffusion dominates the adsorption behavior of the model.
Fig. 6 shows the results for Bi = 10*; Ed = St/Bi from 1073 to
10%; and n = 1, 0.8, and 0.2. Although the same limit behaviors
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Fig. 6. Breakthrough curves of ¢ and gp for Bi = 10%; n = 1, 0.2, and 0.8; and Ed from 10~* to 10': (a) n = 1; (b) n =0.2; (¢) n = 0.8
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as in Fig. 4 are identified, intermediate solutions show different
behavior in the two Figs. 4 and 6. A step is identified at an early
stage of the BTC of ¢, concentration outlet, for Ed < 10°. Position
and sharpness of this step depend on 1 for Ed € [107!, 10°]. Values
of Ed < 1072 present a significantly reduced adsorption at this time
scale; see final values of gp in Fig. 6. These results are coherent
with those of a previous subsection (Fig. 3). Adsorbed mass ¢p
presents a smoother BTC than ¢, and constant values close to zero
are found for small values of Ed.

Fig. 7 presents results obtained with Bi = 10° minus those ob-
tained with Bi = 107 for the same values of Ed and n. The overall
differences are close to zero throughout all BTCs, except in the
front position, where slightly noticeable differences can be seen
(punctual errors even larger than 10% are detected when comparing
BTCs). They are caused by small differences in the position of the
initial step. The same results are obtained when comparing results
with larger values of Bi. Thus, a limit behavior is found for
Bi > 107, that is, when internal surface diffusion dominates the
problem. In this limit case, BTCs depend only on Ed, which relates
internal surface diffusion and convection velocities. It ranges from
instantaneous adsorption to no adsorption (pure convection) analo-
gously to the other limit obtained before, Bi < 10°, in which sol-
ution depends on St.
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GFH Characterization with HSDM

Experimental adsorption results for different adsorbates in GFH
were reproduced with HSDM in Sperlich et al. (2008). Character-
istic dimensionless numbers of these cases are: large values of
D_q, from 103 to 10°; nonlinear isotherms, n < 1; values of Bi from
10" to 10°; and Ed = St/Bi from 1072 to 10°. Thus, the HSDM
behavior is close to the limit detected for high Bi and relatively
low values of Ed. The BTCs with shapes similar to those shown
in Fig. 6 are expected.

Fig. 8 shows the BTCs of four adsorbates (salicylic acid, DOC,
phosphate, and arsenate) computed with the HSDM formulation
presented in this paper, together with the experimental data and
the simulation results presented by Sperlich et al. (2008). Table |
summarizes the parameters that define these examples. Computa-
tions have been done with the parameters of Table 1, with the
exception of D, which is limited to 10° in all cases because the
dimensionless problem is independent of D, for large D, values.

In three of the four cases, similar nesults were obtained with
the HSDM formulation presented in this paper and with that used
by Sperlich et al. (2008). However, in the case of arsenate, the
differences were significant. This is probably caused by the over-
diffusive character of the numerical solver used in previous
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Table 1. GFH Data for HSDM Simulations
Example B; S; Ed D,

5 n R
Salicylic acid 16.3 69  0.4233 4,155 052 039

DOC 233 3.9  0.1673 8,140  0.62 0.39
Phosphate 102.1 10.0  0.0979 20,323 0.19 0.45
Arsenate-1 182.5 9.7 0.0532 24,617 0.19 0.45
Arsenate-2 91.25 4.5 0.0532 1,000 0.19 0.45

Note: Data from Sperlich et al. (2008), except Arsenate-2, from
this study.

computations, which influences results when sharp profiles are
developed. Simulation with Bi (and St) halved with respect to the
original values is presented for arsenate (named Arsenate-2 in
Table 1). Thus, the value of Ed is kept in common between the
two arsenate simulations. A later one fits much better with the
experimental data than the first one, computed with the original
values of Sperlich et al. (2008). The sharp variation in BTCs slope,
also present in exprimental data, reflects the different time-scale of
the two processes that define adsorption in HSDM, film mass trans-
fer, and internal surface diffusion.

Conclusions

The HSDM has been fully characterized in this study, including a
detailed description of its limit behaviors. In this paper. previous
limits in Bi are confirmed but complemented by the influence
of St and Ed.

An extensive analysis of breakthrough curves for linear and
nonlinear isotherms has been presented. Interesting results have
been found. The BTCs depend on St for Bi <10° but on Ed =
St/Bi for Bi> 10 In both cases, BTCs are independent of
Bi values; BTCs depend only on St or Ed, respectively. Adsorption
is immediate for large values of St (or correspondingly of Ed), and
on the contrary, a pure convection problem is found (that is, no
adsorption) for small values of both St and Ed. In between, both
Bi and St (or Ed) have an influence on BTCs. In the linear case, for
low values of Bi, BTCs depend on St within the range from 1072 to
10%; and for large Bi, the results depend on Ed within the range
from 1072 to 10%. The same conclusions are found with nonlinear
cases but with slightly narrower limits.

In BTCs for a large Bi, a step is found at an early stage of the
concentration outlet for relatively low values of Ed, 1072 to 107,
because of different time-scales of film mass transfer and intrapar-
ticle surface diffusion processes. When smaller values of Ed are
used, no adsorption takes place, and this step collapses with con-
vective transport at the beginning of the BTC.

A novel numerical solver has also been presented. The intrapar-
ticle diffusion equation has been simplified with a Galerkin
approximation in a variable order polinomial. The adaptive degree
of interpolation, defined as a function of the dimensionless num-
bers, has been used to capture the main local-level characteristics at
the BTC time scale. A discontinuous Galerkin method for space
discretization of transport-reaction equation has also been pro-
posed. This scheme is able to capture sharp gradients, advecting
the shock at the correct speed and without adding dissipation sig-
nificatively. This is crucial for nonlinear isotherms and cases with
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large Bi and small Ed because the solution contain shocks and
sharp profiles, and hence. a highly accurate numerical solver is
required to correctly simulate these cases.

The proposed HSDM formulation has been shown to be capable
of characterizing a wide range of adsorption processes. The BTCs
for several adsorbates onto GFH have been predicted. The simu-
lations with HSDM reproduce the experimental data and also agree
with previous results published in the literature (Sperlich et al.
2008). The same characteristic dimensionless numbers have been
used, except for the highest Biot numbers, where the dimensionless
numbers Bi and St had to be halved to better fit the data, but the Ed
value was kept constant. Hence, the GFH simulations agree with
the expected results, confirming the full characterization of the
model here proposed.
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