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1. INTRODUCTION

Modelling flow in porous media is needed in many fields of civil and mechanical engineering,

such as geotechnics, subsurface hydrology, pollution emission control and water treatment. A

basic ingredient is Darcy theory, which establishes the proportionality, through a permeability

factor, between flow and gradient of piezometric head [1, 2].

In some applications, the porous domain contains voids (i.e. zones without the porous

skeleton) or “quasi-voids” (i.e. porous zones with a much higher permeability, several orders

of magnitude larger). This is the case, for instance, of binary media consisting of a low-

permeability matrix with high-permeability inclusions [3]. In saturated flow conditions, both

the voids and the pores in the porous skeleton are filled with the fluid under consideration.

One possible approach to model these inclusions is to use a very high permeability (the

real permeability for high-permeability inclusions or a fictitious value for voids). However, it

is a well-known fact that the large variations in permeability lead to ill-conditioning of the

resulting linear system of equations arising from finite element discretization [4]. The large

condition number affects negatively the convergence properties of iterative solvers.

Because of this, a different approach is proposed here: to model inclusions with potential

flow instead of porous media theory. This approach has three clear advantages: (1) no large

permeability is assumed for the inclusions, so there is no ill-conditioning of the matrix and the

performance of the iterative solvers greatly improves; (2) the flow in the porous medium and

in the inclusions is computed separately so the computational efficiency increases (two smaller

systems of equations are solved instead of a single larger system); (3) localized head drops in

the inclusions can be prescribed in a very simple way.

The proposed approach only requires one additional physical hypothesis: head is uniform
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in the interface of the inclusion with the porous medium. This poses no restriction on the

applicability of the proposed approach, because it is equivalent to considering the inclusion

as an infinitely permeable porous medium. The two flow problems (i.e. in the porous medium

and in the inclusions)are connected simply by imposing the continuity of flow in the interface.

The outline of paper follows. The flow in the porous medium in the presence of inclusions

is covered in section 2. First, section 2.1 treats inclusions with no head drop; then section 2.2

describes how to prescribe the head drop in the inclusions. Section 3 deals with the flow in

the inclusions. The computational aspects are discussed in section 4. The proposed approach

is illustrated in section 5 by means of three numerical examples. The concluding remarks of

section 6 close the paper.

2. FLOW IN THE POROUS MEDIUM

Flow in porous media is modelled by means of Darcy equation [1, 2]

vpor = −k∇h (1)

where h is the piezometric head, k is the permeability, vpor is the Darcy velocity and ∇ is the

usual nabla operator. An isotropic permeability, represented by the scalar k, is assumed for

presentation purposes. The approach proposed here, however, can also be applied to the general

case of anisotropic permeability, represented by a symmetric positive-definite permeability

tensor.

Assuming there are no sinks or sources, replacing equation (1) into the continuity equation

results in

∇ · (k∇h) = 0 (2)
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to the real permeability in the case of quasi-voids and to a fictitious porous material in the

case of voids). However, the large difference in permeabilities between Ωpor and Ωvoid leads to

ill-conditioning in the finite element equations.

A different approach is proposed here. The porous and void domains are treated separately.

First, the flow in the porous medium Ωpor is computed. To do so, only one additional hypothesis

is required: the piezometric head h is assumed to be uniform in the interface ΓI:

h = hinter in ΓI (5)

Note that hinter is unknown and that ΓI can be disjoint, see figures 1(b) and 1(c).

Hypothesis (5) is physically sound; it amounts to regarding the inclusion as a porous material

with an infinite permeability, as discussed in the appendix I and illustrated in section 5 with

some numerical examples.

Finite element discretization of equation (2) yields

Kporh = 0 (6)

where h is the vector of nodal head values and Kpor is the permeability matrix. This matrix is

singular because the constraints on h are still not accounted for. These constraints are linear

and can be written in matrix format like

Cporh = bpor (7)

where Cpor is a rectangular matrix with numcon (number of constraints) rows and numnp

(number of nodal points) columns, and bpor is a vector of numcon prescribed values.

There are two types of linear constraints in our problem:

1. Dirichlet boundary conditions. The discrete version of equation (3) is

hI = hpres
I

for all I ∈ D (8)
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where D indexes the nodes in ΓD. The entries in Cpor and bpor are cII = 1 and bI = hpres
I

for I ∈ D.

2. Uniform head at the interface. The discrete version of equation (5) is

hI = hinter for all I ∈ I (9)

where I indexes the nodes in ΓI. Since hinter is an unknown, this equation cannot be

directly used to define the entries in Cpor and bpor. First, it must be rewritten into

hI − hR = 0 for an arbitrary R ∈ I and for all I ∈ I − {R} (10)

Equation (10) simply states that the value of h in all the nodes in ΓI must be the same

than for an arbitrary, reference node R. The entries in Cpor and bpor are cII = 1,

cIR = −1, bI = 0.

Imposing the linear constraints (7) into the singular system (6) renders a regular system.

Two strategies may be used: the Lagrange-multiplier technique or an ad-hoc transformation

method. These techniques are discussed in detail in section 4.

Remark 1. For simplicity, the case of a single inclusion has been assumed in this section, but

the extension to multiple inclusions is straightforward. Consider for instance the case of two

inclusions, with interfaces ΓI1 and ΓI2 . The linear constraints are

hI − hR1
= 0 for an arbitrary R1 ∈ I1 and for all I ∈ I1 − {R1}

hI − hR2
= 0 for an arbitrary R2 ∈ I2 and for all I ∈ I2 − {R2}

where I1 and I2 index the nodes in ΓI1 and ΓI2 respectively.
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2.2. Prescribing the head drop in the inclusions

Up to now, we have assumed there is no head drop in the inclusions, see equation (5). With

the proposed approach, however, it is very simple to prescribe a non-zero head drop in each

inclusion. This is needed in some applications to model the localized head drop in the inclusion

(related, for instance, to the shape and tortuosity of the inclusion, or to the use of fabrics of

low permeability to materialize the interface between the porous medium and the inclusion in

industrial devices).

Consider, for instance, the inclusion of figure 1(b), with a disjoint interface ΓI = ΓIa ∪ ΓIb .

To prescribe the head drop in the inclusion, the constraints

h =hintera in ΓIa

h =hinterb in ΓIb

∆h =hinterb − hintera





(11)

are needed, where hintera and hinterb are the unknown uniform piezometric heads at ΓIa and

ΓIb respectively and ∆h is the prescribed head drop in the inclusion.

Following the same arguments of section 2.1, the constraints (11) can be recast as

hI − h
R̂

= 0 for an arbitrary R̂ ∈ Ia and for all I ∈ Ia − {R̂}

hI − h
R̂

= ∆h for all I ∈ Ib





(12)

where Ia and Ib index the nodes in ΓIa and ΓIb respectively. The non-zero entries in matrix

Cpor and vector bpor, see equation (7), are cII = 1 and c
IR̂

= −1 for an arbitrary R̂ ∈ Ia and

for all I ∈ Ia − {R̂} ∪ Ib and bI = ∆h for all I ∈ Ib.
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3. FLOW IN THE VOID INCLUSIONS

Once the piezometric head h is obtained, the velocity field vpor in the porous medium can

be computed from equation (1). In many applications, this information is enough. This is the

case, for instance, if the goal of the analysis is determining the input and output flows in the

Dirichlet boundaries.

For other applications, on the contrary, the velocity field in the inclusions is also needed.

When dealing with transport phenomena, for instance, the velocity in the whole domain, not

only in the porous medium, is required to represent convective transport. This section describes

how to determine the velocity field in the inclusions.

Assuming a potential flow, the velocity in the void inclusion vvoid is expressed as

vvoid = −∇φ (13)

where φ is the potential. Replacement of equation (13) in the continuity equation results in

the Laplacian equation

∇2φ = 0 (14)

The boundary condition for this equation is derived by prescribing the continuity of flux in

the interface ΓI:

vpor · npor + vvoid · nvoid = 0 (15)

where npor and nvoid are the unit outward normals in the interface associated to the porous

medium and the void inclusion (nvoid = −npor), see figure 2. This same equation is used in [5]

to couple Navier-Stokes and Darcy models.

By using the gradient relations (1) and (13), equation (15) can be written as a non-
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discrete counterpart of equation (18) is simply φR = 0 for an arbitrary node R, so Cvoid is a

one-row matrix with c1R = 1 and c1I = 0 for I 6= R.

The only open question is how to compute the vector fvoid of nodal fluxes. The way to

proceed depends on whether one chooses the Lagrange-multiplier technique or the ad-hoc

transformation method for the porous domain, see section 4. In both cases, however, it is

useful to rewrite equation (16) as

fvoid|ΓI
= −fpor|ΓI

(20)

to emphasize the continuity of flux at the interface.

4. COMPUTATIONAL ASPECTS

4.1. The Lagrange-multiplier technique

In the Lagrange-multiplier technique [6, 7, 8], the constraints are added to the original system

of equations. For the flow in the porous medium, for instance, the unconstrained system (6) of

order numnp is enlarged by adding the numcon constraints of equation (7) and numcon unknowns

(the Lagrange multipliers λ, one per constraint):



Kpor CT

por

Cpor 0








h

λ





=





0

bpor





(21)

Note that the first block-equation in (21) reads Kporh = −CT
porλ. In fact, the Lagrange

multipliers represent the “reactions” associated to the linear constraints. Thus, the nodal

fluxes in the porous domain are simply

fpor = −CT

porλ (22)
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The flow in the inclusions is treated in a similar way. It follows directly from equations (20)

and (22) that the nodal fluxes at the interface ΓI for the void problem are simply

fvoid|ΓI
= CT

porλ|ΓI
(23)

The rest of the components of fvoid (i.e. for nodes not in ΓI) are zero.

The Lagrange-multiplier technique has two widely known drawbacks: (1) the dimension

of the original problem is increased and (2) the enlarged matrix is not positive definite. It

has, on the other hand, two clear advantages: (1) general linear constraints can be handled

in a straightforward manner and (2) it is a technique naturally adapted to object-oriented

programming [8, 9].

The Lagrange-multiplier approach is summarized in figure 3.

4.2. An ad-hoc transformation method

The basic idea of transformation methods is to employ the constraints associated to the

boundary conditions to transform the singular, unconstrained matrix into a regular matrix.

The order of the problem is either maintained [10, 11, 12] or reduced [13, 14].

This approach has two clear advantages: (1) the dimension of the original problem is not

increased, (2) the regular matrix is symmetric positive definite.

The main disadvantage of most transformation methods is that they are rather cumbersome

to implement in presence of general, multi-point constraints. In a recent contribution [15],

Ainsworth presents a transformation method of the first type (order is maintained) which

handles, in a systematic way, general linear constraints.

It must be noted, however, that our linear constraints are rather simple. This has motivated

an ad-hoc, computationally efficient transformation method, illustrated here for the case of
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Flow in the porous medium

• Assemble permeability matrix Kpor from elementary matrices Ke
por

• Build constraint matrix Cpor and constraint vector bpor associated to:

– Dirichlet boundary conditions [equation (8)]

– Inclusions with no head drop [equation (10)]

– Inclusions with prescribed head drop [equation (12)]

• Solve enlarged linear system (21):


Kpor CT

por

Cpor 0








h

λ





=





0

bpor





• Compute Darcy velocity vpor [equation (1)]

Flow in the inclusions

• Assemble Laplacian matrix Kvoid from elementary matrices Ke
void

• Build constraint matrix Cvoid associated to one node per inclusion prescribed to zero

[equation (18)]

• Build flux vector fvoid [equation (23)]

• Solve enlarged linear system:


Kvoid CT

void

Cvoid 0








φ

λ





=





fvoid

0





• Compute velocity vvoid [equation (13)]

Figure 3. The Lagrange-multiplier technique
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Flow in the porous medium

• Assemble reduced matrix K′

por from elementary matrices Ke
por

• Assemble reduced flux vector f ′por associated to:

– Non-homogeneous Dirichlet boundary conditions

– Inclusions with prescribed head drop

• Solve reduced linear system K′

porh
′ = f ′por

• Build full vector of nodal head values h

• Compute Darcy velocity vpor

Flow in the inclusions

• Compute full vector of nodal fluxes fpor

• Assemble reduced matrix K′

void from elementary matrices Ke
void

• Build reduced vector of nodal fluxes f ′void from fpor

• Solve reduced linear system K′

voidφ′ = f ′void

• Build full vector of nodal potential values φ

• Compute velocity vvoid

Figure 4. The ad-hoc transformation method

two inclusions (with and without head drop). The basic steps are summarized in figure 4. A

more detailed algorithm in pseudo-code can be found in appendix II.
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Dirichlet boundary conditions The one-point Dirichlet boundary conditions of equations (8)

and (18) are treated via the usual row-and-column adjustment. In the porous domain (non-

homogeneous conditions), the known term −kIJhpres
J

is added to the RHS of equation (6) for

all J ∈ D (i.e. for all the nodes in the Dirichlet boundary ΓD), and row and column J are

removed from the system. In the inclusions (homogeneous conditions), we simply remove rows

and columns R and R̂.

Uniform head at the interface (porous domain) Only one unknown hR is required to describe

the head at the interface of an inclusion, see equation (10). This means that, for all J ∈ I, the

unknowns hJ can be condensated into a single unknown hR simply by adding up all rows J

into row R and all columns J into column R.

This also holds for inclusions with a prescribed head drop, see equation (12): the head in

the interface Ia ∪Ib is represented by the unknown h
R̂
. The known terms −kIJ∆h associated

to the head drop are assembled in the RHS for all the nodes of ΓIa .

Reduced system (porous domain) The resulting regular system is

K′

porh
′ = f ′por (24)

where h′ is the reduced vector of nodal head values (with known Dirichlet values excluded,

only one value per interface), K′

por is the reduced permeability matrix and f ′por is the reduced

vector of nodal fluxes which contains the terms −kIJhpres
J

and −kIJ∆h.

From a practical viewpoint, it is very important to remark that there is no need to assemble

the singular system (6) and then start suppressing and condensating rows and columns as

indicated; the reduced system (24) can be directly assembled with an adequate assignment

of equation numbers to nodes [16] (no equation assigned to Dirichlet nodes; same equation
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assigned to all nodes in the interface of each inclusion).

Nodal fluxes in the interface With the transformation method, the fluxes in the interface

nodes are not obtained together with the vector of piezometric heads h. However, they can be

computed a posteriori by a simple matrix-vector product

fpor = Kporh (25)

and fvoid can be constructed from here as commented in section 4.1.

Remark 2. Note that, in reality, only the components of fpor in the interface are really needed.

The vector fpor|ΓI
can be assembled, without the global matrix-vector product of equation (25),

by using only the relevant elementary matrices (i.e. associated to elements with nodes in ΓI).

Reduced system (inclusions) The resulting regular system is

K′

voidφ′ = f ′void (26)

where rows and columns R and R̂ have been removed.

5. NUMERICAL EXAMPLES

The proposed approach for the treatment of void inclusions in a porous medium is illustrated

here by means of three numerical examples. The ad-hoc transformation method of section

4.2 is used in all the computations to handle the boundary conditions. The resulting linear

systems are solved with the diagonally preconditioned conjugate gradient (DPCG) method

[17] with a convergence tolerance for the relative error of 0.5 × 10−7 in “displacements” and

0.5 × 10−6 in “forces”. For simplicity, dimensionless variables are used, although this is by no

means necessary.





NUMERICAL MODELLING OF VOID INCLUSIONS IN POROUS MEDIA 17

A B

A' B'

ΓIa
ΓIb

C C'

Porous zone Porous zone

Void inclusion

h=10

No flow

No flow

h=0

Figure 7. 2D example with one exterior void inclusion. The void inclusion with two fins separates the

two porous zones. The finite element mesh has 701 elements and 409 nodes.

piezometric head and velocity fields. Since the piezometric head is uniform in the interface, the

isolines “wrap” the void inclusion, see figure 6(a). Note also that the flow across the inclusion

is larger than across the upper and bottom porous zones, see figure 6(b).

5.2. Two-dimensional domain with one exterior void inclusion

In the second example, two blocks of porous media are separated by a void inclusion with two

fins, see figure 7. As in the previous example, Dirichlet boundary conditions and homogeneous

Neumann boundary conditions are prescribed respectively in the two edges and the two lateral

walls of the domain. Figure 7 also shows the structured mesh of 701 triangular elements and

409 nodes (due to symmetry, the computational domain is half of the physical domain).

Again, a reference permeability kpor = 1 is taken for the porous domain. In the first

analysis, no head drop is prescribed in the void inclusion. This inclusion is treated with the

two approaches discussed in this paper: (i) as a fictitious porous medium with permeability

kvoid = 10nkpor, with increasing values of n (classical approach); (ii) with potential flow

(approach proposed here).

The effect of power n on the simulation results is depicted in figure 8. Figure 8(a) shows the
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velocity field for n = 0, n = 5 and the proposed approach. Taking n = 0 (i.e. kvoid = kpor), the

overall permeability of the domain, and hence the velocity, are underestimated. With n = 5

and the proposed approach, on the contrary, the same results are obtained. Figure 8(b) shows

the head profile along interfaces ΓIa and ΓIb for n = 0, . . . , 5 and the proposed approach.

Again, increasing n leads to the same solution than using potential flow for the inclusion. Note

also that the head is uniform in each interface for large values of n. This result corroborates

the validity of hypothesis (5), which is justified in Appendix I on physical terms. Since no

head drop is prescribed in the inclusion, the uniform head is the same for the two interfaces,

hintera = hinterb .

Table I summarizes the convergence results. Increasing the fictitious permeability kvoid

clearly affects the conditioning of the permeability matrix: indeed, a tenfold increase in kvoid

results in a tenfold increase in the condition number, see table I(a). This ill-conditioning has a

moderate impact in the required number of iterations for this simple 2D example. This is not

the case in larger, 3D problems, as illustrated in section 5.3.

With the proposed approach there is no ill-conditioning, because the void inclusion is not

modelled with a large fictitious permeability, see table I(b). Note also that the aggregate

number of iterations is similar to that of the fictitious-permeability approach. However, since

two smaller linear systems (one for the porous domain and one for the void inclusion) instead of

a single, larger linear system (for the whole domain) are solved, a similar number of iterations

translates into a significantly smaller computational cost.

The effect of n on convergence can also be seen in figure 9, where the relative residual

error ||rk||2/||b||2 (where r is the residual vector, b is the RHS vector and || · ||2 denotes the

Euclidean or 2-norm) and the approximate relative error in the solution, ||xk−xk+1||2/||x
k+1||2
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Table II. 3D example. Condition number of linear systems and number of iterations for (a) different

values of the inclusion permeability and (b) the proposed approach. Ill-conditioning due to large

permeability has a significant impact in convergence behaviour

Permeability of inclusion: kvoid = 10nkpor

n cond(K′) iter CPU time (s) n cond(K′) iter CPU time (s)

0 4.00 × 104 218 6.5 3 2.60 × 107 286 7.1

1 2.78 × 105 241 6.6 4 2.60 × 108 319 8

2 2.62 × 106 266 7.4 5 2.60 × 109 337 8.5

(a)

Proposed approach

Material cond(K′) iter CPU time (s)

Porous 2.43 × 103 148 —

Inclusion 5.91 × 103 35 —

Total — 183 4.6

(b)

6. CONCLUDING REMARKS

The use of potential flow leads to an efficient treatment of void inclusions in a porous medium.

There is no need to use a large fictitious permeability to model the inclusion, so ill-conditioning

in the linear system is precluded. This clearly improves the convergence of iterative solvers,

especially in large 3D analyses.

The proposed approach can be regarded as a domain decomposition technique, in the sense

that two sub-problems (one for the porous domain and one for the inclusions) are solved.
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Continuity of flux is invoked to link the two sub-problems. The resulting boundary conditions

can be handled via either the Lagrange-multiplier technique or an ad-hoc transformation

method. With this transformation method, discussed in full algorithmic detail, it is very

straightforward to implement the proposed approach in a standard finite element code for

porous flow analysis.

Besides computational efficiency, another advantage of the decomposition approach

suggested here is that the head drop in the inclusions can be prescribed in a very simple

way, as an additional input. There is no need to translate the desired head drop into an

equivalent fictitious permeability for the inclusion.
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APPENDIX II: PSEUDO-CODE FOR THE AD-HOC TRANSFORMATION METHOD

Figure 16 contains a detailed pseudo-code version of the proposed ad-hoc transformation

method. Following the notation introduced by Hughes [6], we use letters A and B to denote

global node numbers, a and b for local node numbers, P and Q for equation numbers and e

for element numbers. The relation between these four numberings is given by arrays IEN, ID

and LM:

IEN: elements node array; IEN(a, e) = A

ID: destination array; ID(A) = P

LM: location matrix; LM(a, e) = P

Since two linear systems are solved (one for the porous domain and one for the inclusions),

two different destination arrays (IDpor and IDvoid) and location matrices (LMpor and LMvoid)

are needed.

The key issue in this algorithm is the proper assignment of equation numbers to nodes, steps

1 and 7. The rest is very standard in finite element codes. As a consequence, implementing

this algorithm into an existing finite element code is a straightforward task.

% FLOW IN THE POROUS MEDIUM
% 1. Assign equation numbers P to nodes I

P = 0
forall nodes I in Ωpor

I ∈ D =⇒ IDpor(I) = 0
I = R =⇒ P = P + 1; IDpor(I) = P
I ∈ I − {R} =⇒ IDpor(I) = IDpor(R)

I = R̂ =⇒ P = P + 1; IDpor(I) = P

I ∈ Ia − {R̂} ∪ Ib =⇒ IDpor(I) = IDpor(R̂)
otherwise =⇒ P = P + 1; IDpor(I) = P

end % forall I
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%
% 2. Compute reduced matrix K′

por and reduced vector f ′por

forall elements e in Ωpor

forall nodes a in element
A = LMpor(a, e)
A = 0 =⇒ next a
forall nodes b in element

B = LMpor(b, e)
I = IEN(b, e)
Compute Ke

por(a, b)
I /∈ D =⇒ K′

por(A, B) = K′

por(A, B) + Ke

por(a, b)
I ∈ D ∪ Ib =⇒ f ′por(A) = f ′por(A) − Ke

por(a, b)bpor(I)
end % forall b

end % forall a
end % forall e

%
% 3. Solve the linear system K′

porh
′ = f ′por

%
% 4. Build vector of nodal head values h from h′ and bpor

forall nodes I in Ωpor

P = IDpor(I)
I ∈ D =⇒ h(I) = bpor(I)
I ∈ Ib =⇒ h(I) = h′(P ) + bpor(I)
otherwise =⇒ h(I) = h′(P )

end % forall I
%
% 5. Compute the Darcy velocity vpor

%
% FLOW IN THE INCLUSIONS
% 6. Compute vector of nodal fluxes fpor

forall elements e in Ωpor

forall nodes a in element
I = IEN(a, e)
I /∈ I ∪ Ia ∪ Ib =⇒ next a
forall nodes b in element

J = IEN(b, e)
Compute Ke

por(a, b)
fpor(I) = fpor(I) + Ke

por(a, b)h(J)
end % forall b

end % forall a
end % forall e
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%
% 7. Assign equation numbers P to nodes I

P = 0
forall nodes I in Ωvoid

I ∈ {R, R̂} =⇒ IDvoid(I) = 0
otherwise =⇒ P = P + 1; IDvoid(I) = P

end % forall I
%
% 8. Compute reduced matrix K′

void and reduced vector f ′void
forall elements e in Ωvoid

forall nodes a in element
A = LMvoid(a, e)
A = 0 =⇒ next a
forall nodes b in element

B = LMvoid(b, e)
I = IEN(b, e)
Compute Ke

void(a, b)

I /∈ {R, R̂} =⇒ K′

void(A, B) = K′

void(A, B) + Ke

void(a, b)

I ∈ (I − {R}) ∪ (Ia − {R̂}) ∪ Ib =⇒ f ′void(B) = −fpor(I)
end % forall b

end % forall a
end % forall e

%
% 9. Solve the linear system K′

voidφ′ = f ′void
%
% 10.Build vector of nodal potential values φ from φ′

forall nodes I in Ωvoid

P = IDvoid(I)

I ∈ {R, R̂} =⇒ φ(I) = 0
otherwise =⇒ φ(I) = φ′(P )

end % forall I
%
% 11.Compute the velocity vvoid

Figure 16. Pseudo-code of the ad-hoc transformation method
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