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ABSTRACT

A key issue in Arbitrary Lagrangian–Eulerian (ALE) non-linear solid mechanics is the correct treatment of 
the convection terms in the constitutive equation. These convection terms, which re
ect the relative motion 
between the finite element mesh and the material, are found for both transient and quasistatic ALE analyses. 
It is shown in this paper that the same explicit algorithms can be employed to handle the convection terms 
of the constitutive equation for both types of analyses. The most attractive consequence of this fact is that 
a quasistatic simulation can be upgraded from Updated Lagrangian (UL) to ALE without significant extra 
computational cost. These ideas are illustrated by means of two numerical examples. 

KEY WORDS: arbitrary Lagrangian–Eulerian formulation; non-linear solid mechanics; stress update; explicit algorithm

1. INTRODUCTION

The Arbitrary Lagrangian–Eulerian (ALE) formulation of continuum mechanics was initially devel-
oped in the context of 
uid dynamics (see for instance Reference 1 and references cited therein), 
with the goal of overcoming the limitations of the Lagrangian and Eulerian formulations. The 
basic idea is to allow the computational mesh to move in an arbitrary manner, independent of 
material motion. By doing so, it is possible to avoid the excessive mesh distortion of a purely 
Lagrangian formulation or the cumbersome boundary tracking of a purely Eulerian description. 
Various explicit algorithms can be found in the literature for the ALE remeshing (i.e. selection of 
mesh velocity), see References 2–5.
More recently, the ALE formulation has been extended to non-linear solid mechanics.6–10; 3

Compared to ALE 
uid dynamics, the main additional di�culty is then the stress update (i.e. the time 
integration of the constitutive equation). Indeed, the rate-form constitutive equation of ALE non-linear 
solid mechanics contains a convective term that accounts for the relative motion between mesh and 
material. Because of this, the stress update cannot be performed at the Gauss-point level, as simply as 
in a Lagrangian analysis, and more involved procedures are required. In fact, the correct treatment of 
the convective term in the constitutive equation is a key point in ALE non-linear solid mechanics.
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If a fractional-step method is chosen, the material and convective terms of the governing equa-
tions are treated separately.11 Each time step consists of two phases: a material phase and a
convection phase. The basic goal of this paper is to show that the convection phase of the stress
update can be performed with the same explicit algorithms for ALE transient analysis (where an
explicit time integration for the momentum balance is typically employed) and ALE quasistatic
analysis (where implicit time marching is commonly chosen). There is consequently no need to
develop speci�c algorithms for each type of analysis.
An important consequence of this fact is that a quasistatic analysis can be upgraded from an

Updated Lagrangian (UL) formulation to an ALE description at (near) zero extra computational
cost, because the additional features of the ALE computation with respect to the UL compu-
tation (convection phase of the stress update and remeshing) can be performed by means of
explicit algorithms, which have a negligible computational cost in the context of implicit time
stepping.
The situation is di�erent for transient dynamic analysis, where explicit time marching is often

preferred. With respect to an UL computation, the extra computational cost per time step of an
ALE computation is no longer negligible. It must be recalled, however, that the ALE formulation
allows for larger time steps than the purely Lagrangian formulation, see References 11 and 12,
and this can have a crucial impact on the total computational cost.
An outline of this paper is as follows. In Section 2, the basic concepts of the ALE formulation of

non-linear solid mechanics are reviewed, with special emphasis on the di�erences and similarities
between transient and quasistatic analyses. Section 3 deals with the ALE stress update. Within
the context of fractional-step methods, two explicit algorithms for the convection phase of the
stress update are presented and discussed. A comparative assessment of the performance of the
algorithms, both for transient and quasistatic processes, can be found in Section 4. Finally, some
concluding remarks are presented in Section 5.

2. BASIC ALE EQUATIONS

A detailed presentation of the ALE formulation of continuum mechanics may be found in Ref-
erence 1. The speci�c issues of ALE non-linear solid mechanics are addressed in Reference 11.
Only the basic concepts and the notation that will be used throughout the paper are presented here.

2.1. ALE kinematics

Two domains are commonly employed in continuum mechanics: the material domain RX , made
up of material particles X, and the spatial domain Rx, consisting of spatial points x. Neither of
these two is taken as the reference in the ALE description, so a third domain is needed: the
referential domain R�, formed by reference (or grid) points f.
One-to-one transformations between the three domains are required. A convenient way to provide

them is by means of the equations of material motion x= x(X; t), and mesh motion x= x(f; t),
which yield the spatial position x of a material particle X and a grid point f, respectively, at
time t.
If the instant t0 is taken as a reference, material displacements u and mesh displacements û can

be, respectively, de�ned as u(X; t)= x(X; t)− x(X; t0) and û(f; t)= x(f; t)− x(f; t0).
In a similar fashion, material velocity v and mesh velocity v̂ are obtained, respectively, by

di�erentiating the equations of material motion and mesh motion presented previously with respect
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to time while keeping the particle X or the grid point f �xed:

v=
@x(X; t)
@t

∣∣∣
X
; v̂=

@x(f; t)
@t

∣∣∣
f

(1)

In Equations (1), the notation |∗ means ‘holding ∗ �xed’. The link between material and mesh
motion is provided by convective velocity c

c= v − v̂ (2)

that is, the velocity of material particles relative to grid points.
Mesh acceleration plays no role in the ALE formulation, so only the material acceleration a is

needed, which may be expressed in the Lagrangian, Eulerian or ALE formulation, respectively,
as

a =
@v
@t

∣∣∣
X

(3a)

a =
@v
@t

∣∣∣
x
+ v · ∇v (3b)

a =
@v
@t

∣∣∣
f
+ c · ∇v (3c)

Since acceleration is the material derivative (i.e. for a �xed particle X) of velocity, equation (3a),
two terms are needed to represent it in both the Eulerian and the ALE formulations, equations
(3b) and (3c): the local acceleration, (@v=@t)|x or (@v=@t)|f, and the convective acceleration, v ·∇v
or c · ∇v. These convective terms re
ect the fact that particle X is neither attached to spatial
point x nor to grid point f. One of the bene�ts of the ALE formulation in 
uid dynamics is
the reduction of convective terms in the governing equations: if the mesh motion is properly
selected, the convective velocity c is smaller than the material velocity v, equation (2), so the
ALE convective acceleration c · ∇v is smaller than the Eulerian convective acceleration v · ∇v.
Equation (3c) is in fact a particular case of the general relationship between material time

derivatives and referential time derivatives

@f
@t

∣∣∣
X
=
@f
@t

∣∣∣
f
+ ci

@f
@xi

(4)

where f is any scalar function.1; 11

2.2. ALE transient analysis

2.2.1. Conservation laws
Equation (4) is the starting point to deduce the three fundamental conservation laws of contin-

uum mechanics (mass, momentum and energy) in the ALE description. If mechanical e�ects are
uncoupled from thermal e�ects, then the mass and momentum equations can be solved indepen-
dently from the energy equation. The ALE version of these two equations is1

Balance of mass:

@�
@t

∣∣∣
f
+ cj

@�
@xj

=−�@vj
@xj

(5a)
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Balance of momentum:

(�ai=)�
@vi
@t

∣∣∣
f
+ �cj

@vi
@xj

=
@�ij
@xj

+ bi (5b)

where � is the density, b is the Cauchy stress tensor and b is the force per unit volume.
A standard procedure in non-linear solid mechanics consists of dropping the equation of mass

balance (5a), which is not explicitly accounted for, thus solving only the momentum balance
(5b). In solid mechanics, the domain boundary is typically composed of material surfaces. Since
these surfaces are accurately tracked by the Lagrangian description commonly employed in solid
mechanics (and also by the ALE description, as commented later), the balance of mass is veri�ed
at the global level without explicitly stating it.
Of course, equation (5a) must also hold at the local level. A common assumption is to take the

density � constant. The mass balance then becomes

@vj
@xj

=0 (6)

which is the well-known incompressibility condition. This simpli�ed version of the mass balance
is also commonly neglected in solid mechanics. This is due to the fact that (i) elastic deformations
typically induce very small changes in volume and (ii) plastic deformations are isochoric or volume
preserving.13 That means that changes in density are negligible, and that equation (6) automatically
holds to su�cient approximation without need of adding it to the set of governing equations.
In conclusion, if the two common assumptions of (i) uncoupled thermal and mechanical e�ects

and (ii) constant density are made, then the only conservation law that needs to be solved is the
momentum balance (5b).
Since the ALE formulation has been chosen, the ALE expression of acceleration, equation

(3c), is employed to represent the inertia forces �a (which are taken into account in the general,
i.e. transient, case). Because of this, equation (5b) contains convective terms associated to the
convective velocity c. These convective terms are similar to those encountered in the Eulerian
formulation and re
ect the relative motion between mesh and material.
Equation (5b) must be complemented with appropriate boundary conditions, which are imposed

on the spatial domain. A detailed discussion of the implementation of boundary conditions in the
ALE formulation can be found in References 14 and 12.

2.2.2. Constitutive equations for non-linear solid mechanics
In non-linear solid mechanics, material behaviour is often described by a rate-form constitutive

equation, relating an objective rate of Cauchy stress to stress and stretching (rate-of-deformation),
see Reference 15. In the ALE context, referential time derivatives, not material time derivatives,
are employed to represent evolution in time. Specializing the general relationship (4) to the stress
tensor, the ALE non-linear constitutive equation can be written as12

@b
@t

∣∣∣
f
+ cj

@b
@xj

= q (7)

The left-hand-side of equation (7) is the material rate of stress (@b=@t)|X expressed in ALE format.
The right-hand side q accounts for both the pure straining of the material and the rotational terms
that counteract the non-objectivity of the material stress rate, Reference 12. In the context of this
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Box 1. ALE transient analysis

�
@vi
@t

∣∣∣∣
�
+ �cj

@vi
@xj

=
@�ij
@xj

+ bi

@b
@t

∣∣∣∣
�
+ cj

@b
@xj

= q

paper, the most relevant feature of equation (7) is the convective term, which, as discussed for
the momentum balance, re
ects the motion of material particles relative to the mesh.

2.2.3. Remeshing
To de�ne completely the problem posed by equations (5b) and (7), it is necessary to take

equation (2) into account. Since the mesh moves independently from the material, it is necessary
to specify the mesh velocity v̂ so that the convective velocity c can be determined.
Various remeshing strategies have been proposed.1; 2; 4; 5; 9; 12; 16 The basic common features are:

(i) boundary nodes are required to remain in the boundary (i.e. they are forced to move with the
material along the normal to the surface, with relative motion allowed along the tangent), thus
ensuring an accurate tracking of the boundaries; and (ii) mesh distortion is controlled by moving
inner nodes in an appropriate way.
In conclusion, if the density is assumed a constant and the mass equation is neglected, a transient

process is modelled by the ALE (transient) momentum balance (5b), and the ALE constitutive
equation (7) (see Box 1) complemented with boundary conditions and a remeshing strategy to
select the mesh velocity.

2.3. ALE quasistatic analysis

In the previous section the ALE transient analysis has been discussed and the fundamental
equations presented. It is very common, however, to do other types of analysis, such as steady
state or quasistatic. In this section the quasistatic analysis is discussed and the equations are
developed. Moreover, the steady state in an ALE context is also analysed to show that it lacks
physical meaning.
A process is termed quasistatic if the inertia forces �a are negligible with respect to the other

forces in the momentum equation (symbolically: �a.∇ · b + b). Inertia forces are negligible for
physical reasons, so this must be independent of the kinematic description used. Consequently,
one must also have

�a= �
@v
@t

∣∣∣
X
= �

(
@v
@t

∣∣∣
x
+ v · ∇v

)
= �

(
@v
@t

∣∣∣
f
+ c · ∇v

)
.∇ · b + b

which is independent of the arbitrarily chosen mesh velocity, and thus of the convection velocity.

Remark 1. Assuming negligible inertia forces does not imply zero accelerations (constant particle
velocities). A process may have relevant, non-null local, convective and total accelerations and still
be correctly modelled as quasistatic, if stress variations and=or body forces are much larger than in-
ertia forces. This is a common situation in solid mechanics. See, for instance, Reference 12, where
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Box 2. ALE quasistatic analysis

@�ij
@xj

+ bi=0

@b
@t

∣∣∣∣
�
+ cj

@b
@xj

= q

the in
uence of the inertia forces is evaluated in two metal forming examples, or Reference 17
for other examples.
In quasistatic analysis, the momentum balance becomes

@�ij
@xj

+ bi=0 (8)

which is a static equilibrium equation where time and velocity play no role. That is, there are no
convective terms in the ALE momentum balance for quasistatic processes.
The hypothesis of quasistatic process only concerns the momentum equation. Nothing is said

on the constitutive equation. Thus, convective terms are present in the ALE constitutive equation
for quasistatic processes.
On the other hand, it is also usual in mechanics to study steady-state processes. Steady means that

the partial derivatives with respect to time are zero. This is quite usual in Eulerian formulations
and, theoretically, the same concept can be extended to an ALE formulation. An ALE steady
analysis would imply that @·=@t|f=0. Thus, the momentum and constitutive equations are

� cj
@vi
@xj

=
@�ij
@xj

+ bi

cj
@b
@xj

= q
(9)

But a steady solution of equation (9) will not verify the same equation if the mesh velocity, v̂
(i.e. the convection velocity c), is arbitrarily modi�ed. It is important to recall that, on the one
hand, the essence of ALE is the arbitrary nature of the mesh velocity (thus the convection), and,
on the other, a steady process is dependent on the kinematic formulation employed. Therefore, in
spite of Reference 10, since the mesh velocity, v̂, is arbitrary the ALE steady process is physically
meaningless!
To conclude, a quasistatic process is modelled by the ALE (quasistatic) momentum balance (8),

the ALE constitutive equation (7) (see Box 2) complemented with boundary conditions and the
de�nition of mesh velocity.

3. ALE STRESS UPDATE

3.1. Preliminaries

It can be seen in Boxes 1 and 2 that the ALE momentum balance for transient processes,
equation (5b), and for quasistatic processes, equation (8), are di�erent: the former accounts for
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inertia forces, while the latter does not (a similar situation is found in the Lagrangian analysis of
transient and quasistatic processes). Because of this, radically di�erent techniques are employed for
its time integration. The transient momentum balance is typically handled, both in the Lagrangian
and ALE formulations, by an explicit, velocity-based scheme,18; 19 where stability requirements
impose a tight upper bound on the time step �t. The quasistatic momentum balance, on the
other hand, is commonly time-integrated with an implicit, incremental-iterative, displacement-based
algorithm, which allows for larger time steps.
Regarding the ALE constitutive equation (7), it is valid for both transient and quasistatic pro-

cesses (see Boxes 1 and 2). As previously remarked, the convective term in this equation is
needed to represent relative motion between mesh and material, an essential feature of the ALE
formulation.

Remark 2. The only di�erence in the ALE constitutive equation for transient and quasistatic cases
lies in the meaning of variable t. In a transient analysis, t represents physical time, which appears
explicitly in the momentum balance (Box 1). For quasistatic analyses, however, physical time
is usually not employed as an independent variable, because it is not present in the momentum
balance (Box 2). Thus, the variable t in the constitutive equation should be interpreted as the
non-physical, pseudo-time parameter typically employed as a load factor in quasistatic simulations.
Since the constitutive equation does not change, it is a natural requirement that the numerical

schemes employed for the stress update apply to both transient and quasistatic analyses. It is also
reasonable to demand that these schemes be explicit. Indeed, in the transient case an explicit stress
update is needed to be consistent with the explicit time integration of the momentum balance: an
implicit stress update procedure to be used in every time step within an hydrocode,20 would be
completely una�ordable. As for the quasistatic case, the stress update should be cheap—which, in
practice, means explicit—, if the ALE formulation is to be competitive with alternative techniques,
such as a Lagrangian formulation combined with an adaptive remeshing strategy.21

3.2. Fractional-step methods

Two di�erent approaches are possible when dealing with the equations in Boxes 1 and 2:
(i) solving the fully coupled equations, accounting for the various terms simultaneously or
(ii) employing a fractional-step method, to treat material and convective e�ects separately. This
second strategy will be used here.
In the ALE context, the coupled approach or unsplit approach has been adopted in References 8

and 22, among others. After �nite element spatial semi-discretization, equations (5b) and (7)
are transformed into matrix equations which contain convection terms for momentum and stress,
respectively. These equations are then integrated in time by means of an explicit predictor-corrector
method. The main advantage of the coupled approach is that there is no need to split the original
equations.
If the second approach is taken, see References 7, 3 and 23, every time step is subdivided into

two phases: a material (or Lagrangian) phase, where convective e�ects in the momentum balance
(transient process) and constitutive equation are neglected, and a convection (or transport) phase.
This operator split is commonly employed in the numerical integration of di�erential equations.24

In exchange for a certain loss of accuracy (with respect to the coupled approach), it o�ers a
generic bene�t: simpler equations means simpler, more robust algorithms, speci�cally designed
for each equation. Regarding the ALE equations, an added advantage results: pro�t is taken from
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the experience in solid mechanics and 
uid dynamics in handling material and convective terms,
respectively.
The simpli�cation associated to a fractional-step approach is especially interesting for the ALE

constitutive equation. Indeed, the stress �eld b is typically discontinuous across element edges, so
its gradient cannot be reliably computed at the element level. Moreover, stress values are known
at the Gauss points—where they are needed to compute internal forces—, not at the nodes. These
two di�culties are easier to circumvent with a splitting technique.
This splitting technique may be regarded as the natural choice for ALE quasistatic analyses:

since the momentum balance has no convective term (Box 2) it is completely handled by the
material phase, so the transport phase need only deal with the convective term in the constitutive
equation. The implementation of ALE capabilities in a Lagrangian code for quasistatic analysis is
then a straightforward matter.25

With any of the two approaches, all the known numerical di�culties associated to convection
(typically encountered in computational 
uid dynamics) will appear when dealing with the momen-
tum balance (transient analysis) and the constitutive equation (transient and quasistatic analysis).
Some kind of upwinding is required to avoid the oscillations of the standard Galerkin method.
Several approaches can be found in the literature, such as the Petrov–Galerkin method, the Taylor–
Galerkin method,26 the characteristic Galerkin method, and least-squares methods (see Reference 27
for a general review and the references cited therein for each speci�c method). Various of these
techniques have been used in the context of the ALE formulation; see, for instance, References 1,
3, 8, 22 and 23.

3.3. Algorithms for ALE stress update

3.3.1. The material (or Lagrangian) phase
In the �rst phase within every time step, the convective terms are neglected and only material

e�ects are accounted for. The constitutive equation then reads

@b
@t

∣∣∣∣
f
= q (10)

and it must be integrated in time to update stresses from nb (stress at time tn) to Lb (stress after
the Lagrangian phase). Neglecting the convective terms is equivalent to assuming that grid points f
move attached to material particles X. Because of this, the Lagrangian phase can be performed with
the same stress update algorithms as used in Lagrangian simulations, which handle the constitutive
equation at the Gauss-point level. Various techniques of this type have been employed in this
work. All of them preserve the objectivity of the constitutive equation, that is, they treat rigid
rotations properly.28; 29

3.3.2. The convection (or transport) phase
The time step is completed with a convection phase, which handles the convective terms not

taken into account during the material phase. The constitutive equation is then

@b
@t

∣∣∣∣
f
+ cj

@b
@xj

= 0 (11)

and its time integration is required to update stresses from Lb to n+1b (i.e. the stress at time tn+1).
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Remark 3. The fractional-step strategy has resulted in the splitting of the constitutive
equation (7) into the parabolic equation (10) of the material phase and the hyperbolic equa-
tion (11) of the convection phase. This enables the use of speci�c algorithms, specially designed
to handle each type of equation.

Since it contains a convective term, some type of upwinding is needed to handle equation (11).
However, the convective velocity c is usually moderate (in practice, the mesh velocity v̂ is of-
ten selected by modifying the material velocity v in order to reduce element distortion), so the
convective term is not large. In fact, the main source of trouble in the convective term is the
stress gradient, not the convective velocity. As remarked previously, the stress gradient cannot be
properly computed at the element level.
A possible solution to this problem is that of Reference 7: in the context of ALE quasistatic

analysis, a continuous stress �eld is obtained by least-squares approximation; the gradient of the
smoothed, continuous stress �eld is then employed in equation (11). The main disadvantage of this
approach is that it results in an implicit algorithm, which may be acceptable for quasistatic analyses
(although explicit schemes are preferred, as commented previously) but not for transient analyses,
where the momentum balance is treated explicitly. More recently, various explicit procedures for
stress update in ALE transient analysis have appeared.3; 30

In this work, two explicit algorithms to integrate equation (11),3; 25; 31 will be presented and
discussed. To avoid computing gradients of the discontinuous stress �eld at the element level,
two di�erent approaches have been taken: either (i) use an explicit smoothing procedure (Lax–
Wendro� update) or (ii) employ an algorithm that circumvents the computation of the stress gradi-
ent (Godunov-like technique). In any case, the starting point consists of noting that equation (11)
contains a scalar equation for every stress component �

@�
@t

∣∣∣∣
f
+ cj

@�
@xj

= 0 (12)

In fact, the internal variables commonly employed in nonlinear mechanics must also be convected
following equation (12), so � can be any stress-related component (a component of the stress
tensor or an internal variable).

Remark 4. The term stress-related component does not imply that only stress measures are em-
ployed as internal variables. In isotropic plasticity, for instance, is common to choose the equivalent
plastic strain as an internal variable.13 Stress-related component is just a convenient way to refer
to all the variables that must be updated according to equation (12).

Algorithm 1: Lax–Wendro� update

As classically done in Lax–Wendro� or Taylor–Galerkin schemes,32; 33; 26 a Taylor series expan-
sion of equation (12) is followed by substitution of the original equation into the expansion. This
yields

n+1� = L�−�t n+1=2cj @
L�
@xj

+
�t2

2
n+1=2cin+1=2cj

@
@xi

(
@L�
@xj

)
(13)

where n+1=2c is the convective velocity evaluated at the midstep. It can be checked (see
Reference 27) that in this algorithm a correction (with respect to a centred scheme) is
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introduced only in the direction of the convection �eld, like in streamline-upwind methods. It
must be remarked, however, that there is no free or adjustable parameter.
For a transient analysis, n+1=2c is computed directly as the di�erence of material and mesh

velocity,

n+1=2c = n+1=2v − n+1=2v̂; (14)

where n+1=2v is obtained in the time integration of the momentum balance and n+1=2v̂ is provided
by the ALE remeshing procedure.18; 19

For a quasistatic analysis, on the other hand, solving the momentum balance yields an increment
of material displacements �u and the ALE remeshing an increment of mesh displacements �û.
The convective velocity, which is assumed to be constant within the time step, is then computed
as

c =
�u −�û
�t

(15)

In equation (13), both the stress gradient, which will be denoted by 
 (
i = @L�=@xi), and its
spatial derivatives are required. An explicit interpolation procedure, based originally in a classical
least-squares projection, is employed to obtain a smoothed �eld of stress gradient.3 The starting
point is the integral relation∫

V
f1∇f2 dV = −

∫
V
f2∇f1 dV +

∫
S=@V

f1f2n dS (16)

where f1 and f2 are scalar functions de�ned on volume V , and n is the outward unit normal to
the boundary S of volume V . For two-dimensional problems, equation (16) reduces to∫



f1∇f2 d
 = −

∫


f2∇f1 d
 +

∫
�=@


f1f2n d� (17)

where 
 is the two-dimensional domain associated to volume V , and d� is its boundary. Equation
(17) is valid both for plane stress/strain and axisymmetrical problems.
Equation (17) can be specialized into∫

Rex

Na
 dV = −
∫
Rex

�∇Na dV +
∫
@Rex

Na�n dS (18)

where Rex and @R
e
x represent element e and its boundary, n is the outward unit normal in the current

con�guration and Na is the shape function of node a. The assembly of equation (18) results in
the linear set of equations

M� = � (19)

where M is a consistent pseudo-mass matrix, � is a vector of nodal smoothed values of the stress
gradient, and the independent vector � = [�a] is de�ned as

�a =
∑
e

[
−
∫
Rex

�∇Na dV +
∫
@Rex

Na�n dS

]
(20)

To compute the integrals along element boundaries @Rex , the scalar �eld � is extrapolated from
Gauss points to nodes with the aid of Gauss-point shape functions.
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Box 3. Lax–Wendro� stress update

1. Update the mesh con�guration from tn to tn+1 taking into account the mesh velocity
2. Compute convective velocity c according to equation (14) (transient processes) or equa-
tion (15) (quasistatic processes)

3. Compute the lumped mass matrix Mlp, equation (21)

FOR EVERY STRESS-RELATED COMPONENT �:

4. Compute the independent vector �, equation (20)
5. Treatment of symmetry: for nodes in an axis=plane of symmetry, set to zero the normal
component of �a

6. Solve the trivial linear set Mlp�=� (diagonal matrix Mlp) to get the vector of
smoothed nodal gradients �

7. Interpolate stress gradient S and its spatial derivatives from nodes to Gauss points with
the aid of shape functions

8. Employ the one-step Lax–Wendro� method to �nd n+1� at the Gauss-point level, equa-
tion (22)

Since an explicit procedure is sought, the consistent matrix M of equation (19) is substituted
by the lumped matrix Mlp = [Mlp

a ], with

[Mlp
a ] =

∑
e

∫
Rex

Na dV (21)

After doing so, � is explicitly computed by solving a trivial system of equations, with diagonal
matrix Mlp. Then equation (13) can be solved. Since n+1� is required at the Gauss points, a
collocation technique is used to handle the weak form of equation (13).3 This results in

n+1�(�) = L�(�)−�t n+1=2cj(�)
j(�) + �t
2

2
n+1=2ci(�)n+1=2cj(�)

@
j
@xi
(�) (22)

for each Gauss point �.
A special treatment is required for planes or axes of symmetry. Since the stress-related compo-

nent � is symmetric with respect to an axis or plane of symmetry, the normal component of its
gradient 
 must be set to zero. Since the smoothed nodal gradients are obtained by solving a diag-
onal set of equations, the cancellation of a certain component 
i is equivalent to the cancellation
of the corresponding independent term �i, prior to the solution of the trivial system. This is the
approach taken in the algorithm.
A 
owchart of the Lax–Wendro� update technique is presented in Box 3.

Algorithm 2: Godunov-like update

The second algorithm for the convection phase is based on Godunov’s method for conservation
laws.34 With the help of the stress-velocity product Y = �c (Reference 8) equation (12) is rewritten
as

@�
@t

∣∣∣
f
+
@Yj
@xj

= �
@cj
@xj

11



A. RODR�IGUEZ-FERRAN, F. CASADEI AND A. HUERTA

3.3.3. One-point quadratures
Godunov’s method, which was developed in the context of �nite volumes, assumes a piecewise

constant �eld �.34 In a �nite element framework, this is the situation if one-point quadratures are
employed; Godunov’s method is then directly applicable. However, to allow for a subsequent gen-
eralization to multiple-point quadratures, a residual weak formulation of the method is preferred.3

Since the test functions ! are also piecewise constant, the integral equation is valid at the element
level: ∫

Rex

!
@�
@t
dV =

∫
Rex

!�
@cj
@xj

dV −
∫
@Rex

!(Y · n) dS (23)

Since both � and ! are constant within �nite element e, equation (23) results in

@�
@t
= − 1

2V

Ns∑
s=1
fs(�cs − �)[1− sign(fs)] (24)

where � is the stress-related component of element e, which has volume V and Ns faces, �cs is the
stress-related component in the contiguous element across face s, and fs is the 
ux of convective
velocity c across face s, fs =

∫
s c · n dS. Equation (24) corresponds to a full-donor approximation,

where full upwinding is achieved by means of sign(fs). Contrary to the Lax–Wendro� scheme,
however, this upwinding is isotropic and not only along the streamlines. Because of this, the
Godunov-like update results in spurious crosswind di�usion and a more overdi�usive behaviour
than the Lax–Wendro� update; see Table I in Section 4.1.
For two-dimensional problems, equation (24) can be simpli�ed into

@�
@t
= − 1

2A

N�∑
�=1
f�(�c� − �)[1− sign(f�)] (25)

where N� is the number of edges of element e and �c� is the stress-related component in the
contiguous element across edge �. For plane strain and plane stress problems, A is the area of
element e and f� is the 
ux across edge �, f� =

∫
� c · n d�. For axisymmetric problems, on the

other hand, axisymmetry is accounted for by taking A =
∫
Rex
r dS and f� =

∫
�(c · n)r d�, where r

is the radial co-ordinate.
Explicit time integration of equation (25) yields

n+1� = L�− �t
2A

N�∑
�=1
f�(�c� − �)[1− sign(f�)] (26)

for each element.

3.3.4. Multiple-point quadratures
Two di�erent strategies have been tested to extend the Godunov-like update to multiple-point

quadratures.31; 11 The �rst approach is a generalization of the residual formulation of equation (23)
which takes into account that the stress-related component � and the test function ! are no longer
piecewise constant.
The second approach, which has shown better results than the �rst one, is an engineering-like

extension of the algorithm for piecewise constant �elds. The basic idea is to divide every �nite
element into various subelements, each of them corresponding to the in
uence domain of a Gauss
point.31 If, for instance, quadrilaterals with 2 × 2 integration points are employed, every element

12
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Figure 1. Subelements for the Godunov-like update

Box 4. Godunov-like stress update

1. Update the mesh con�guration from tn to tn+1 taking into account the mesh velocity
2. Compute convective velocity c according to equation (14) (transient processes) or equa-
tion (15) (quasistatic processes)

3. Transfer convective velocity from original mesh to auxiliary mesh of subelements

FOR EVERY SUBELEMENT:

4. Compute area A

LOOP ON SIDES OF THE SUBELEMENT

5. Compute the 
ux of convective velocity across side, fs

LOOP ON STRESS-RELATED COMPONENTS

6. Compute jump across side, (�cs − �), and add up the RHS of equation (25)
END OF LOOP ON STRESS-RELATED COMPONENTS

END OF LOOP ON SIDES OF THE SUBELEMENT

7. Employ Godunov’s method to �nd n+1� at the subelement level, equation (26)

is divided into four subelements, see Figure 1. In every subelement, � is assumed to be constant,
and represented by the Gauss-point value. Because of this, � is a piecewise constant �eld with
respect to the mesh of subelements, and equation (26) can be employed to update the value of �
for every subelement. A very simple and e�cient algorithm is obtained (see Box 4) because the
submeshing of the original mesh into subelements need only be performed once, at the beginning
of the analysis.

3.4. Limitations on the time step

The numerical time integration of the momentum balance places a limit on the maximum time
step �t. For transient analysis, this limitation is associated to the stability of the explicit algorithm

13
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employed to integrate equation (5b). For quasistatic analysis, on the other hand, �t is restricted
by the convergence properties of the non-linear solver employed for the implicit integration of
equation (8).
According to the numerical experimentation in this work, the limitation on time step associated

to the numerical time integration of the constitutive equation is not more restrictive than for the
momentum balance, in either transient or quasistatic analysis. In other words, the same �t that
is used for the momentum balance can then be employed for the stress update, with any of the
algorithms of Section 3.3. The basic idea is that, with the typical values of time step �t and
convective velocity c, the relative motion between the material and the mesh that occurs during
the convection phase carries material particles (at most) to a neighbour element but no further.
This situation can be symbolically expressed as

|c|�t6h (27)

where h is the element size. In fact, equation (27) is the well-known Courant condition. Since
the two algorithms previously presented take into account the stress transport between contiguous
elements, they can be used for the stress update in both transient and quasistatic processes.
It must be remarked, then, that the explicit algorithms for the convection phase of Section 3.3 are

applicable in combination with either an explicit algorithm for the momentum balance (transient
analysis) or an implicit algorithm (quasistatic analysis). In the latter case, there is no need to
develop di�erent, implicit stress update procedures for the convection phase. In fact, exactly the
same algorithms, without modi�cations, have been employed for the convection phase of the stress
update in the numerical examples of the next section.
If the time integration of the momentum balance is explicit (transient analysis), no iterations are

made. Thus, every time step involves performing each of the following tasks once: (1) material
phase of the stress update; (2) selection of mesh velocity (i.e., remeshing); (3) convection phase
of the stress update. Tasks (2) and (3), which are speci�c of an ALE analysis and are not present
in an UL computation, have a signi�cant impact on the computational cost per time step. It must
be recalled, however, that the basic advantage of the ALE formulation it that it avoids element
entanglement and keeps element distortion under control. This means that larger time steps than
in an UL computation can be used, see Reference 11, and this can have a crucial in
uence upon
the total computational cost.
On the contrary, if the momentum balance is handled by an implicit algorithm (quasistatic anal-

ysis), iterations up to equilibrium are required. This means that tasks (1)–(3) must be performed
once per iteration, until equilibrium in the ALE mesh is achieved.
An alternative, simpli�ed approach, however, is keeping only task (1) (material phase of the

stress update) inside the iteration loop. By doing so, iterations are carried out until equilibrium is
veri�ed in the �ctitious Lagrangian mesh. After that, tasks (2) and (3) are performed just once, at
the end of the time increment (see Box 5). This approach has the advantage that the only overhead
cost of ALE quasistatic analysis with respect to an UL analysis is due to the explicit remeshing
and the convection phase required at the end of every time step. This overhead cost is negligible
when compared to the cost of the implicit time integration of the equilibrium equation. It can be
concluded that upgrading a quasistatic analysis from UL to ALE can be done at no (signi�cant)
extra computational cost.
It must be noted, on the other hand, that with the simpli�ed approach of Box 5, equilibrium is

only achieved in the �ctitious Lagrangian mesh, not in the true ALE mesh. Indeed, the convection
phase somewhat disrupts equilibrium. Numerical experimentation, however, shows that the spurious
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Box 5. Simpli�ed approach for ALE quasistatic analysis

1. Iteration loop: neglect the convective velocity and solve the equilibrium equation (8)
complemented with the Lagrangian constitutive equation (10) iteratively, as in a La-
grangian analysis

2. Remeshing: compute the convective velocity c and update the mesh from its �ctitious
Lagrangian con�guration to its true ALE con�guration

3. Convection: perform the convection phase of the stress update, equation (11), with any
of the algorithms of Section 3.3

residual forces associated to the convection phase are small and do not a�ect the quality of the
solution, see the next section and Reference 23.

4. NUMERICAL EXAMPLES

Two numerical examples are presented in this section. The �rst one is a necking test. Various qua-
sistatic simulations are made to show that the explicit algorithms of Section 3.3 can be employed
for the convection phase of the stress update, even in the context of the implicit time-stepping. The
second numerical example is a coining test. For this test, both quasistatic and transient simulations
are performed, to show that the same ALE stress update strategy can be used for both types of
analysis.

4.1. Necking test

The necking problem is a well-known benchmark test in non-linear solid mechanics.35 A cylindri-
cal bar with circular cross-section, with a radius of 6·413mm and 53·334mm length, is subjected
to uniaxial extension. A slight geometric imperfection (1 per cent reduction in radius) induces
necking in the central part of the bar. Because of symmetry, only a quarter of the specimen is
modelled. The elastoplastic constitutive law can be found in Reference 35. Two meshes of eight-
noded quadrilaterals with 2× 2 Gauss points are employed for the analysis, a coarse mesh of 50
elements and a �ne mesh of 320 elements. Both UL and ALE simulations have been carried out,
for comparison purposes. For the ALE cases, the simpli�ed approach of Box 5 has been employed.
Figure 2 shows the whole deformed piece after an axial elongation of 14mm (7mm for half

the piece, or 26 per cent of initial length). If the UL formulation is employed in combination
with the coarse mesh, Figure 2(a), the elements in the neck zone become very distorted, following
the large material deformation. As a consequence, a poor de�nition of the deformed shape of the
piece is obtained.
The quality of the solution may be improved by performing the UL simulation on the �ne

mesh, Figure 2(b). An alternative approach, however, is to keep the coarse mesh and use the
ALE formulation. A very simple ALE remeshing strategy is suggested by the results of the UL
analyses: (1) the upper part of the piece, where strains are not large, remains Lagrangian (that
is, convective velocity is set to zero, so there is no need to perform the convection phase of the
stress update) and (2) equal height of elements is prescribed in the central part, thus avoiding the
excessive distortion of elements near the neck of Figure 2(a). The two update algorithms result in
very similar deformed shapes; the output with the Lax–Wendro� update is shown in Figure 2(c).
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Figure 2. Necking test. Deformed mesh after 26 per cent elongation: (a) UL formulation with coarse mesh; (b) UL
formulation with �ne mesh; (c) ALE formulation with �ne mesh

A more quantitative comparison of the various simulations is o�ered in Figure 3, which shows
the evolution of radius reduction (ratio of current radius to initial radius) to elongation (in mm,
for half the specimen). It can be seen that, up to 7mm elongation, all the curves are very similar
and in good agreement with those in Reference 35. If pulling proceeds, however, discrepancies
arise between the UL solution with the coarse mesh, on one side, and the UL solution with the
�ne mesh and the ALE solutions, on the other. With only one row of (very distorted) elements in
the necking zone, the UL simulation on the coarse mesh does not fully capture the plasti�cation
process, and this results in less necking.
A closer look to this behaviour is presented in Figure 4. Taking the Lagrangian solution with

the �ne mesh as a reference, the relative error in radius of the simulations with the coarse mesh
is plotted versus elongation. After a pull of 7mm, the UL solution o�ers an acceptable error of
5 per cent, compared to ALE values of slightly under 1 per cent. If pulling continues up to 8mm,
however, the error for the UL solution grows to 80 per cent while it stays below 5 per cent for
the two ALE cases, see Figure 4(a). A zoom focusing on the ALE analyses, Figure 4(b), shows
that the two update procedures yield almost identical results.
It is apparent from Figures 3 and 4 that the evolution of necking is properly described by

the two ALE stress update algorithms, and that tougher criteria must be employed to assess
their relative performance. A possibility is to compare the distributions of a certain stress-related
component. Plate 1 shows the pro�les of the equivalent plastic strain in the neck zone after an
elongation of 7mm. Again, the UL analysis with the �ne mesh is taken as a reference, Plate 1(a).
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Figure 3. Necking test. Radius reduction vs. bar elongation

The UL simulation with the coarse mesh correctly describes the general aspect of the �eld, see
Plate 1(b), but fails to capture the large plasti�cation in the neck and underestimates the peak
value of the plastic strain by 23 per cent, see Table I. As for the ALE cases, the Lax–Wendro�
update, Plate 1(c), performs slightly better than the Godunov-like update, Plate 1(d), with an
underestimation of the peak value of only 4 and 6 per cent, respectively.
A �nal, qualitative assessment of the various simulations can be made by looking at the distribu-

tion of the Von Mises stress. According to some empirical and semianalytical studies,36 this �eld
is constant in the neck zone, along the z=0 plane of symmetry. Plate 2 shows the distribution
of the Von Mises stress after an elongation of 7mm. It can be seen that the UL analysis with
the coarse mesh, Plate 2(b), does not provide a constant value along z=0. On the other hand,
both the UL analysis with the �ne mesh, Plate 2(a), and the two ALE computations, Plate 2(c)
and (d), yield very similar Von Mises stress pro�les, which are constant along z=0. Again, the
suitability of the explicit algorithms of Section 3.3 for the stress update is illustrated with this
qualitative comparison.

4.2. Coining test

In this test, a coining process is simulated.11 A metallic disk, with a radius of 30mm and
a height of 10mm, is deformed by a punch 12mm in radius, see Figure 5. The disk is made
of an elastoplastic material with elastic modulus E=200GPa, Poisson’s coe�cient �=0·3, yield
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stress �y = 250MPa and plastic modulus Ep = 1GPa. Both the punch and the die are rigid. Perfect
friction (stick) conditions are assumed in the punch-disk and disk-die interfaces. An axisymmetric
analysis is performed to model a 60 per cent height reduction. The �nite element mesh is made
of 8× 20 eight-noded elements, with 2× 2 Gauss points.
Both quasistatic and transient simulations have been performed, to show that the same explicit

algorithms of Section 3.3 can be successfully employed for the convection phase of the stress
update in both types of analyses.
Figure 6 shows the output of an UL quasistatic simulation. It can be seen that, at 36 per cent

height reduction, the �nite elements under the punch corner and in contact with the die become
very distorted, and the analysis cannot proceed. The pattern of material 
ow is also clear from
Figure 6: since there is perfect friction in the two interfaces, the material tends to 
ow outward
from the central part of the disk. The outer part of the disk is relatively una�ected by deformation
and moves in a rather rigid manner.
With the ALE description, on the contrary, the analysis can be completed. Plate 3 shows the

evolution of the ALE mesh and the yield stress. The Godunov-like algorithm is employed for the
convection phase of the ALE stress update. A similar result is obtained with the Lax–Wendro�
algorithm.
To assess the in
uence of dynamic e�ects, various ALE transient simulations of this coining

process have been performed, with punch velocities v ranging from 300 to 0·15m=s. Plate 4 shows
the �nal ALE mesh and yield stress pro�le for di�erent values of v. As in the quasistatic case,

Figure 4(a). Necking test. Relative error in radius reduction vs. bar elongation; full view
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Figure 4(b). Necking test. Relative error in radius reduction vs. bar elongation; zoom

Table I. Necking test. Maximum plastic strain for various simulations

Max. plastic strain Relative error

Lagrangian analysis
Fine mesh 2·28 Reference value
Coarse mesh 1·76 −23%

ALE analysis, coarse mesh
Lax–Wendro� update 2·18 −4%
Godunov update 2·14 −6%

similar results are obtained with the two explicit algorithms for the stress update; the Lax–Wendro�
update is employed in Plate 4.
It is interesting to note that the output of the quasistatic and transient analyses are in good

agreement, in the sense that the last picture of Plate 3 (quasistatic analysis) is the limit case with
null inertia e�ects of the sequence of punch velocities of Plate 4 (transient analysis), both in terms
of deformed shape and yield stress pro�le. This result corroborates the applicability of the explicit
algorithms to both ALE quasistatic and transient analysis, in spite of the inherent di�erences in
the time-marching strategy (implicit vs. explicit).
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Figure 5. Coining test. Problem statement

Figure 6. Coining test, quasistatic analysis. Distorted mesh in an UL computation
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5. CONCLUDING REMARKS

A uni�ed presentation of the Arbitrary Lagrangian–Eulerian (ALE) formulation for quasistatic and
transient analysis has been made. In the general (i.e. transient) case, the governing equations have
convective terms that re
ect the relative motion between mesh and material. In the quasistatic case,
on the contrary, there are no convective terms in the momentum balance (because inertia e�ects
associated to the convective acceleration are neglected), but they are still present in the constitutive
equation (representing the arbitrary mesh motion which is inherent to ALE kinematics).
Numerical time-integration of the governing equations has been performed by means of frac-

tional-step methods, thus treating material and convection terms in two separate phases. It has
been shown that the same explicit algorithms (Lax–Wendro� and Godunov-like) can be employed
for the convection phase of the stress update for both quasistatic and transient problems, in spite
of the di�erent time-marching strategy (implicit for quasistatic, explicit for transient). This means
that there is no need to develop speci�c algorithms for each type of computation. The most
important consequence, however, is that a quasistatic simulation can be upgraded from Updated
Lagrangian to ALE without a signi�cant computational overhead, because the additional features of
the ALE analysis (convection phase and remeshing) are explicit, while the time-integration of the
equilibrium equation is implicit. These ideas are illustrated by means of two numerical examples
in nonlinear solid mechanics, a necking test and a coining test.
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Plate 1. Necking test. Equivalent plastic strain in the neck zone. UL formulation: (a) fine mesh; (b) coarse mesh.
ALE formulation (coarse mesh): (c) Lax–Wendroff update; (d) Godunov-like update
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Plate 3. Coining test, quasistatic analysis. Evolution of the ALE mesh and yield stress
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Plate 4. Coining test, transient analysis. Final ALE mesh and yield stress for various punch velocities v
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