
12th International Conference on Structural Analysis of Historical Constructions 
SAHC 2020 

P. Roca, L. Pelà and C. Molins (Eds.)

DEVELOPMENT OF A NEURAL NETWORK EMBEDDING FOR 
QUANTIFYING CRACK PATTERN SIMILARITY IN MASONRY 

STRUCTURES 

ÁRPÁD RÓZSÁS 1*, ARTHUR SLOBBE 1, WYKE HUIZINGA2, MAARTEN 
KRUITHOF2 AND GIORGIA GIARDINA3 

1Department of Structural Reliability 
Netherlands Organization for Applied Scientific Research (TNO) 

Stieltjesweg 1, Delft, The Netherlands 
e-mail: [arpad.rozsas, arthur.slobbe]@tno.nl (*corresponding author)

2 Department of Intelligent Imaging 
Netherlands Organization for Applied Scientific Research (TNO 

Oude Waalsdorperweg 63, Den Haag, The Netherlands 
email: [wyke.pereboom, maarten.kruithof]@tno.nl 

3 Department of Civil Engineering and Geosciences 
Delft University of Technology 

Stevinweg 1, 2628 CN Delft, The Netherlands 
email: g.giardina@tudelft.nl 

Keywords: Masonry Structure, Crack Patterns, Similarity Measure, Machine Learning, Deep Neural 
Network  

Abstract. The degree of similarity between damage patterns often correlates with the likelihood 
of having similar damage causes. Therefore, deciding whether crack patterns are similar is one of 
the key steps in assessing the conditions of masonry structures. To our knowledge, no literature has 
been published regarding masonry crack pattern similarity measures that would correlate well 
with assessment by structural engineers. Hence, currently, similarity assessments are solely 
performed by experts and require considerable time and effort. Moreover, it is expensive, limited by 
the availability of experts, and yields only qualitative answers. In this work, we propose an 
automated approach that has the potential to overcome the above shortcomings and perform 
comparably with experts. At its core is a deep neural network embedding that can be used to 
calculate a numerical distance between crack patterns on comparable façades. The embedding is 
obtained from fitting a deep neural network to perform a classification task; i.e., to predict the crack 
pattern archetype label from a crack pattern image. The network is fitted to synthetic crack patterns 
simulated using a statistics-based approach proposed in this work. The simulation process can 
account for important crack pattern characteristics such as crack location, orientation, and length. 
The embedding transforms a crack pattern (raster image) into a 64-dimensional real-valued 
vector space where the closeness between two vectors is calculated as the cosine of their angle. 
The proposed approach is tested on 2D façades with and without openings, and with synthetic 
crack patterns that consist of a single crack and multiple cracks. 
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1 INTRODUCTION 

1.1 Motivation and background 
Every year in the Netherlands, house owners report hundreds of issues concerning cracks in 

their masonry dwellings. Addressing these problems requires identifying the most likely causes 
of the observed damage. In these structures, similar causes often manifest through similar crack 
patterns; thus, quantification of crack pattern similarities is instrumental in understanding 
masonry damage. Currently, the assessment of similarities between masonry crack patterns 
relies entirely on experts’ judgment. This implies several limitations: 

- The quality of the evaluation strongly depends on the experience of the assessor, who
needs to correlate the observed crack pattern with previously analyzed and recorded
ones;

- The assessment is affected by the expert’s understanding of global mechanisms and
local conditions;

- Currently, it is not clear how the human brain performs the crack pattern comparison
and experts have difficulties in verbalizing and formalizing their decision;

- The process is expensive, limited by the availability of experts, and provides only
qualitative assessment.

This leads to a general lack of objectivity in crack analysis as different experts can provide 
substantially different interpretations for similar crack patterns. 

Recent developments in deep neural network embedding have the potential to overcome 
some of these limitations by providing a tool for automated damage classifications and 
quantitative measures of crack pattern similarities. While significant effort has been devoted to 
crack detection and characterization [1,2,3], a consultation with structural masonry experts 
(forensic engineers and computational mechanics experts) identified a lack of automated tools 
that could be applied to the practice of damage assessment. Furthermore, only few authors have 
investigated automated methods to connect masonry damage patterns to their most likely causes 
[4], and the identification of masonry damage through pattern recognition remains a challenge. 

1.2 Aim and objectives 
This work addresses the need for a systematic approach to damage classification and 

quantification of crack pattern similarities in masonry structures by using deep neural network 
embedding. We focus on two major challenges (Figure 1): 

Figure 1: A visual representation of the two major challenges addressed in this paper: crack pattern 
classification (left) and crack pattern similarity quantification (right). 
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1. The automated classification of observed crack patterns into damage cause classes (crack 

pattern archetypes); 
2. The quantification of similarities between crack patterns in terms of structural masonry 

damage in a way that correlates strongly with masonry experts’ assessment.  
Having an accurate and quantitative similarity measure would enable us to solve both 

challenges and perform three tasks with high practical relevance: 
- Classification of crack patterns into archetypes, such as those proposed by de Vent [5], 

by calculating the distances between an observed crack pattern and archetype crack 
patterns. This would allow for a quick and simplified assessment. 

- Identification of damage in not directly observed/measured structural components, 
such as wooden piles, by calculating the distance between an observed crack pattern 
and simulated (e.g. finite element analysis) crack patterns. This would allow for a more 
in-depth assessment and understanding the causes of observed damage. 

- Automated calibration of finite element models to experts based on matching the 
similarity between predicted and observed crack patterns. 

This paper contributes to develop a fast, cheap, and automated procedure for the assessment 
of the structural integrity of cracked (damaged) masonry structures by generating synthetic 
crack patterns using Markov-walks and incorporating expert judgment. The proposed approach 
is demonstrated on 2D façades with and without an opening, and with crack patterns that consist 
of a single crack and multiple cracks.  

2 METHODOLOGY 
The core of our proposed approach is a deep neural network embedding that can be used to 

calculate a numerical distance between crack patterns on comparable façades. An embedding 
is a mathematical function that maps a higher dimensional representation to a lower 
dimensional one while retaining selected essential characteristics of the original representation. 
In the context of this paper, an embedding maps crack pattern images to a real-valued vector 
space (i.e., lower dimensional than that needed to represent the images). The challenge is to 
find such an embedding that produces close-by vector representations for those crack pattern 
images that are similar by structural engineering standards.  

Our working hypothesis is two-fold: first, we assume that crack pattern images and their 
damage cause/type labels contain sufficient information to find the above described embedding; 
second, we assume that the embedding can be found by using a deep neural network (a flexible 
mathematical construct). 

The following approach is used to test our hypothesis: 
1. Data acquisition: crack pattern images and their damage cause labels. 
2. Model definition and fitting: define the mathematical model of the deep neural 

network and fit its parameters using the data. 
3. Model evaluation: comparing the predictions of the fitted model to the damage cause 

labels for data points not used for the fitting. 
Because current deep learning networks are data intensive, we would need at least a few 

hundreds of crack patterns and corresponding damage causes to test our hypothesis. The highest 
quality data are real-world cases but those are expensive and time consuming to collect, 
especially as reliable damage cause labels are needed. Moreover, in real-world cases, multiple 
damage causes are often present and are difficult to separate even by experts. An alternative 
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route is to generate synthetic data. This can be done using computational physics to solve the 
mathematical representation of physical systems (labeled as physics-based approach in this 
paper), e.g. finite element analysis to solve partial differential equations. Fortunately, our 
understanding of masonry structures is sufficient to perform crack analysis of them with good 
accuracy. Still, this approach is relatively time consuming due to the large number and large 
variety of structures and damage causes needed to be implemented with parameterized models 
and to perform the analyses and post-processed. Therefore, a cheaper and simpler synthetic data 
generating approach is used first, which is labeled as a statistics-based approach in this paper 
and based on Markov-walks guided by rules that encode expert knowledge. Here, a statistics-
based synthetic data generating process is used to find the embedding and evaluate its 
performance. If successful, then it would encourage the acquisition of more realistic but more 
expensive data sources. 

Because the statistics-based approach generates synthetic data and has a random component, 
an arbitrary number of crack patterns can be simulated once the algorithm is available. 
Compared with the physics-based simulation approach, it is expected to generate synthetic data 
an order of magnitude faster; however, the quality of the data is poorer, i.e. less representative 
of reality. 

An approach is proposed and implemented to generate statistical crack patterns resulting 
from a total of twelve damage causes and for five different façades with and without openings 
(Section 3). A convolutional neural network (CNN) is fitted to half of the data with the task of 
classifying the crack patterns into damage cause classes. The first part of the fitted CNN is used 
as a 64-dimensional embedding of the crack pattern images where the closeness between two 
vectors is calculated based on the angle between them (Section 4-5). The closeness is 
interpreted as the similarity between crack pattern images and compared with our experts’ 
judgment. 

3 GENERATION OF SYNTHETIC CRACK PATTERNS 
A statistics-based simulation approach is developed in order to generate synthetic crack 

patterns for a wide range of masonry façades and, hence, quickly test the potential of various 
crack pattern similarity measures. This approach includes an algorithm that generates lines in a 
pre-defined bounding box (i.e. the geometry of a façade) by means of Markov-walks. The 
algorithm is generalized so that it can handle a parametric input of the façade and the cracks. 
This allows control over the dimensions of the façade, and the number, dimensions and 
position(s) of the openings (doors and windows). It also enables control of the number of cracks, 
the crack initiation point(s), the crack angle(s), the crack length(s), and how jagged a crack is. 
Furthermore, structural engineering considerations are imposed in order to increase the 
resemblance to reality. Though the statistics-based simulation approach is not based on first 
physical principles, it is able to account for important crack pattern characteristics such as crack 
location, orientation, and size. 

Subsection 3.1 explains the details of the crack pattern generation in masonry wall panels 
without openings and with a single crack. Subsection 3.2 presents a more realistic case, where 
crack patterns are generated in longitudinal masonry façades that resemble typical existing 
dwellings in the Netherlands. These patterns are based on frequently observed damage. 
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3.1 Case 1: masonry wall panels without openings 
To support structural damage diagnosis in masonry structures, de Vent [5] introduced 60 

types of crack patterns along with their possible damage causes. In case 1, eight of these are 
selected as listed in Figure 2. For consistency, the numerical IDs from [5] are used here as well 
when referring to crack pattern archetypes. The eight archetypes share the following 
characteristics:  

- a single wall panel is considered with a length over height ratio of 1.5; 
- a single major crack characterizes the pattern; 
- no openings are present; 
- a crack is assumed to have unit and constant width. 

 
Figure 2: Illustrations of the selected eight crack pattern archetypes [5]. 

Figure 3 shows the crack parametrization in the wall panels for a normalized (unit square) 
wall. Each crack is defined by the following parameters: the coordinates of the crack initiation 
point (x0, y0), the crack angle (a), the crack length (lcrack), and jaggedness of the crack (scrack). 
The first three parameters are randomly and uniformly sampled from an interval that is specified 
for each crack pattern archetype. For illustrative purposes, the input values of these parameters 
for the crack pattern archetypes 23, 30, and 31 are summarized in Table 1. In the simulation, 
the panel is discretized into disjoint rectangles and a crack can propagate only through the cells 
of this grid, one cell at a time/step. A crack starts from the cell at (x0, y0), a random step is taken 
in either vertical or horizontal direction in a way that the expected global crack angle is a. The 
average absolute deviation from the expected direction is controlled by scrack, i.e., 0.5: highest 
deviation, 0: no deviation. Illustrative realizations of this simulation are presented in Figure 4, 
one for each case 1 pattern archetype. The simulated patterns illustrate that the proposed 
statistical approach can simulate realistic-looking and unique (due to the random component) 
crack patterns. In principle, the current implementation of the algorithm allows for the 
generation of an unlimited number of unique realizations for the eight selected crack pattern 
archetypes. 
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Figure 3: Crack parametrization in the wall panels for a normalized (unit square) wall. 

Table 1: Input values in the unit square for the crack pattern archetypes 23, 30 and 31. For explanation of the 
parameters, see Figure 3. 

Pattern ID x0, y0
* a [deg] * lcrack

* scrack 
23 [0.45, 0.55], [0, 0] [87, 93] [0.4, 0.6] 0.5 
30 [0.05, 0.20], [0, 0] [20, 70] [0.3, 0.5] 0.5 
31 [0, 0], [0.60, 0.80] [20, 70] 2† 0.5 

* the lower and upper bounds of the uniform distribution 
† to ensure that the crack goes through the entire wall 

 

    
(a) pattern ID: 18 (b) pattern ID: 20 (c) pattern ID: 21 (d) pattern ID: 23 

    
(e) pattern ID: 24 (f) pattern ID: 30 (g) pattern ID: 31 (h) pattern ID: 32 

    
Figure 4: One random crack pattern realization for each damage cause (pattern id) for case 1 (façade with 

openings). See Figure 2 for the architectural representation of the matching crack patterns. 

3.2 Case 2: masonry façades with openings 
Every year in the Netherlands, house owners report hundreds of issues concerning cracks 

that appear in their masonry dwellings. In general, there are two main causes for these cracks: 
(i) uneven settlements; and (ii) constrained deformation due to temperature effects. The second 
cause mainly occurs in older masonry dwellings, where dilatation joints are poor or even not 
present, due to the heating of the roof or when the foundation constrains the façade. 

In case 2, random crack pattern are generated in the longitudinal masonry façade of typical 
Dutch dwellings. Four different geometries are evaluated (Figure 5). One of them is detailed in 
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Figure 6, showing one door opening and two window openings in the façade. Four crack pattern 
archetypes are considered based on the following damage causes: 

1. Cracking due to uneven settlements with large settlements at the left side 
(pattern ID: 101); 

2. Cracking due to uneven settlements with large settlements at the right side 
(pattern ID: 102); 

3. Cracking due to uneven settlements with large settlements at the middle 
(pattern ID: 103); 

4. Cracking due to high temperature of the roof (pattern ID: 201). 
Damage causes 1 and 3 typically result in crack pattern archetypes with a single major crack, 

whereas damage causes 2 and 4 result in crack pattern archetypes with multiple cracks (we 
consider two cracks). As in case 1, the cracks are assumed to have unit and constant widths. 

The crack pattern realizations are made in a similar fashion as for case 1. For illustrative 
purposes, parametrization of the two cracks in the façade subjected to damage cause 2 is shown 
in Figure 7. The parameters of the two cracks are distinguished by the numbers "1" and "2" in 
their subscripts. Table 2 provides the input values of the crack parameters. The specified 
intervals of the crack initiation points are relative to the red dots that are indicated in the corners 
of the right window. The specified intervals of the crack lengths are relative to the length of a 
fully developed crack (i.e. a crack that has been propagated to the edge of the façade). 

  

  
(a) façade ID: 1 (b) façade ID: 2 

  
(c) façade ID: 3 (d) façade ID: 4 

  
Figure 5: Overview of the considered façades for case 2. All façades have the same bounding rectangle 

dimensions. See also Figure 6. 

 
Figure 6: The geometry of the longitudinal façade of a typical Dutch masonry dwelling.  



Á. Rózsás, A. Slobbe, W. Huizinga, M. Kruithof and G. Giardina 

 8 

 
Figure 7: Crack parametrization in the longitudinal façade of a typical Dutch masonry dwelling for damage 

cause 2.  

Table 2: Input values for crack pattern ID 102. For explanation of the parameters, see Figure 7. 

x0;1, y0;1 [cm] * [-80, 0], [-20, 0] from indicated corner in Figure 7 
x0;2, y0;2 [cm] * [0, 80], [0, 0] from indicated corner in Figure 7 
a1 [deg] * [0, 70] 
a2 [deg] * [225, 270]  
lcrack;1

* [0.4, 1.0]·lcrack;full
† 

lcrack;2
* [0.4, 1.0]·lcrack;full

† 
scrack 0.5 
* the lower and upper bounds of the uniform distribution 
† to ensure that the crack goes through the entire wall 

 
Figure 8 shows one illustrative realization for each damage cause. The four images 

demonstrate that the algorithm is able to generate reasonable crack patterns from a structural 
engineering point of view, though no physics is explicitly included. 

 

  
(a) façade ID: 1, pattern ID: 101 (b) façade ID: 1, pattern ID: 102 

  
(c) façade ID: 1, pattern ID: 103 (d) façade ID: 1, pattern ID: 201 

  
Figure 8: One random crack pattern realization for each damage cause (pattern ID) for façade 1 of case 2 

(façades with openings). 

4 DEEP NEURAL NETWORK 
For the analysis of the crack pattern similarity, we used an artificial neural network (ANN) 

[6]. An ANN is a computational model consisting of nodes that are organized into layers. Each 
node in a certain layer transmits a weighted signal to the other units in the next layer. A unit in 
the next layer sums these signals, applies a non-linear function, and sends the result to the units 
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in the next layer. See Figure 9 for a schematic representation of an ANN. 
The model weights are free parameters that are optimized for a certain task. Examples of 

such tasks are image classification, object detection, or language translation [7]. The 
performance of the model on a task and dataset is mathematically expressed in an objective 
function. Under a given dataset, optimization of this objective function with respect to the free 
parameters is called “fitting” of the model (or “training” in the machine learning community). 
In our case, we fit the network to classify simulated crack patterns into known crack pattern 
archetypes. The input of our network is a simulated image of a crack pattern and the output of 
the model is the class of the crack pattern. 

We used a convolutional neural network (CNN) to classify the crack patterns [8]. A CNN 
takes an image as its input and applies convolutional filters to this image. The values of these 
convolutional filters are also free model parameters. The filter sizes are hyperparameters and 
should be set by the user. 

The design of the network we used is shown in Figure 10 and consists of eight layers. This 
model contains ≈ 3 ·106 free parameters. We constructed the network in such a way that the 
input images are embedded into a 64-dimensional space by the first seven layers. The 
embedding is used by the last layer to predict the crack class. We used the output of this 
embedding to calculate the cosine similarity of the different crack images, which we used as a 
proxy for crack pattern similarity. In other words, the closer the images are in the embedding 
space, the more similar the crack patterns with respect to their class. 

 
Figure 9: Schematic representation of an ANN. The computational units are represented by the coloured 

circles. Each of the N connections has a weight wi and each unit applies a non-linear function to the sum of 
its weighted input(s): f(Swixi).  

 
Figure 10: Overview of the neural network used in this work. conv: convolutional layer; maxpool: maxpool 

layer; dense: fully connected layer.  
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5 CLASSIFICATION RESULTS AND CRACK PATTERN SIMILARITY 
As explained in Section 4, the model is fitted to classify crack pattern images into crack 

pattern archetypes. We used a randomly chosen subset of the data for fitting and the rest is 
reserved for testing. The experiments were performed on two data sets: a single façade without 
openings (case 1) and four façades with openings (case 2). The two sections below describe the 
results. 

5.1 Results for case 1: masonry wall panels without openings 
For this case, a total of 4,000 cracks were simulated, with 500 images per class. Here, 2,000 

images were used to fit the model and the remaining 2,000 were used for testing. The 
classification accuracy on the test set is > 99%, which means that the model can almost perfectly 
classify the eight simulated patterns in their corresponding classes.  

We visualize the 64-dimensional embedding space in 2D with a method called t-distributed 
Stochastic Neighbor Embedding (t-SNE) [9]. This is a widely used method to visualize high 
dimensional data on a low dimensional subspace. The t-SNE plot in Figure 11 shows that the 
classes are nicely clustered and perfectly separable in the t-SNE embedding and, therefore, are 
also separable in the 64-dimensional embedding, which is expected given the high classification 
accuracy. 

We computed the pairwise similarity between all 2,000 simulated crack patterns in the test 
set with the cosine similarity of the 64-dimensional vectors. This similarity is visualized as a 
lower-triangular matrix and shown in Figure 12. The rows and columns are sorted on class 
labels and, as expected, a high similarity is found in blocks at the diagonal of this matrix. A low 
similarity is found outside these blocks, i.e. between crack patterns of different classes. 

 

  
Figure 11: t-SNE scatter plot of the 64-dimensional 
embedding of case 1 test set crack patterns (façade 

without openings). 

Figure 12: Pairwise cosine similarity of the test set 
of case 1 (façade without openings). 

5.2 Results for case 2: 2D longitudinal façade of typical Dutch dwellings 
For this case, a total of 8,000 cracks were simulated: 2,000 images per class, 500 for each 

unique façade-crack pattern archetype pair. Here, 4,000 images where used to fit the model and 
4000 for testing.  

Similar to the crack patterns of a masonry wall panel without openings, the classification 
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accuracy on the crack patterns in the test set of case 2 is >99%. With these data, the model can 
also almost perfectly classify the eight simulated patterns in their corresponding classes.  

The t-SNE plot in Figure 13 shows that also these classes are perfectly separable. Similar to 
the crack patterns of a masonry wall panel without openings, the pairwise similarity is high for 
crack patterns of the same class and low for crack patterns from different classes (Figure 14). 

 

 
 

Figure 13: t-SNE scatter plot of the 64-dimensional 
embedding of case 2 test set crack patterns (facades with 

openings).  

Figure 14: Pairwise cosine similarity of the test set 
of case 2 (façades with openings). Note that all 

façades with the same crack pattern ID are assigned 
to the same group. 

6 CONCLUSIONS 
This paper addressed the lack of quantitative procedures for the assessment of masonry 

structure conditions by proposing an automated tool to measure the similarity between crack 
patterns. We used a deep neural network embedding to calculate a numerical distance between 
different crack patterns of similar façades. Through Markov-walks guided by expert 
knowledge, we generated synthetic data that were used to find an embedding and evaluate its 
performance. We considered twelve damage causes and five façade models, with and without 
openings, and with single and multiple cracks. The fitted neural network performs exceptionally 
well in classifying crack patterns that were not used for the fitting: >99% classification accuracy 
for all considered test cases. The similarity measures calculated using the fitted embedding are 
in an almost perfect agreement with the experts for between crack pattern class comparisons. A 
worse performance is observed for within crack pattern class comparisons, i.e. the embedding 
predicts a very similar low difference for all crack pattern pairs within the same class, while 
more diversity in the similarity values was expected based on the generated patterns. This is 
likely due to fact that no information regarding within class similarities are used for fitting the 
neural network. While the relatively simple simulation process may skew the evaluation of the 
neural network performance, these results are an encouraging first step towards the 
development of an automated assessment of damaged masonry structures. 
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