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Abstract. We present a general formulation for incompressible fluid flow analysis
using the finite element method (FEM). The necessary stabilization for dealing with
convective effects and the incompressibility condition are introduced via the Finite
Calculus (FIC) method using a matrix form of the stabilization parameters. This
allows to model a wide range of fluid flow problems for low and high Reynolds
numbers flows without introducing a turbulence model. Examples of application to
the analysis of incompressible flows with moderate and large Reynolds numbers are
presented.

Key words: Stabilized formulation, incompressible fluid, finite calculus, finite ele-
ment method, high Reynold’s numbers, turbulence model.

1 INTRODUCTION

Much effort has been spent in developing the so called stabilized numerical meth-
ods overcoming the two main sources of instability in incompressible flow analysis,
namely those originated by the high values of the convective terms and those induced
by the difficulty in satisfying the incompressibility condition.

The solution of above problems in the context of the finite element method (FEM)
has been attempted in a number of ways. The first attempts to correct the underdif-
fusive character of the Galerkin FEM for high convection flows were based in adding
some kind of artificial viscosity terms to the standard Galerkin equations [1,2].

A popular way to overcome the problems with the incompressibility constraint is
by introducing a pseudo-compressibility in the flow and using implicit and explicit
algorithms developed for this kind of problems such as artificial compressibility
schemes [3–5] and preconditioning techniques [6]. State of the art FEM schemes for
fluid flow analysis with good stabilization properties for the convective and incom-
pressibility terms are based in Petrov-Galerkin (PG) techniques. The background of
PG methods are the non-centred (upwind) schemes for computing the first deriva-
tives of the convective operator in finite difference and finite volume methods [7,8].
A general class of stabilized PG FEM has been recently developed where the stan-
dard Galerkin variational form of the momentum and mass balance equations is
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extended with adequate residual-based terms in order to achieve a stabilized numer-
ical scheme. References [9–30] list some of the more popular stabilized FEM of this
kind. A review of many of these methods can be found in [1,31].

In this paper a stabilized FEM for incompressible flows is derived via a finite
calculus (FIC) approach [32,33]. The FIC method is based in invoking the balance
of fluxes in a fluid domain of finite size. This introduces naturally additional terms in
the classical differential equations of momentum and mass balance of infinitesimal
fluid mechanics which are a function of characteristic length dimensions related
to the element size in the discretized problem. The FIC terms in the modified
governing equations provide the necessary stabilization to the discrete equations
obtained via the standard Galerkin FEM. The FIC/FEM formulation allows to use
low order finite elements (such as linear triangles and tetrahedra) with equal order
approximations for the velocity and pressure variables.

The FIC/FEM formulation has proven to be very effective for the solution of a
wide class of problems, such as convection-diffusion [32–39] and convection-diffusion-
reaction [40–42] involving arbitrary high gradients, incompressible flow problems
accounting for free surface effects and fluid-structure interaction situations [32,33,43–
51] and quasi and fully incompressible problems in solid mechanics [52,53].

The FIC equations for incompressible flow derived in previous works of the au-
thors assumed that the dimensions of the domain where the momentum conserva-
tions law was enforced remain the same independently of the direction along which
balance of momentum is imposed. As a consequence, each of the resulting FIC mo-
mentum equations contain the same characteristic dimensions which can be grouped
in a characteristic distance vector. In this paper, a refined FIC momentum equations
are derived by accepting that the dimensions of the momentum balance domain are
different for each of the momentum equations. This introduces a matrix form of
the characteristic distances and of the corresponding FIC terms which have better
intrinsic stabilization properties.

The idea of a matrix form of the stabilization parameters is close to the element-
matrix-based and element-vector-based stabilization parameters proposed in [54]
where different intrinsic time parameters wsere defined separately for each degree of
freedom of the equation system.

Stabilized FEM have been successfully used in the past to solve a wide range
of fluid mechanics problems. The intrinsice dissipative properties of the stabiliza-
tion terms (which can interpreted as an additional viscosity) typically suffices to
yield good results for low and moderate values of the Reynolds number (Re). For
high values of Re most stabilized FEM fail to provide physically meaningful results
and the numerical solution is often unstable or inaccurate. The introduction of a
turbulence model is mandatory in order to obtain meaningful results in these cases.

The relationship between the additional dissipation introduced by the turbulence
model and the intrinsic dissipative properties of stabilized FEM is an open topic
which is attracting increasing attention in the CFD community. It is clear that
both remedies (the turbulence model and the stabilization terms) play a similar role
in the numerical solution, i.e. that of ensuring a solution which is “physically sound”
and as accurate as possible.

It is our belief that the matrix stabilization terms introduced by the FIC/FEM
formulation here presented allow to model accurately high Re number flows without
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the need of introducing any turbulence model. The background of this belief origi-
nates in the positive experiences in the application of a very similar formulation for
solving advection-diffusion and advection-diffusion-reaction problems with arbitrary
sharp gradients without introducing any transverse dissipation terms [39,41]. The
extension of these ideas to the Navier-Stokes equations described here provides a
straightforward procedure for solving a wide class of flow problems from low to high
Reynolds numbers, as demonstrated by the good results presented in the paper.

The layout of the paper is the following. In the next section the FIC equations
for incompressible flows with matrix stabilization terms are presented. The finite
element discretization is introduced and the resulting matrix equations are detailed.
A fractional step scheme for the transient solution is detailed. Examples of applica-
tions to the 2D analysis of flows passing a backward facing step and a cylinder at
different Reynolds numbers are presented.

2 GENERAL FIC EQUATIONS FOR VISCOUS INCOMPRESSIBLE
FLOW

The FIC governing equations for a viscous incompressible fluid can be written in
an Eulerian frame of reference as

Momentum

rmi
− 1

2
hij

∂rmi

∂xj
= 0 in Ω (1)

Mass balance

rd − 1

2
hj

∂rd

∂xj
= 0 in Ω (2)

where

rmi
= ρ

(
∂ui

∂t
+ uj

∂ui

∂xj

)
+

∂p

∂xi
− ∂sij

∂xj
− bi (3a)

rd =
∂ui

∂xi
i, j = 1, nd (3b)

Above Ω is the analysis domain, nd is the number of space dimensions (nd = 2 for
2D problems), ui is the velocity along the ith global axis, ρ is the (constant) density
of the fluid, p is the absolute pressure (defined positive in compression), bi are the
body forces and sij are the viscous deviatoric stresses related to the viscosity µ by
the standard expression

sij = 2µ

(
ε̇ij − δij

1

3

∂uk

∂xk

)
(4)

where δij is the Kronecker delta and the strain rates ε̇ij are

ε̇ij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
(5)
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The FIC boundary conditions are

njσij − ti +
1

2
hijnjrmi

= 0 on Γt (6a)

uj − up
j = 0 on Γu (6b)

and the initial condition is uj = u0
j for t = t0.

Summation convention for repeated indices in products and derivatives is used
unless otherwise specified.

In Eqs.(13) and (14) ti and up
j are surface tractions and prescribed displacements

on the boundaries Γt and Γu, respectively, nj are the components of the unit normal
vector to the boundary and σij are the total stresses given by σij = sij − δijp.

The hij and hj are characteristic distances of the domain where balance of mo-
mentum and mass is enforced. In Eq.(7) these lengths define the domain where
equilibrium of boundary tractions is established [32]. In the discretized problem the
characteristic distances become of the order of the typical element dimensions. Note
that by making these distances equal to zero the standard infinitessimal form of the
fluid mechanics equations is recovered [1,7,31].

Eqs.(1)–(6) are the starting point for deriving stabilized FEM for solving the
incompressible Navier-Stokes equations. The underlined FIC terms in Eq.(1) are
essential to overcome the numerical instabilities due to the convective terms in the
momentum equations, whereas the underlined terms in Eq.(2) take care of the in-
stabilities due to the incompressibility constraint. An interesting feature of the FIC
formulation is that it allows to use equal order interpolation for the velocity and
pressure variables [43–53].

Remark 1. In previous work of the authors the characteristic distances in the mo-
mentum equations had a vector form, i.e. the FIC momentum equations were
written as

ri − 1

2
hj

∂ri

∂xj

= 0 (7a)

or

ri − 1

2
hj∇ri = 0 (7b)

where (for 2D problems) h = [h1, h2]
T is the characteristic length vector

[32,33,43].

The difference of Eqs.(7) with Eq.(1) is that the characteristic distances have
now a matrix form, i.e. the expanded form of the momentum equations (1) is
(for 2D problems)

r1 − 1

2

(
h11

∂r1

∂x1
+ h12

∂r1

∂x2

)
= 0

r2 − 1

2

(
h21

∂r1

∂x1
+ h22

∂r1

∂x2

)
= 0

(8)

The rationale of Eqs.(8) is briefly explained in the Appendix.
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The matrix of stabilization parameters H is defined as (for 2D problems)

H =

[
h11 h12

h21 h22

]
(9)

Remark 2. Note that the characteristic distances in the FIC mass conservation
equation (2) have a vector form. As mentioned above distances h1 and h2 in
Eq.(2) (for 2D problems) denote the dimensions of the domain where balance
of mass is globally enforced (see Appendix). This is a basic difference with
the momentum equations where the momentum balance law is applied along
each global coordinate direction.

2.1 Stabilized integral forms

From the momentum equations it can be obtained [43,45]

∂rd

∂xi
� hii

2ai

∂rmi

∂xj
, no sum in i (10a)

where

ai =
2µ

3
+

ρuihi

2
, no sum in i (10b)

Substituting Eq.(15) into Eq.(8) and retaining the terms involving the derivatives
of rmi

with respect to xi only, leads to the following alternative expression for the
stabilized mass balance equation

rd −
nd∑
i=1

τi
∂rmi

∂xi
= 0 (11)

with

τi =

(
8µ

3hiih̄i

+
2ρui

hii

)−1

(12)

The τi’s in Eq.(11) when multiplied by the density are equivalent to the intrinsic
time parameters, seen extensively in the stabilization literature. The interest of
Eq.(11) is that it introduces the first space derivatives of the momentum equations
into the mass balance equation. These terms have intrinsic good stability properties
as explained next.

The weighted residual form of the momentum and mass balance equations (Eqs.(1)
and (11)) is written as∫

Ω

δui

[
rmi

− hij

2

∂rmi

∂xj

]
dΩ +

∫
Γt

δui(σijnj − ti +
hj

2
njrmi

)dΓ = 0 (13)

∫
Ω

q

[
rd −

nd∑
i=1

τi
∂rmi

∂xi

]
dΩ = 0 (14)

where δui and q are arbitrary weighting functions representing virtual velocities and
virtual pressure fields. Integrating by parts the rmi

terms in Eqs.(13) and (14) leads
to
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∫
Ω

δuirmi
dΩ +

∫
Γt

δui(σijnj − ti)dΓ +

∫
Ω

hij

2

∂δui

∂xj

rmi
dΩ = 0 (15a)

∫
Ω

qrddΩ +

∫
Ω

[
nd∑
i=1

τi
∂q

∂xi
rmi

]
dΩ −

∫
Γ

[
nd∑
i=1

qτinirmi

]
dΓ = 0 (15b)

We will neglect hereonwards the third integral in Eq.(15b) by assuming that rmi

is negligible on the boundaries. The deviatoric stresses and the pressure terms in the
first integral of Eq.(15a) are integrated by parts in the usual manner. The resulting
momentum and mass balance equations are∫

Ω

[
δuiρ

(
∂ui

∂t
+ uj

∂ui

∂xj

)
+

∂δui

∂xj

(
µ

∂ui

∂xj
− δijp

)]
dΩ −

∫
Ω

δuibidΩ−

−
∫

Γt

δuitidΓ +

∫
Ω

hij

2

∂δui

∂xj
rmi

dΩ = 0
(16a)

∫
Ω

q
∂ui

∂xi

dΩ +

∫
Ω

[
nd∑
i=1

τi
∂q

∂xi

rmi

]
dΩ = 0 (16b)

In the derivation of the viscous term in Eq.(16a) we have used the following
identity holding for incompressible fluids (prior to the integration by parts)

∂sij

∂xj
= 2µ

∂εij

∂xj
= µ

∂2ui

∂xj∂xj
(17)

2.2 Convective and pressure gradient projections

The computation of the residual terms are simplified if we introduce the convec-
tive and pressure gradient projections ci and πi, respectively defined as

ci = rmi
− ρuj

∂ui

∂xj

πi = rmi
− ∂p

∂xi

(18)

We can express rmi
in Eqs.(16a) and (16b) in terms of ci and πi, respectively

which then become additional variables. The system of integral equations is now
augmented in the necessary number of equations by imposing that the residual rmi

vanishes (in average sense) for both forms given by Eqs.(18). This gives the final
system of governing equation as:

∫
Ω

[
δuiρ

(
∂ui

∂t
+ uj

∂ui

∂xj

)
+

∂δui

∂xj

(
µ

∂ui

∂xj
− δijp

)]
dΩ −

∫
Ω

δuibidΩ −

−
∫

Γt

δuitidΓ +

∫
Ω

hik

2

∂(δui)

∂xk

(
ρuj

∂ui

∂xj
+ ci

)
dΩ = 0 (19)

∫
Ω

q
∂ui

∂xi
dΩ +

∫
Ω

nd∑
i=1

τi
∂q

∂xi

(
∂p

∂xi
+ πi

)
dΩ = 0 (20)
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∫
Ω

δciρ

(
ρuj

∂ui

∂xj
+ ci

)
dΩ = 0 no sum in i (21)

∫
Ω

δπiτi

(
∂p

∂xi
+ πi

)
dΩ = 0 no sum in i (22)

with i, j, k = 1, nd. In Eqs.(21) and (22) δci and δπi are appropriate weighting
functions and the ρ and τi weights are introduced for convenience.

We note that accounting for the convective and pressure gradient projections
enforces the consistency of the formulation as it ensures that the stabilization terms
in Eqs.(19) and (20) have a residual form which vanishes for the “exact” solution.
Neglecting these terms can reduce the accuracy of the numerical solution and it
makes the formulation more sensitive to the value of the stabilization parameters as
shown in references [51–53].

3 FINITE ELEMENT DISCRETIZATION

We choose C◦ continuous linear interpolations of the velocities, the pressure,
the convection projections ci and the pressure gradient projections πi over 3-noded
triangles (2D) and 4-noded tetrahedra (3D). The linear interpolations are written
as

ui = Nkūk
i , p = Nkp̄k

ci = Nkc̄k
i , πi = Nkπ̄k

i

(23)

where the sum goes over the number of nodes of each element n (n = 3/4 for

triangles/tetrahedra), (̄·)k
denotes the nodal variables and Nk are the linear shape

functions [1].
Substituting the approximations (23) into Eqs.(19)–(22) and choosing the Galer-

king form with δui = q = δci = δπi = N i leads to following system of discretized
equations

M ˙̄u + Hū −Gp̄ + Cc̄ = f (24a)

GT ū + L̂p̄ + Qπ̄πππππππππππππ = 0 (24b)

Ĉū + Mc̄ = 0 (24c)

QT p̄ + M̂π̄πππππππππππππ = 0 (24d)

where
H = A + K + K̂ (25)

If we denote the node indexes with superscripts a, b, the space indices with sub-
scripts i, j, the element contributions to the components of the arrays involved in
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these equations are (i, j = 1, 3 for 3D problems)

Mab
ij =

(∫
Ωe

ρNaN bdΩ

)
δij , Aab

ij =

(∫
Ωe

ρNa(uT∇N b)dΩ

)
δij

Kab
ij =

(∫
Ωe

µ∇∇∇∇∇∇∇∇∇∇∇∇∇∇TNa∇∇∇∇∇∇∇∇∇∇∇∇∇∇N bdΩ

)
δij , ∇∇∇∇∇∇∇∇∇∇∇∇∇∇ =

[
∂

∂x1
,

∂

∂x2
,

∂

∂x3

]T

K̂ab
ij =

(
1

2

∫
Ωe

hij
∂Na

∂xj

(ρuT∇∇∇∇∇∇∇∇∇∇∇∇∇∇N b)dΩ

)
δij , Gab

i =

∫
Ωe

∂Na

∂xi

N bdΩ

C =

[
C1

C2

C3

]
, Cab

i =
1

2

∫
Ωe

hij
∂Na

∂xj
N bdΩ

(26)

L̂ab =

∫
Ωe

(∇∇∇∇∇∇∇∇∇∇∇∇∇∇TNa)[τ ]∇∇∇∇∇∇∇∇∇∇∇∇∇∇N bdΩ , [τ ] =

[
τ1 0 0
0 τ2 0
0 0 τ3

]

Q = [Q1,Q2,Q3] , Qab
i =

∫
Ωe

τi
∂Na

∂xi
N bdΩ no sum in i

Ĉ = [Ĉ1, Ĉ2, Ĉ3] , Ĉab
1 = Ĉab

2 = Ĉab
3 =

∫
Ωe

ρ2Na(uT∇∇∇∇∇∇∇∇∇∇∇∇∇∇N b)dΩ

M̂ab
ij =

(∫
Ωe

τiN
aN bdΩ

)
δij , fa

i =

∫
Ωe

NafidΩ +

∫
Γe

NatidΓ

(27)

It is understood that all the arrays are matrices (except f which is a vector)
whose components are obtained by grouping together the left indices in the previous
expressions (a and possibly i) and the right indices (b and possibly j).

Note that the stabilization matrix K̂ in Eq.(25) adds additional orthotropic dif-

fusivity terms of value ρ
hijul

2
.

The overall stabilization terms introduced by the FIC formulation above pre-
sented have the intrinsic capacity to ensure physically sound numerical solutions for
a wide spectrum of Reynolds numbers without the need of introducing additional
turbulence modelling terms. This interesting property is validated in the solution
of the examples presented in a next section.

3.1 Transient solution scheme

The solution in time of the system of Eqs.(24) can be written in general form as

M
1

∆t
(ūn+1 − ūn) + Hn+θūn+θ −Gp̄n+θ + Cn+θc̄n+θ = fn+θ (27a)

GT ūn+θ + L̂n+θp̄n+θ + Qπ̄πππππππππππππn+θ = 0 (27b)

Ĉn+θūn+θ + Mc̄n+θ = 0 (27c)
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GT p̄n+θ + M̂n+θπ̄πππππππππππππn+θ = 0 (27d)

where Hn+θ = H(un+θ), etc and the parameter θ ∈ [0, 1]. The direct monolitic
solution of Eqs.(27) is possible using an adequate iterative scheme [52,53]. However,
in our work we have used the fractional step method described next.

4 FRACTIONAL STEP METHOD

A fractional step scheme is derived by noting that the discretized momentum
equation (27a) can be split into the two following equations

M
1

∆t
(ũn+1 − ūn) + Hn+θūn+θ − αGp̄n + Cn+θc̄n+θ = fn+θ (28a)

M
1

∆t
(ūn+1 − ũn+1) −G(p̄n+1 − αp̄n) = 0 (28b)

In Eqs.(28) ũn+1 is a predicted value of the velocity at time n + 1 and α is a
variable whose values of interest are zero and one. For α = 0 (first order scheme)
the splitting error is of order 0(∆t), whereas for α = 1 (second order scheme) the
error is of order 0(∆t2) [52]. We have chosen α = 1 for the solution of the examples
presented in the paper.

Eqs.(28) are completed with the following three equations emanating from Eqs.(27b-
d)

GT ūn+1 + L̂np̄n+1 + Qπ̄πππππππππππππn = 0 (29a)

Ĉn+1ūn+1 + Mc̄n+1 = 0 (29b)

QT p̄n+1 + M̂n+1π̄πππππππππππππn+1 = 0 (29c)

The value of ūn+1 obtained from Eq.(28b) is substituted into Eq.(29a) to give

GT ũn+1 + ∆tGTM−1G(p̄n+1 − αp̄n) + L̂npn+1 + Qπ̄πππππππππππππn = 0 (30)

The product GTM−1G can be approximated by a laplacian matrix, i.e.

GTM−1G =
1

ρ
L with Lab =

∫
Ωe

∇∇∇∇∇∇∇∇∇∇∇∇∇∇TNa∇∇∇∇∇∇∇∇∇∇∇∇∇∇N bdΩ (31)

where Lab are the element contributions to L.
The steps of the fractional step scheme are:

Step 1
Eq.(28a) is linearized as

M
ũn+1 − ūn

∆t
+ H̃n+θũn+θ − αGp̄n + C̃n+θc̄n = f̄n+θ (32)

where ũn+θ = θũn+1 + (1 − θ)ūn, H̃n+θ = H(ũn+θ), and C̃n+θ = C(ũn+θ). We have
chosen in our computation θ = 0. For this value, the fractional nodal velocities ũn+1

can be explicitely computed from Eq.(32) by

ũn+1 = ūn − ∆tM−1
d [H̃nūn − αGp̄n + C̃nc̄n − f̄n] (33)
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where Md is the lumped diagonal form of M.

Step 2 Compute p̄n+1 from Eq.(30) as

p̄n+1 = −[L̂n +
∆t

ρ
L]−1[GT ũn+1 − α

∆t

ρ
Lp̄n + Qπ̄πππππππππππππn] (34)

Step 3 Compute ūn+1 explicitly from Eq.(28a) as

ūn+1 = ũn+1 + ∆tM−1
d G(p̄n+1 − αp̄n) (35)

Step 4 Compute c̄n+1 explicitly from Eq.(29b) as

c̄n+1 = −M−1
d Ĉn+1ūn+1 (36)

Step 5 Compute π̄πππππππππππππn+1 explicitly from Eq.(29c) as

π̄πππππππππππππn+1 = −M̂−1
d QT p̄n+1 (37)

Above algorithm has improved stabilization properties versus the standard segre-
gation methods due to the introduction of the laplacian matrix L̂ in Eq.(34) which
emanates from the FIC stabilization terms.

The boundary conditions are applied as follows. No condition is applied in the
computation of the fractional velocities ũn+1 in Eq.(33). The prescribed velocities
at the boundary are applied when solving for ūn+1 in the step 3. The prescribed
pressures at the boundary are imposed by making p̄n equal to the prescribed pressure
values.

5 STOKES FLOW

The formulation for a Stokes flow can be readily obtained simply by neglecting
the convective terms in the general Navier-Stokes formulation. Consequently, the
convective stabilization terms and the convective projection variables are not larger
necessary. Also the intrinsic time parameters τi take now the simpler form (see
Eq.(12)):

τi =
3hiihi

8µ
(38)

The resulting discretized system of equations can be written as (see Eqs.(29))

M ˙̄u + Kū − Gp̄ = f

GT ū + L̂p̄ + Qπ̄πππππππππππππ = 0

QT p̄ + M̂π̄πππππππππππππ = 0

(39)

The fractional step algorithm of the previous section can now be implemented.
We note that convergence of the predictor-corrector scheme is now faster due to the
absence of the non linear convective terms in the momentum equation.

The steady-state form of Eqs.(39) can be expressed in matrix form as[
K −G 0

−GT −L̂ −Q
0 −QT −M̂

] {
ū
p̄
π̄πππππππππππππ

}
=

{
f
0
0

}
(40)
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The system is symmetric and always positive definite and therefore leads to a
non singular solution. This property holds for any interpolation function chosen for
ū, p̄ and π̄πππππππππππππ, therefore overcoming the Babus̆ka-Brezzi (BB) restrictions [1].

A reduced velocity-pressure formulation can be obtained by eliminating the pres-
sure gradient projection variables π̄πππππππππππππ from the last equation to give[

K −G
−GT −(L̂ −QM̂−1QT )

] {
ū
p̄

}
=

{
f
0

}
(41)

The reduction process is simplified by using a diagonal form of matrix M̂. Ap-
plications of this scheme to incompressible solid mechanics problems are reported
in [52,53].

6 COMPUTATION OF THE CHARACTERISTIC DISTANCES

The computation of the stabilization parameters is a crucial issue as they affect
both the stability and accuracy of the numerical solution. The different procedures
to compute the stabilization parameters are typically based on the study of simplified
forms of the stabilized equations. Contributions to this topic are reported in [11–
21,26–31,34,45,54,55]. Despite the relevance of the problem there still lacks a general
method to compute the stabilization parameters for all the range of flow situations.

Recent work of the authors in the application of the FIC/FEM formulation to
convection-diffusion problems with sharp arbitrary gradients [39,41] has shown that
the stabilizing FIC terms take the form of a simple orthotropic diffusion if the balance
equation is written in the principal curvature directions of the solution. Excellent
results were reported in [39,41] by computing first the characteristic length distances
along the principal curvature directions, followed by a standard transformation of
the distances to global axes. The resulting stabilized finite element equations capture
the high gradient zones in the vicinity of the domain edges (boundary layers) as well
as the sharp gradients appearing randomly in the interior of the domain [39,41]. The
FIC/FEM thus reproduces the best features of both the so called transverse (cross-
wind) dissipation or shock capturing methods [56,57].

The numerical computations are simplified without apparent loss of accuracy
if the main principal curvature direction of the solution at each element point is
approximated by the direction of the gradient vector at the element center. The
second principal direction (for 2D problems) is taken in the orthogonal direction to
the gradient. For linear triangles and quadrilaterals these directions are assumed to
be constant within the element [39,41].

Above simple scheme has been extended in this work for the computation of the
characteristic distances hij for the momentum equations. As for the length param-
eters hi in the mass conservation equation, the simplest assumption hi = hii has
been taken. Details of the algorithm for computing hij are given next (the method
is explained for 2D problems although it is readily extendible to 3D problems).

For the i-th momentum balance equation and every step of the fractional step
method described in Section 4:

1. A coordinate system 
ξi
1,


ξi
2 is defined at each element point such that 
ξ1

i is

aligned with the gradient of ui (
ξi
1 = 
∇ui) and 
ξi

2 is orthogonal to 
ξi
1 in anti-

clockwise sense (Figure 1). The angle that 
ξi
1 forms with the global x1 axis is
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Figure 1: Definition of the principal curvature direction �ξi
1 along the gradient of ui.
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Figure 2: Definition of the element characteristic distances li1 and li2 corresponding to the ith
momentum equation.

defined as αi. Recall that upper and lower index i denotes the ith momentum
equation.

2. The element characteristic distances li1 and li2 are defined as the maximum
projections of the element sides along the 
ξi

1 and 
ξi
2 axes, respectively (Figu-

re 2).

3. The characteristic distances hi1 and hi2 are computed as{
hi1

hi2

}
=

[
ci −si

si ci

] {
h̄i1

h̄i2

}
, i = 1, 2 (42)

with ci = cosαi, si = sin αi and the local distances h̄i1 and h̄i2 are

h̄i1 =

(
coth γ̄ij − 1

γ̄ij

)
lij , γij =

ūjlij
2µ

j = 1, 2 (43)

where ū1 and ū2 are the components of the velocity vector along the local axes

ξi
1 and 
ξi

2, respectively (Figure 1).
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7 EXAMPLES

The examples were solved with the Tdyn code where the formulation here pre-
sented has been implemented. The Tdyn code can be downloaded from the webpage
given in [58].

7.1 Backwards facing step at high Reynolds number

Figure 3 shows the geometry of the standard backwards facing step problem.
The boundary conditions were the following: u1 = 1 and u2 = 0 were taken at
the entry while p = 0 was assumed at the exit. Slipping conditions were assumed
at the rest of the vertical and horizontal walls. A value of the kinematic viscosity

ν =
µ

ρ
= 2.1 × 10−5 was taken giving a Reynolds number of Re =

ufreeH

ν
= 47619

for H = 1 and ufree = 1.
Figure 3 also shows the relatively coarse mesh chosen of 30850 three-noded tri-

angular elements and 15426 nodes. The contours of the horizontal and vertical
velocities and details of the velocity vectors are shown in Figures 4 and 5, respec-
tively. Figure 6 shows the distribution of the horizontal velocity along the bottom
line starting from the vertical wall of the step. The point where the horizontal
velocity changes sign indicates the end of the recirculation area.

The length of the circulation area computed from Figure 6 is 6.79. This value
compares very well (3.2%) with the experimental value reported by Kim et al. [59]
(see Table 1). The FIC/FEM results are remarkably accurate in comparison with
other results reported in the literature obtained using K − ε and K-tau turbulence
models [60–63]. We note again that the FIC/FEM formulation does not include any
additional turbulence terms.

Model Length D Error range Average error
Exp. [59] 6.0–7.0
K-ε [60] 5.2 13.3–26% 19.6%
K-ε [61] 5.88 2–16% 9%
K-ε [62] 6.0 0–14% 7%
K-ε [63] 6.2 13.7–11.4% 12.6%
K-Tau [63] 6.82 13.7-2.5% 8.1%
FIC/FEM 6.71 11.8-4.1% 7.9%

Table 1: Backwards facing step. Length of the recirculation distance D for Re = 47619. Com-
parison of the FIC/FEM result with experimental data and with numerical results obtained using
different turbulence models.

7.2 Flow past a cylinder. Computation of the Strouhal unstability

Figure 7 shows the geometry for the analysis of the flow past a cylinder of unit
diameter (D). A unit horizontal velocity is prescribed at the inlet boundary and at
the two horizontal walls. Zero pressure is prescribed at the outlet boundary. The
dimensions of the analysis domain are 27 × 27 units. The origin of the coordinate
system has been sampled at the center of the cylinder located at a distance of 13.1
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Figure 3: Backwards facing step. Geometry and finite element mesh of 30850 three-noded triangles.
Mesh detail at the vicinity of the step.

 

 

Figure 4: Backwards facing step. Contours of horizontal (above) and vertical velocities.

units from the entry wall. Zero velocity is prescribed at the cylinder wall. The
kinematic viscosity is ν = 0.01. Figure 8 shows the mesh of 91316 three-noded
elements used for the computation. A detail of the mesh in the vicinity of the
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D

Figure 5: Backwards facing step. Velocity vectors and recirculation distance D.
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Figure 6: Distribution of the horizontal velocity along the bottom line starting from the vertical
wall of the step. The circle shows the end of the recirculation region.

cylinder is also shown in Figure 8.
The problem has been analyzed first for a value of the horizontal velocity at the

entry of u1 = 1 giving a Reynolds number of Re = 100. Figures 9 and 10 respectively
show the velocity modulus contours and the velocity vectors for t = 100secs.

Figure 11 shows images of the trajectory of a substance over a band of 2.45 units
transported at the entry across the flow for t = 100secs. The picture shows clearly
the oscillatory nature of the flow.

Figure 12 shows the oscillations of the horizontal velocity at the point A with
coordinates (6.7, -1.02) for t = 100secs. The Strouhal number computed from the
shedding frequency n as S = nD

|u| is S = 0.1702. This number compares very well

with the experimental result available in the literature (see Figure 13).
The same problem was analyzed for a value of the kinematic viscosity ν = 0.001
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Figure 7: Flow past a cylinder of unit diameter. Analysis domain and boundary conditions.

Figure 8: Flow past a cylinder. Mesh of 91316 three-noded triangles used for the computations.

giving Re = 1000. The same mesh of 91316 linear triangles of Figure 7 was used.
Figures 14–16 show respectively the velocity modulus contours, the velocity vectors
in the vicinity of the cylinder for t = 100 secs. and the trajectories of a substance
transported across the flow. Figure 17 finally shows the oscillations of the horizontal
velocity at point A. The computed value of the Strouhal number in this case was
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Figure 9: Flow past a cylinder, Re = 100. Contour of the velocity vector modulus for t = 100 secs.

S = 0.2103. This value again coincides well with the reported experimental data
(see Figure 13).

It is a well known fact that for Re > 300 the flow past a cylinder exhibits 3D
features. In [64] results from 2D and 3D computation were compared for Re = 300
and 800. While 3D features were observed even at Re = 300 and more so at
Re = 800, there were no large discrepances between the global flow parameters
(such as drag, lift and Strouhal number) obtained from 2D and 3D computations.
These conclusions justify the results of the 2D computations presented in the paper.

8 CONCLUSIONS

The finite calculus (FIC) form of the fluid mechanics equations is a good start-
ing point for deriving stabilized FEM for solving a variety of incompressible fluid
flow problems. The matrix stabilization terms introduced by the FIC formulation
here presented allow to obtain physically sound solutions in the presence of sharp
gradients occuring for high Reynolds numbers without the need of introducing a tur-
bulence model. Good numerical solutions have been obtained in the 2D examples
solved with relatively coarse meshes for moderate and high values of the Reynolds
number. These preliminary results reinforce our idea that the stabilization terms
introduced by the FIC formulation suffice to provide good results for problems for
which turbulence models are required using alternative numerical methods. These
results also confirm the close link between the stabilized methods and turbulence
models, which surely will be the object of much research in the near future.
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Figure 10: Flow past a cylinder, Re = 100. Velocity vectors for t = 100 secs.

APPENDIX

The FIC momentum equations in two dimensions (2D) are obtained by expressing
the balance of momentum along the horizontal and vertical directions in the finite
domains shown in Figures A.1 and A.2, respectively.

The balance equation is written for each finite domain as∑
fidΩ =

∂

∂t

∫
Ω

ρuidΩ +

∫
Γ

(ρui)u
TndΓ i = 1, 2 (A.1)

where fi includes the forces due to the stresses acting on the boundary of the balance
domain and the body forces per unit area (Figures A.1 and A.2).

Expressing the values of the momentum and force terms at the end point of the
balance domain in terms the values at an arbitrary point (such as the corner point
A) using higher order Taylor expansions and retaining second order tems gives after
some algebra [32] the FIC momentum equations along the ith coordinate direction
as

ri − 1

2
hij

∂ri

∂xj
= 0 i, j = 1, 2 (A.2)

with

ri := ρ

(
∂ui

∂t
+ uj

∂ui

∂xj

)
+

∂p

∂xi
− ∂σij

∂xi
− bi (A.3)

with σij = τij − pδij where τij and p are the deviatoric stresses and the pressure,
respectively.

Note that distance h12 is arbitrary when writting the balance of momentum along
the x1 direction. The same applies for the distance h21 when deriving the balance
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Figure 11: Flow past a cylinder, Re = 100. Trajectories of a substance over a band of 2.45 units
at the entry transported across the flow for t = 100 secs.

equation along the x2 direction. Thus, in general, h12 �= h21 and this explains the
matrix form of the FIC momentum equations.

The FIC mass balance equation is obtained by invoking the balance of mass in
the finite domain of Figure A.3 ∫

Γ

ρuTndΓ = 0 (A.4)

Expanding the values of ρui at the corner points in terms of the value at an
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Figure 12: Flow past a cylinder, Re = 100. Oscillations with time of the horizontal velocity at the
point with coordinates A (6.7–1.02).
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Figure 13: Flow past a cylinder. Experimental (thick line) and computed (�) values of
the Strouhal number S in terms of the Reynolds number. Experimental values taken from
[http://wn7.enseeiht.fr/hmf/travaux/CD0102/travaux/optmfn/gpfmho/01-02/grp1/index.htm].

arbitrary point gives of the mass balance domain the FIC mass balance equation as
[32,43]

∂ui

∂xi

− 1

2
hj

∂

∂xj

(
∂ui

∂xi

)
= 0
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Figure 14: Flow past a cylinder, Re = 1000. Contour of the velocity vector module for t = 100
secs.

Figure 15: Flow past a cylinder, Re = 1000. Velocity vectors for t = 100 secs.

Note that a matrix form of the characteristic distances is not obtained in this
case as the mass balance equation expresses the conservation of the mass in the
whole domain ABCD of Figure A.3 with dimensions h1 and h2. Distances h1 and
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Figure 16: Flow past a cylinder, Re = 1000. Trajectories of a substance over a band of 2.45 units
at the entry transported across the flow for t = 100 secs.

h2 should be taken in general different from distances hij defining the domain where
balance of momentum is enforced. In our computations we have however assumed
that h1 = h11 and h2 = h22 for simplicity.
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Figure 17: Flow past a cylinder, Re = 1000. Oscillations with time of the horizontal velocity at
the point with coordinates A (6.7–1.02).
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[18] M.A. Cruchaga and E. Oñate, “A finite element formulation for incompressible
flow problems using a generalized streamline operator”, Comput. Methods in
Appl. Mech. Engrg., 143, 49–67, 1997.
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