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Abstract

Solving the Helmholtz equation for a large number of input data in an hetero-
geneous media and unbounded domain still represents a challenge. This is due to
the particular nature of the Helmholtz operator and the sensibility of the solution to
small variations of the data. Here a reduced order model is used to determine the
scattered solution everywhere in the domain for any incoming wave direction and
frequency. Moreover, this is applied to a real engineering problem: water agitation
inside real harbors for low to mid-high frequencies.

The Proper Generalized Decomposition (PGD) model reduction approach is used
to obtain a separable representation of the solution at any point and for any incoming
wave direction and frequency. Here, its applicability to such a problem is discussed
and demonstrated. More precisely, the separability of the operator is addressed
taking into account both the non-constant coe�cients in the domain and the use of
the Perfectly Matched Layers in order to model the unbounded domain.

Then, the performance of the PGD in this framework is discussed and improved
using a higher-order projection and a Petrov-Galerkin approach to construct the
separated basis. Moreover, the PGD is also discussed as an e�cient higher-order
projection scheme and compared with the higher-order singular value decomposition.

Keywords: Reduced Order Models, Proper Generalized Decomposition, Helmholtz,
Parameterized solutions, wave propagation, harbor

1 Introduction

A large number of models involving the propagation of harmonic waves in unbounded
domains are governed by Helmholtz-type partial di↵erential equations. Their numerical

1



solution is usually computationally demanding. Well-known di�culties are: pollution er-
rors [33, 34, 24], treatment of the unbounded domain [49], and modeling small geometric
features that have a large influence on the scattered field [45, 46]. Moreover, in engineer-
ing practice, wave propagation computations are usually one of many steps in a design
process, an optimization strategy or an identification analysis. In summary, accuracy is
compromised because the large computer costs drastically reduce the number (or range) of
parameters tested. Note that the obvious approach of directly interpolating a few (costly)
computed solutions to estimate results for intermediate parameter values is not viable be-
cause the solution is extremely sensitive to the parameters (e.g. incoming wave frequency
and direction, geometry, etc.).

This paper proposes a strategy to reduce the computational limit imposed on the num-
ber of Helmholtz solutions that are feasible to compute in a design or optimization process.
More precisely, the objective is to construct the generalized (high-dimensional) solution of a
parameterized scattering problem in an heterogeneous and unbounded domain. This gener-
alized solution, recently called computational vademecum [19] in a more general framework,
provides the engineer a way to evaluate in real-time any tentative scattering situation (e.g.
the Helmholtz solution and its derivatives). Therefore it extremely accelerates the process
of evaluating solutions of the Helmholtz problem.

There are several possibilities to parameterize the scattering problem, here the focus
is on the parameters defining the incident wave: angular frequency and incoming wave
direction. Each of these parameters ranges in a bounded interval (usually application-
dependent) and is considered as a new 1D coordinate of the classical Helmholtz equation.
This results in a high-dimensional Helmholtz problem whose solution provides the scat-
tered field at any point of the domain and for any incident condition. Moreover, the
generalized solution is computed only once whenever it is assumed that the other data
(geometry, boundary conditions, etc.) do not change, which is usual in most of engineering
applications. The important point is that any subsequent evaluation of the scattered field
is readily obtained by means of a fast post-process (this, for instance, can be the case of a
time signal including a wide range of frequencies).

The high-dimensional character of the proposed problem involves an exponential growth
of degrees of freedom (the so-called curse of dimensionality) when using standard mesh-
based discretization techniques. A reduced order model can circumvent this critical di�-
culty.

Here, the proper generalized decomposition (PGD) [2, 3] is used. This method has
been studied and successfully applied to various problems in computational mechanics,
see [16, 17, 31, 4, 37]. The interested reader is addressed to [42, 43, 18] and the refer-
ences therein for a survey on di↵erent PGD techniques. PGD computes iteratively each
term of the approximation using products of separable functions and reducing the high-
dimensional complexity of the original problem. Therefore, it is able to circumvent the
curse of dimensionality and provide an approximation of the generalized solution. In con-
trast to classical a posteriori approaches, like POD [35, 38, 12] or reduced basis methods
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[41, 15, 27], the PGD solution is evaluated online using a (fast) linear combination of the
separated functions. In the present framework these functions are particularized for inter-
mediate frequencies and incoming wave directions. This also contrasts with previous works
in this field; see for instance [50], where an a posteriori reduced model for the homogeneous
Helmholtz equation has to be constructed for each intermediate value. Moreover, the PGD
does not require neither to precompute any trial solution (i.e. a snapshot) nor to solve a
singular value decomposition. Note that this last point can even preclude the application
of POD-based techniques for the Helmholtz problem if dense spatial discretizations are
required.

The contributions in this paper are applicable to any heterogeneous and unbounded
problem governed by the Helmholtz equation, and requiring a large number of evaluations
of the input data. However the presented work is inspired on an engineering application:
the prediction of water agitation inside harbors. Particularly, two harbors located in the
Northeast of Spain are used as test cases. Note that the parameterized wave propagation
problem becomes in this case 4D: two spatial coordinates, one for frequency and one for the
incoming wave direction. Separated representations including the frequency as a dimension
are not completely new, see for example [44]. However, in this case real-time evaluation of
the PGD solution makes the proposed methodology an exceptional tool for harbor design
and study.

Some important points in the development of a PGD solver for the described wave
problem require special attention and will be discussed in next Sections. First, the com-
putational domain needs to accurately represent an unbounded physical domain. Here the
perfectly matched layers (PML) rationale is, for the first time, adapted and employed in
a PGD framework. Second, the wave problem induces non-separable terms in the equa-
tions that prevent the standard implementation of the PGD algorithms. A higher-order
projection based on the PGD solution of a multidimensional equation is used to construct
an optimal separable wave problem. And finally, the non-hermitian character of the in-
volved operator and the oscillatory nature of the wave field induce serious degradations
in the convergence of the standard PGD techniques. Here, an improvement is proposed
based on a Petrov-Galerkin approach, originally developed in [43], and on the use of the
PGD-projection commented before.

2 Problem statement

The Helmholtz equation in an heterogeneous media and unbounded domain is considered.
The application to harbors assumed here imposes the use of the mild slope equation (MSE)
[11], which describes the motion of sea waves over a slow varying bottom depth, and allows
to model the refraction and di↵raction for deep and shallow waters. The MSE emanate
from the incompressible Navier-Stokes equations (with the hypothesis of non-viscous fluid,
small amplitude monochromatic waves and slow varying bottom), and is a common and
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useful tool for evaluating wave agitation in coastal zone and in harbors. In frequency
domain they are written as

r ·(c c
g

ru) + k2c c
g

u = 0, (1)

over an unbounded 2D domain where u 2 C is the wave surface elevation, k(h,!) 2 R is the
wavenumber, h(x, y) 2 R is the bathymetry (i.e. mean-water-level-depth), ! 2 I

!

⇢ R is
the angular frequency of the monochromatic incoming wave, c = !/k is the phase velocity
and c

g

= g[tanh(kh)+ kh sech2(kh)]/(2!) is the group velocity, where g is the acceleration
of gravity. It is important to note that the wavenumber, k, depends on bathymetry, h, and
the frequency, !, by the so-called nonlinear dispersion relation

!2 = kg tanh(kh), (2)

which models the e↵ect of the bathymetry on the wave propagation, that is, the refraction.

Boundary conditions are, on one hand, for reflecting/absorbing boundaries �
R

,

n · c c
g

ru � ikc c
g

↵ u = 0 on �
R

, (3)

where i =
p�1 is the imaginary unit, n is the outer unit normal, and ↵ 2 [0, 1] is a real

experimental coe�cient controlling the reflection/absorption properties of the boundary.
This coe�cient is equal to zero on totally reflecting boundaries and to one on perfectly
absorbing boundaries. On the other hand, unbounded scattering problems require the
so-called Sommerfeld radiation condition

lim
r!1

p
r
⇣ @

@r
� ik

⌘
(u � u0) = 0, (4)

where r is the radial direction and u0 the incident wave. This wave is defined on a constant
far-field bathymetry h0 by

u0 = exp(ik0x cos ✓) exp(ik0y sin ✓) 2 C, (5)

where ✓ 2 I
✓

⇢ R is the imposed incoming wave direction (data) and k0 is determined from
dispersion relation (2) for h = h0.

Remark 1 (amplitude of incoming wave). It is important to note that the amplitude of the

incoming wave is unitary because the solution can be scaled thanks to the linearity of the

problem. In fact, the amplitude of the solution u is called the amplification factor because it
should be scaled with the actual amplitude of the incoming wave to obtain the actual surface

elevation.

The Sommerfeld radiation condition requires, in practice, the introduction of an ar-
tificial boundary and its corresponding boundary condition. Many methods have been
proposed in the literature to deal with this situation. Among others, they include infinite
elements [23], local non-reflecting boundary conditions (NRBC) [30], Dirichlet to Neumann
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Figure 1: Computational domain sketch.

non-local operators [26, 29] and perfectly matched layers (PML) [9]. Here PML is chosen
because of its exceptional properties, see for instance [40, 8, 47, 22], and its straightfor-
ward extension to multidimensional models. Moreover, a first order NRBC is placed on
the artificial boundary to minimize spurious reflections.

In this case it is usual to define a bounded computational domain ⌦ = ⌦
int

[⌦
pml

⇢ R2

union of the region of interest, or interior domain ⌦
int

, and a PML region ⌦
pml

, and to
introduce an artificial boundary �

PML

, see Figure 1. Note that the coe�cients c, c
g

and
k are assumed constant outside the interior domain ⌦

int

, at least in the normal direction
to �

PML

. The Perfectly Matched Layer (PML) surrounds ⌦
int

in order to absorb outgoing
waves. The problem to be solved is then

r ·(c c
g

Pru) + k2c c
g

s
x

s
y

u = s(x, y,!, ✓) in ⌦, (6a)

n · (c c
g

Pru) � ikc c
g

↵ u = 0 on �
R

, (6b)

n · (c c
g

Pru) � ikc c
g

u = n · (c c
g

Pru0) � ikc c
g

u0 on �
PML

, (6c)

where the non-homogenous term in (6a) is defined as

s =

(
0 if (x, y) 2 ⌦

int

,

r ·(c c
g

Pru0) + k2c c
g

s
x

s
y

u0 if (x, y) 2 ⌦
pml

,
(7)

to account for the incident wave and absorb only the scattered waves in the PML region.
Equation (6c) is a first order non-reflecting boundary condition discretizing (4) on �

PML

, to
minimize non-physical reflection from the PML outer boundary. Thus, @⌦ = �

R

[�
PML

with
�
R

\�
PML

= ;, and no Dirichlet boundary conditions are imposed. The diagonal anisotropy
matrix defining the absorption in the PML medium is denoted P and defined as

P =

✓
s
y

/s
x

0
0 s

x

/s
y

◆
, (8)
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where s
x

= 1 + �
x

/! and s
y

= 1 + �
y

/! are the absorption parameters in the two Carte-
sian directions. Note that s

x

= s
y

= 1 outside the PML region because the absorbing
functions �

x

(x) � 0 and �
y

(y) � 0 are zero in ⌦
int

and monotonic polynomials along the
corresponding cartesian absorbing direction. More details on the application of the PML
to the Helmholtz equation can be found in [47, 13] among others.

Remark 2 (separability of coe�cients). It is important to note that the coe�cients in (6)
are non-constant. In general, they depend on the bathymetry, h (and consequently on the

spatial coordinates x and y), the angular frequency of the monochromatic incoming wave,

!, and the incoming wave direction, ✓. This dependence is, in general, nonlinear. But

the crucial issue for the proposed methodology is that these coe�cients are not expressed a

priori as separable functions of the data: h(x, y), !, and ✓. They are not written a sum of

products of functions of h, !, and ✓. Section 5 discusses this issue in more detail.

3 The parameterized wave propagation weak form

For a given geometry and bathymetry, h(x, y), engineers are confronted with multiple
evaluations of problem (6) for di↵erent values of the angular frequency and direction of the
incoming wave, namely ! and ✓. As noted in the introduction, knowing the generalized
solution of (6) for any ! and ✓ would drastically improve the performance for both multiply
and fast queries. Before constructing an approximation to the generalized solution, the
four-dimensional problem created by considering ! and ✓ as extra coordinates is formalized.

The total surface elevation, u(x, y,!, ✓), is now seen as a function of the spatial coordi-
nates in the computational domain, ⌦, the angular frequency and direction of the incoming
wave in their respective range of interest, namely I

!

and I
✓

. The variational problem equiv-
alent to (6) requires finding u for all �u in the selected appropriate functional space such
that

A(u, �u) = L(�u). (9a)

The non-hermitian bilinear form A(·, ·) and the linear form L(·) are defined by

A(u, �u) =

Z

I✓

Z

I!

a(u, �u;!) d!d✓ and L(�u) =

Z

I✓

Z

I!

`(�u;!, ✓) d!d✓, (9b)

with a(·, ·;!) bilinear and continuous form and `(·;!, ✓) linear bounded functional for all
parameters (!, ✓) 2 I

!

⇥ I
✓

. They are the classical Helmholtz spatial weak forms with the
parameter dependence explicitly indicated, that is

a(u, �u;!) =
�
k2c c

g

s
x

s
y

u, �u
�
⌦

� �
c c

g

Pru,r�u
�
⌦

+ i↵
⌦
kc c

g

u, �u
↵
�
R

+ i
⌦
kc c

g

u, �u
↵
�
pml

, (10a)

and
`(�u;!, ✓) =

�
s, �u

�
⌦
+
⌦
n · (c c

g

Pru0) � ikc c
g

u0, �u
↵
�
pml

. (10b)
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In the previous and the following equations,
�·, ·�

D

denotes the L2 scalar product (for
complex functions) in any domain D, while

⌦·, ·↵
B

also denotes the L2 scalar product of
the traces over B.

4 The proper generalized decomposition method (PGD)

Helmholtz problems require fine discretizations of the spatial domain. Moreover, for low-
order approximations dense meshes must be enhanced with stabilized formulations to con-
trol dispersion errors [7, 48, 39]. In spite of the improved e�ciency of high-order approxi-
mations [28, 10] a large number of degrees of freedom (DOF) is nonetheless required. For
instance, as shown in [28], 105 DOF are necessary to attain one significant digit of ac-
curacy with fifth-order finite elements in this MSE problem. Hence, applying a standard
discretization technique to solve the 4D problem may easily require here 109 DOF when
100 nodes are used for parameters ✓ and !. However, PGD may e↵ectively approximate
the solution of problem (9) with a 2D computational cost.

PGD imposes an approximation of the wave field u(x, y,!, ✓) in a rank-n separated
representation, namely

u(x, y,!, ✓) ⇡ un(x, y,!, ✓) =
nX

m=1

Fm

1 (x, y)Fm

2 (!)Fm

3 (✓). (11)

The PGD approach has to determine the number of necessary terms n, see [1], and the
unknown separated functions Fm

1 , Fm

2 and Fm

3 for m = 1, . . . , n. There are several alter-
natives. Each term m is evaluated sequentially by means of a greedy algorithm

un(x, y,!, ✓) = un�1(x, y,!, ✓) + F1(x, y)F2(!)F3(✓), (12)

where un�1 is assumed to be known, and F1, F2 and F3 denote the separated functions
of the unknown term (the superscript is dropped for the last term in order to alleviate
notation). Replacing (12) in (9a) the following problem must be solved:

A(F1F2F3, �u) = L(�u) � A(un�1, �u). (13)

Note that this represents a nonlinear problem for the unknowns F1, F2 and F3.

A number of PGD approaches based on linearization techniques have been developed
to solve the Eq. (13) e�ciently, see for instance [43, 18]. Two of these approaches, which
will be compared in Section 6, are detailed next.

4.1 Standard PGD

Consider the test functions �u in Eq. (13) to be separated as

�u = �F1 F2F3 + F1 �F2 F3 + F1F2 �F3. (14)
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This expression allows to approximate the solution with an alternating direction strategy
(fixed point iteration). Each iteration requires to perform as many sequential steps as
separated functions are used to approximate u. Here, the following three stages are iterated
until convergence or a proxy for termination is reached (further commented in Section 6):

1. Assume that F2 and F3 are known (�F2 = �F3 = 0). Compute the linear problem to
determine F1 2 H1(⌦), for all �F1 2 H1(⌦) satisfying

A(F1F2F3, �F1 F2F3) = L(�F1 F2F3) � A(un�1, �F1 F2F3). (15a)

Note that this step has a 2D cost. After solving (15a) the function F1 is L2 normal-
ized.

2. Assume now that F1 and F3 are known (�F1 = �F3 = 0). In fact, the solution of the
previous step is used here in a Gauss-Seidel strategy. Solve a linear 1D problem to
evaluate F2 2 L2(I

!

), for all �F2 2 L2(I
!

) satisfying

A(F1F2F3, F1 �F2 F3) = L(F1 �F2 F3) � A(un�1, F1 �F2 F3). (15b)

After solving (15b) the function F2 is L2 normalized.

3. Assume that F1 and F2 are known (�F1 = �F2 = 0) from the two previous steps.
The separated function in the incoming direction domain, F3 2 L2(I

✓

), is found for
all �F3 2 L2(I

✓

) as the solution of

A(F1F2F3, F1F2 �F3) = L(F1F2 �F3) � A(un�1, F1F2 �F3). (15c)

This iterative scheme is required at each enrichment step in Eq. (12). Note that the 4D
nature of the original problem is reduced to the iteration of one 2D problem (15a) and
two 1D problems (algebraic equations 15b and 15c). Consequently, the computational cost
associated to the PGD approximation is the product of three factors: (i) the cost of the
2D Helmholtz solver, (ii) the total number of iterations performed and (iii) the number of
terms involved in the separable representation of u. For the majority of elliptic problems,
both, the number of iterations and the required terms are su�ciently small to ensure
computational savings of several orders of magnitude, see for instance [3].

Unfortunately, the optimality of the standard approach is critically degraded for non-
symmetric operators, see [43]. This issue also applies to the non-hermitian MSE problem.
Moreover, its complexity is increased due to the oscillatory nature of the solution. As
shown in Section 6 the standard approach is, in general, not converging. The o✏ine PGD
constructor is imposed by a non-standard rationale introduced next.

Remark 3 (Algebraic equations). Note that steps 2 and 3, associated respectively to !
and ✓, can be solved pointwise because they are algebraic equations. That is, no derivatives

with respect to ! or ✓ exist in the strong form of the problem, see (6). Since the choice

of these sampling points is not trivial, here an approximation spaces for F2(!) and F3(✓)
are a priori defined for the weak form strategy in order to retain, when possible, a best
approximation strategy over the whole range of the parameters.
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4.2 Petrov-Galerkin PGD

The Petrov-Galerkin PGD (PG PGD) is proposed in [43] and is applied here to recover
the convergence of the PGD solution. Let us substitute the test functions �u in Eq. (13)
by �ũ, that is

A(F1F2F3, �ũ) = L(�ũ) � A(un�1, �ũ), (16)

where �ũ is defined by

�ũ = � eF1
eF2

eF3 + eF1 � eF2
eF3 + eF1

eF2 � eF3.

Functions eF1(x, y), eF2(!) and eF3(✓) are obtained by solving the auxiliary problem

A(�u, eF1
eF2

eF3) =
�
�u, F1F2F3

�
⌦⇥I!⇥I✓

, (17)

for all �u in the form of Eq. (14).

Equations (16) and (17) are separable and therefore can be approximated using the same
fixed point algorithm described before. Similarly to the standard PGD algorithm (15), the
PG PGD approach requires solving a three stage procedure. In this case, however, each
stage involves the solution of two equations: one to evaluate eF

i

and one to evaluate F
i

,
i = 1, 2, 3. Note that each pair of equations induce the same matrix and therefore the
computational cost is not duplicated.

After convergence of the fixed point algorithm, the auxiliary functions eF1, eF2 and
eF3 are not longer necessary. This algorithm was originally developed for non-symmetric
convective-dominated problems with space-time decompositions, see [43]. It is known as
a Petrov-Galerkin PGD because the improvement is induced by means of a modification
of the test functions involved in the standard approach. Note that the implementation
of PG PGD is a natural choice here since the MSE problem is non-hermitian. Numerical
examples of Section 6 reveal that this approach is able to provide solutions in those cases
where the standard one fails.

Remark 4 (convergence of PGD algorithms). For pure di↵usive elliptic problems, the

number of iterations in the fixed point algorithm typically does not exceed ten before the

convergence criterion is fulfilled [2]. For more complex frameworks like the one proposed

here, the new term F1F2F3 may not converge and a maximum number of iterations needs

to be imposed. It has been observed that if the maximum number of iterations is reduced,

for instance to three, the PGD approximation may require more terms (more “modes”) but

the overall computational cost is drastically reduced.

5 Separability of the MSE

PGD requires the operators A(·, ·) and L(·), see Eqs. (9) and (10), to be expressed in
a separable form. Otherwise, the integration of the weak form needs to be done in the
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full multidimensional space and this requires an exponential number of operations. The
separability of these operators is determined by the separability of the involved functions,
namely: i) incident wave (5), ii) bathymetry coe�cients (Remark 2), and iii) PML coe�-
cients appearing in matrix P (8).

Separable versions of these functions might be obtained as a preprocess of the PGD
algorithm via singular value decomposition or its higher-order extensions [36]. Here, an
alternative procedure to find separable approximations of known functions based on the
PGD method is proposed. It is called higher-order PGD-projection and formalized in
Appendix A. In the case of using two separated functions, the PGD-projection provides
an optimal decomposition coinciding with POD, and without the cost associated to an
singular value decomposition (SVD) problem. This projection is particularly useful to
reduce the rank of already separable functions as will be shown in the next Section. All the
advantages of higher-order PGD-projection are discussed and demonstrated in Appendix
A with several examples.

5.1 Getting separable coe�cients

The separable version of the operator A(·, ·) is obtained by means of separable versions of
the coe�cients b

i

defined as follows,

a(u, �u;!) =
�

b1z }| {
k2c c

g

s
x

s
y

u, �u
�
⌦

� � b2z}|{
c c

g

Pru,r�u
�
⌦

+ i↵
⌦
kc c

g|{z}
b3

u, �u
↵
�
R

+ i
⌦
kc c

g|{z}
b3

u, �u
↵
�
pml

. (18)

The functions 1/s
x

and 1/s
y

that appear in P P, recall (8), need also a separable rep-
resentation. Note that s

x

(x,!) = 1 + �
x

(x)/! and s
y

(y,!) = 1 + �
y

(y)/! are already
separable.

By means of the PGD-projection proposed in Appendix A an optimal rank-s
i

separated
representation of coe�cient b

i

for i = 1, 2, 3 is computed

⇡pgd

⇥
b
i

(h,!)
⇤
=

siX

m=1

�m

i

Bm

i,1(h)B
m

i,2(!). (19)

This representation uses normalized functions Bm

i,1 and Bm

i,2 and, consequently, �
m

i

provides
information on the amplitude of termm. For instance, Figure 2 depicts for coe�cient b1 the
normalized coe�cients �m

1 / k[�1
1 , . . . , �

m

1 ]k2 for m = 1, . . . , 30. The range of bathymetry
and frequency cover the range of realistic values on the Mediterranean coast. Only 20
terms are required to generate a very accurate separable structure. Similar results are
observed for the other coe�cients b2 and b3.
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Figure 2: Normalized coe�cients (log10 scale) for the PGD-projection and SVD of b1(h,!).
The range for the bathymetry and frequency are h 2 [1, 65] and ! 2 [0.4, 2], both discretized
with 1000 equidistant nodes.

The PGD-projection is also used to generate optimal separable forms for 1/s
x

(x,!) and
1/s

y

(y,!). This projection writes analogously to Eq. (19) using two separable functions
with respect to x (or y) in the first function and ! in the second one.

5.2 Getting separable incident wave

Once the separability of the bilinear form A(·, ·) is achieved, the linear functional L(·) is
also separated provided a separable form of the incident wave, see Eq. (10b), is obtained.

In contrast to the expression of the MSE coe�cients, the incident wave u0(x, y,!, ✓)
depends on every parameter. Thus, an optimal decomposition is defined as

⇡pgd

⇥
u0(x, y,!, ✓)

⇤
=

qX

m=1

�m

0 Bm

0,1(x, y)B
m

0,2(!, ✓), (20)

that separates (x, y) 2 ⌦
pml

from the 2D parametric coordinate (!, ✓) 2 I
!

⇥ I
✓

. The
cost of this projection is superior to the previous coe�cients. Nevertheless, it is still
a↵ordable for small PML domains. Thanks to the spatially separated structure of u0,
recall Eq. (5), the expression (20) can be constructed as the product of: (i) the projection
of exp(ik0x cos ✓) (1D in x), and (ii) the projection of exp(ik0y sin ✓) (1D in y). An example
of these projections is shown in Appendix A.2. This procedure drastically reduces the cost
for large PML domains.
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Remark 5 (practical computation of projections). Note that all the projections presented

here, that separate both, coe�cients and incident wave, can be computed in a proper refer-

ence domain and then mapped to the real coordinates. This reference domain must include

all the possible combinations of the parameter values that are required in practice. Thus,

there is no need to compute a new projection every time the bathymetry and the PML

domain are modified.

6 Application examples

This section presents three problems: one academic example and two engineering applica-
tions related to harbor design. All problems are governed by the MSE (6) in an unbounded
domain where the PML technique is applied in the outer boundary.

Before presenting the example in detail a few general remarks are pertinent. First,
note that in order to ensure a correct absorption of the scattered waves, the width of
the rectangular PML domain, namely L

pml

, is set as 1.5 times the maximum wave length
induced by the lower frequency in each example [40]. Functions s

x

= 1 + �
x

/! and
s
y

= 1 + �
y

/!, which quantify the absorption of the scattered wave, are defined using a
second order polynomial

�
x

(x) = �
max

�
(x � x0)/Lpml

�2 �
analogously for �

y

(y)
�
,

where x0 (respectively y0) stands for the coordinate value at which the interface boundary
⌦
int

\ ⌦
pml

is placed. The maximum absorption �
max

is then set in order to maximize the
damping of the scattered wave using the values proposed in [20].

Second, convergence criteria must be imposed. For the fixed point algorithms, see Eq.
(15), convergence is assumed when

���
Q3

i=1 F
(⌫)
i

� Q3
i=1 F

(⌫�1)
i

���
2

L2(⌦⇥I!⇥I✓)���
Q3

i=1 F
(⌫)
i

���
2

L2(⌦⇥I!⇥I✓)

< "2,

where ⌫ stands for the nonlinear iteration counter (analogously for the auxiliary functions
eF
i

of the PG PGD algorithm).

For the greedy procedure (the number of terms involved in the PGD solution) the
stopping criteria is based on the contribution of the last term, namely

kF1F2F3k2
L2(⌦⇥I!⇥I✓)

kun�1k2
L2(⌦⇥I!⇥I✓)

< "2. (21)

The condition (21) is straightforward to evaluate, it does not imply costly calculations and
usually gives valid estimations for low tolerances (for instance "  10�6). More accurate
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(and costly) criteria can be used to stop the enrichment procedure, for example using a
goal-oriented strategy based on the solution of an adjoint problem, see [1].

A third point is how to evaluate the accuracy of the approximation provided by the
PGD strategy. Here, two quantities of interest (QoI) related to harbor design are used. One
is the wave height H(x, y,!, ✓) = |u(x, y,!, ✓)|, recall Remark 1. Other is the maximum
wave height in an area of interest A ⇢ ⌦

int

of the interior domain, that is

H
max

(!, ✓) = max
(x,y)2A

H(x, y,!, ✓).

Based on these QoI, two error measures are defined: i) the normalized spatially-averaged
error of the wave height at some design parameter values !⇤ and ✓⇤,

kHn(x, y,!⇤, ✓⇤) � H(x, y,!⇤, ✓⇤)kL2(A)

kH(x, y,!⇤, ✓⇤)kL2(A)

, (22a)

and ii) the normalized parametrically-averaged error of the maximum wave height,

kHn

max

(!, ✓) � H
max

(!, ✓)kL2(I!⇥I✓)

kH
max

(!, ✓)kL2(I!⇥I✓)

. (22b)

The quantities Hn and Hn

max

are the measures based on the rank-n PGD solution, while H
and H

max

are based on a reference solution obtained numerically.

The fourth and last point concerns the numerical discretization. All the examples use
standard continuous Galerkin finite elements. More precisely, the spatial meshes use fourth
order simplices with a minimum wave resolution of 8 nodes per wavelength. Parametric
meshes are all linear with a chebyshev distribution of the nodes.

6.1 Scattering on a cylindrical obstacle

The first example is a standard benchmark for scattering problems. It consists in a totally
reflecting scatterer with radius R = 1. The solution is parametrized in space and frequency,
u(x, y,!), leaving the incident angle fixed at value ✓ = 3⇡/2. The 3D PGD approximation
is then given by

u(x, y,!) ⇡ un(x, y,!) =
nX

m=1

Fm

1 (x, y)Fm

2 (!). (23)

Three di↵erent solutions are computed for three frequency regimes. Low frequencies: I
!

=
[6.28, 10.47], medium: I

!

= [6.28, 22.15] and high frequencies: I
!

= [6.28, 31.45], with
a minimum dimensionless wavenumber kR = 1, and a maximum kR = {13, 50, 100},
respectively, on the cylindrical obstacle. In this first example a maximum number of 3
nonlinear iterations per term is used, recall Remark 4. The spatial domain, bathymetry
and boundary conditions are shown in Figure 3 as well as the wave height field generated
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Figure 3: Cylindrical scattering: problem statement. Spatial domain with values of the
absorbing coe�cient ↵ on the boundary and contour lines of the bathymetry (top). Wave-
height for a fixed frequency !⇤ = 31.16rad/s (bottom).
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Figure 4: Cylindrical scattering: contribution of the last mode to the PG PGD (left) and
its corresponding PGD-projection (right) for three di↵erent frequency ranges from low
(maximum kR = 13) to high (maximum kR = 100).
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for the particular case kR = 99. The fourth order spatial mesh has ⇡ 4⇥105 nodes for the
high frequency case, whereas the parametric domains, I

!

, are discretized with an overkilled
mesh of 1000 nodes.

Left panel of Figure 4 depicts the contribution of the last term, see Eq. (21), for the three
solutions corresponding to the three frequency ranges. Only the PG PGD algorithm is de-
picted in this case. A strong influence on the convergence rate is observed when increasing
the frequency range, being in agreement with previous applications of reduced modeling
for scattering problems [15, 27]. Moreover, note that convergence exhibits oscillations that
tend to grow as the frequency range increases. This e↵ect is largely amplified when using
the standard PGD algorithm to approximate the solutions (not shown). Comparison of
PGD algorithms is further presented for this example in terms of accuracy.

The right panel of Figure 4 shows the PGD-projected version of the three solutions.
The PGD-projection procedure is equivalent to POD for two separated dimensions. The
obtained solutions, therefore, are optimal in the number of terms (compare the x-axis of
left and right panels of Figure 4). In addition the projected solutions present a monotone
convergence. Note that, as the PGD-projection is applied to a separable function, its
computational cost is very low compared with the PG PGD o✏ine solution, see Appendix
A. In addition, the large reduction in the number of terms contributes to reduce the time
and memory required in the online phase.

The accuracy of (23) is studied, for a given frequency, using the first QoI-based error
(22a). The area of interest in this case is the complete interior spatial domain. Three
convergence curves are shown at each panel of Figure 5 corresponding to the online solutions
given by the standard PGD algorithm, PG PGD and the PGD-projection. Recall that these
errors are computed with real-time evaluations of the PGD. All depicted curves use fixed
frequency values, namely !⇤ in Figure 5, which do not coincide with the discretization of
the parametric domain I

!

. Note that results show a similar trend to that observed in the
last term contribution of Figure 4: the larger the frequency ranges, the more terms are
needed to obtain similar accuracy. Furthermore, small variations in frequency present in
some cases very di↵erent convergence curves, as seen comparing the top and bottom rows
of Figure 5. This variation in convergence curves is not present in the solutions provided
by the PGD-projection.

Finally, it can be observed that, despite in this simple test the standard PGD algorithm
converges, the PG PGD exhibits a better convergence.

6.2 Mataró harbor

The second example corresponds to a study of the water agitation in Mataró harbor, located
North of Barcelona (Spain). In this case the realistic harbor geometry largely increases
the number of reflected waves, increasing the di�culty of the computational problem. The
computational domain, bathymetry and boundary conditions are shown in Figure 6. The
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Figure 5: Cylindrical scattering: convergence of relative error of wave-height in the interior
domain at a fixed frequency !⇤, see Eq. (22a), versus number of modes. Plots depict three
PGD strategies (PG PGD, standard and projection) for three frequencies ranges: low (left),
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Figure 6: Mataró harbor: problem statement. Spatial domain with values of the absorbing
coe�cient ↵ on the boundary and bathymetry. The area A ⇢ ⌦

int

of interest is highlighted.
The range of variability of the incoming wave direction is also illustrated.

area of interest A ⇢ ⌦
int

defining the error measure (22) is also shown in the Figure. It
corresponds to the wave impact region on the inlet channel of the harbor.

The solution in this case is fully parameterized with space, frequency and incoming
direction, i.e. u(x, y,!, ✓). Its PGD approximation, un, is separated in the form of Eq.
(11). Incident waves are in accordance with those observed o↵shore in the region: ! 2
[0.39, 0.63] (from 10s to 16s of wave period) and ✓ 2 [1.05⇡, 3⇡/2]. The discretization used
is 15 757⇥ 50⇥ 50 nodes for (x, y), ! and ✓ respectively. Using the notation introduced in
Appendix A, the rank-q projection of the PGD solution un is computed here as

uq

⇡

(x, y,!, ✓) =⇡pgd

⇥
un(x, y,!, ✓)

⇤
=

qX

m=1

�mFm

⇡,1(x, y)F
m

⇡,2(!, ✓), (24)

and thus, optimal projections are obtained since uq

⇡

is separated in two dimensions.

The contribution of the last term is compared in Figure 7 for the PG PGD, the standard
PGD and the optimal PGD-projection. Despite this example remains in the low frequency
regime, the standard PGD does not converge. In contrast, PG PGD is able to converge,
but the number of terms required to reach a certain level of accuracy is far from optimal.

The computational cost of the o✏ine phase is largely determined by the number of
spatial problems to be solved (i.e. the number of iterations needed for convergence times
the required terms). As commented earlier, the maximum number of nonlinear iterations
per term, namely ⌫

max

, has a direct impact on this cost. Its influence is explored here by
solving the same problem for di↵erent values of ⌫

max

and measuring the error indicator (22b)
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Figure 7: Mataró harbor: contribution of the last term to the standard PGD, PG PGD,
and PGD-projected solution.
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FEM PG PGD with 2000 nonlinear iterations PG PGD with 400 nonlinear iterations 

Figure 9: Mataró harbor: wave amplification for the particular case ! = 0.61rad/s and
✓ = 194.5�. It is shown using spatial FEM (left column), PG PGD with 2000 nonlinear
iterations (middle column) and PG PGD with 400 nonlinear iterations (right column). The
interior area of the harbor is zoomed in the bottom row.

in the area A. These tests (left panel of Figure 8) show that ⌫
max

Z3 does not improve the
quality of the PGD solution significantly. Furthermore, the right panel of the same Figure
depicts the o✏ine cost (# spatial problems) to reach a fixed level of error versus the value of
⌫
max

. In this case, using the PGD-projected solution provided by the extreme case ⌫
max

= 1
gives the better performance in terms of accuracy and also in terms of computational cost.

Finally, a drastic increase on the computational cost is observed to reach an engineering
accuracy in those areas where a lot of reflections are involved. This is shown in Figure
9 that depicts the wave amplification for an unfavorable propagation case. The spatial
computation with FEM is used as a reference. Despite a good solution is predicted in the
exterior harbor region with 400 total nonlinear iterations, at least 5 times more terms are
required to capture the wave physics in the interior (much more reflective area).

6.3 Barcelona harbor

A problem similar to the previous example is solved now for the Barcelona harbor. In this
case the geometry is more complex and the size of the harbor is larger, further increasing
the number of reflections and therefore making the problem more challenging. The spatial
domain, bathymetry and boundary conditions are depicted in Figure 10. The incoming
direction ✓ 2 [⇡, 3⇡/2] is considered, and the frequency range is ! 2 [0.39, 0.63] (same
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Figure 10: Barcelona harbor: problem statement. Spatial domain with values of the
absorbing coe�cient ↵ on the boundary, see Eq. (3), and contour lines of the bathymetry.
The range of variability of the incoming wave direction is also illustrated. The spatial mesh
is shown for three di↵erent zooms of the interior domain.

as in the previous example as both locations are close by). Nevertheless, the maximum
frequency induces here approximately 90 waves within the domain, moving the study from
low to medium-high frequency range. The discretization has 2 105 ⇥ 100 ⇥ 50 number of
nodes for (x, y), ! and ✓ respectively. Optimal PGD-projected solutions are also computed
analogously to Eq. (24).

The Figure 11 depicts the contribution of the last term to the PG PGD and its optimal
PGD-projection. Standard PGD is in this case discarded. The convergence of PG PGD
is slow, nevertheless, in the first 500 terms it concedes with the optimal curve, showing
the proper behavior of the algorithm (these terms provide relevant information) and the
inherent complexity of the problem.

The accuracy of the PG PGD is studied in three di↵erent areas of interest, see Figure 12.
In each area the PGD solution is compared with a reference one (computed using standard
FEM) for a given value of the parameters. Good results, always under engineering accuracy,
are observed in all cases and specially for the wave phase.

The PG PGD provided 4015 terms that were later PGD-projected to the 1500 optimal
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Figure 11: Barcelona harbor: Contribution of the last term (log10 scale) to the PG PGD
and to its PGD-projected solution.
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Figure 12: Barcelona harbor: wave-height in di↵erent harbor areas (highlighted on top)
and values of (!⇤, ✓⇤): short waves with (0.61, 1.08⇡) (left), mid waves with (0.55, 1.24⇡)
(middle) and long waves with (0.42, 1.08⇡) (right). The spatial FEM solution (top) and
the PG PGD interpolated solution (bottom) with 1500 PGD-projected terms (8000 solves)
are shown.
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terms shown in the Figure 12. The maximum wave height along the inlet channel of the
harbor (left column of the same Figure) is well-captured with less than 10% of error. Same
behavior is observed for the inner harbor region (in the middle column). For the more
reflective area (right column) the error increases up to the 15%. This corroborates the
results of the previous example, where the required terms drastically increase in presence
of higher reflections.

7 Concluding remarks

This paper proposes the application of PGD to approximate the 4D generalized solution
of the Helmholtz equation in heterogeneous and unbounded domains. The generalization
includes variability of some design parameters: frequency and incoming wave direction.
Particularly, the propagation of sea waves is considered and the harbor agitation study is
used as an application example. Each direct computation of the problem involves spatial
and parameter dependent coe�cients, unbounded physical domains and large reflections
induced by the complex geometry. Moreover, the practical applications usually impose
numerous direct solutions of this problem for di↵erent values of the design parameters.

The non-separability issue of the presented problem is solved using a higher-order PGD-
projection: an a posteriori use of the PGD method that separates known multidimensional
functions. Formalization of the problem and comparison examples are provided. Results
show that optimal expansions (equivalent to those from POD) are obtained when two
separated dimensions are used. When the separation is done in more that two dimensions,
the PGD-projection can outperform decompositions given by the standard higher-order
singular value decomposition (HOSVD). Moreover, the projection of previously computed
PGD solutions provides a drastic reduction in the number of terms of the expansion with
marginal extra cost. Thus, improvements in memory requirements and online runtime are
obtained.

Two di↵erent PGD approaches, standard and Petrov-Galerkin ones, are compared.
The PG PGD clearly outperforms the standard one, providing faster convergences, and
converging where the standard PGD fails. Furthermore, the approach requires only a few
nonlinear iterations per term ( 3) in the o✏ine PGD constructor.

The engineering study of water agitation in harbors for multiple and fast queries can be
e�ciently performed via the numerical techniques presented in this work. However, a high
frequency range and a large number of reflections degrade the convergence of algorithms.
For more general Helmholtz problems, improvements on the PGD are still needed in such
situations if higher accuracy is of concern.
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A The higher-order PGD-projection

This Appendix introduces a method that uses the PGD rationale to obtain separable
approximations of known functions. Similarly to higher-order SVD [21] or the so-called
CANDECOMP/PARAFAC (CP) methods [14, 32], this approach is designed to compute
separable multidimensional functions. For a comprehensive review in HOSVD and CP
methods see [36]. The PGD-projection generally produces separable representations with
less terms compared with HOSVD. Moreover, the projection does not require the a priori
selection of the number of terms for the separated solution (as CP does).

Consider a known d-dimensional function f(z1, . . . , zd) with coordinates z
i

2 ⌦
i

for
i = 1, . . . , d, which can be evaluated at any point of the high-dimensional domain ⌦ =
⌦1 ⇥ · · · ⇥ ⌦

d

. A rank-n PGD approximation of f is defined as

fn

⇡

(z1, . . . , zd) =⇡pgd

⇥
f(z1, . . . , zd)

⇤
=

nX

m=1

�m

dY

i=1

Fm

⇡,i

(z
i

).

= fn�1
⇡

(z1, . . . , zd) + �n

dY

i=1

F
⇡,i

(z
i

).

(25)

The coe�cients �m are determined by a L2 projection once all Fm

⇡,i

are known (note that
they are normalized, i.e.

��Fm

⇡,i

��
⌦i

= 1 for m = 1, . . . , n and i = 1, . . . , d). This implies
solving the typical symmetric and dense system of normal equations

nX

m=1

�
 
s

, 
m

�
⌦
�m =

�
 
s

, f
�
⌦
for all s = 1, . . . , n

with  
s

=
Q

d

i=1 F
s

⇡,i

. While the rhs requires to integrate over the d-dimensional domain,
the coe�cients of the lhs matrix are simply products of 1D integrals, that is

�
 
s

, 
m

�
⌦
=

dY

i=1

�
F s

⇡,i

, Fm

⇡,i

�
⌦i
.

The greedy algorithm described in Section 4.1 with an alternating direction approach
is used to compute functions Fm

⇡,i

for m = 1, . . . , n and i = 1, . . . , d. This strategy pursues
finding the separable approximation defined by (25) that minimizes the L2 distance between
fn

⇡

and f . However, as it will be explained later, it only guarantees to find the optimum
when separating two dimensions. Each term (“mode”) is obtained with the L2 projection
on the tangent space, namely

⇣
�f,

dY

i=1

F
⇡,i

⌘

⌦
=

�
�f, f � fn�1

⇡

�
⌦

(26)
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with test functions in the tangent space

�f = �F
⇡,1F⇡,2 · · ·F

⇡,d

+ F
⇡,1�F⇡,2 · · ·F

⇡,d

+ · · · + F
⇡,1 · · ·F

⇡,d�1�F⇡,d

, (27)

and then normalized.

The following examples show the behavior and properties of the PGD-projection. When
the separation involves two dimensions only, the PGD-projection minimizes the L2 distance
in the same way POD does. The two separation procedures are therefore identical in that
case and the separated solution obtained by PGD is optimal. This result coincides with
[43]. Note however, that, in contrast with POD, the PGD-projection does not requires the
solution of a SVD problem. Moreover, with PGD the approximation space for the separated
representation is taken into account during the minimization process. Consequently, there
is no need for extra interpolation techniques at those values outside the snapshots space, see
for instance [5]. Furthermore, PGD has the advantage of a straightforward generalization
to higher dimensions. There is no need for special implementations such as in HOSVD,
and in the tested examples, PGD produces lower rank solution compared to HOSVD to
obtain a given accuracy.

Finally, a practical use of the PGD-projection concerns the compression (reduction in
the number of terms) of an already separated function f . This process is extremely fast
when implementing the PGD-projection. The rhs of (26), when f is separable, is computed
as products of 1D integrals as discussed in Section 5, therefore this compression is fast
to perform. Furthermore, these integrals are all L2-projections on both sides of Eq. (26),
implying that the computation of F

⇡,i

for i = 1, . . . , d is performed by solving a diagonal
linear system. The e�ciency of the algorithm is therefore drastically improved.

These properties are shown next using three di↵erent examples. All the PGD-projections
are computed with a maximum number of 5 iterations per term. For comparison purposes,
the HOSVD is also computed in the last example using the extended N-way package for
tensor decomposition in MATLAB R� [6].

A.1 Reproducing a separable function

A separable function f(x, y) with (x, y) 2 [0, 1]2 is considered first. It consists in the
product of two 1D polynomials, namely P

q

(x) and P
s

(y), defined by

f(x, y) = P
q

(x)P
s

(y) =
qX

i=0

xi

sX

j=0

yj = 1 + x+ y + xy + · · · + xqys. (28)

Note that the actual rank of this function is one. Therefore the PGD-projection, namely

fn

⇡

(x, y) =⇡pgd

⇥
f(x, y)

⇤
=

nX

m=1

�mFm

⇡,1(x)F
m

⇡,2(y), (29)
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Figure 13: Separable function: convergence of the L2 relative error of the PGD-projected
function f̃n

⇡

. The value q denotes the number of terms of the exact function. This function
is depicted for the cases q = {2, 5, 11}.

must separate the function f with only one term (n = 1) independently of the order of the
polynomials, i.e. q and s. Since the PGD algorithm normalizes the separated functions F 1

⇡,2

and F 1
⇡,2, the projection must provide these functions as F 1

⇡,1 = P
q

/ kP
q

k, F 1
⇡,2 = P

s

/ kP
s

k,
and the coe�cient as �1 = kP

q

k kP
s

k. Relative errors below 10�15 are obtained in these
three expressions when solving for (29) using 100 nodes to discretize the 1D domains.

PGD-projection properties can be additionally explored by means of a modification
of the function (28), namely f̃ . More precisely, only the major order products in the
expansion are taken into account, that is

f̃(x, y) =
qX

i=0

xi yi = 1 + xy + x2y2 + · · · + xqyq. (30)

Note that this function is no longer rank one for q > 1. Figure 13 shows the relative error
of the PGD-projected function f̃n

⇡

, depicted with respect to the number of projected terms
(n). Di↵erent values of q in Eq. (30) are studied. The exact function f̃ particularized for
the cases q = {2, 5, 11} is also shown.

Results demonstrate that PGD-projection is able to capture the separability of the
function f̃ : the number of terms required to reproduce the function (n) is, as maximum,
exactly to the number of terms provided (q). Moreover, the PGD-projection leads to
compressed expansions for q > 11, that is, it provides n << q terms that perfectly capture
the function f̃ . This is produced because the di↵erence between the last terms of f̃ is
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small, for large values of q, and for points in [0, 1]2.

A.2 Planar waves

The separability of two planar waves are studied next. The functions to be approximated
are

f1(x, k, ✓) = exp(ikx cos ✓), f2(x, k, ✓) = exp(ikx sin ✓),

with i =
p�1. The two PGD-projections imposed here separate x from (k, ✓), for instance

for the function f1 that is

fn1
⇡,1(x, k, ✓) =⇡pgd

⇥
f1(x, k, ✓)

⇤
=

n1X

m=1

�mFm

⇡,1(x)F
m

⇡,2(k, ✓),

and analogously for the function f2 and its projection fn2
⇡,2. Thus, two separated functions

are used and the PGD-projection can be compared with POD using a standard SVD. The
spatial coordinate is defined in a unitary domain, x 2 [0, 1], while (k, ✓) 2 [1, 600]⇥ [⇡, 2⇡].
Thus, the number of waves in the spatial domain range from 1 (low-frequency) to 95 (high-
frequency). Along each dimension a discretization with 500⇥ 100⇥ 100 nodes for (x, k, ✓)
is used.

Convergence of the normalized coe�cients for both functions f1 and f2 are shown in
Figure 14. For high fidelity purposes (normalized coe�cients below 10�8), over 200 terms
are necessary when projecting f1 while 100 are obtained in the projection of f2. The
coe�cients of the SVD are also depicted in Figure 14 for comparison purposes. Results
clearly show that the PGD-projection provide optimal expansions in this case. That is,
the greedy procedure is able to find the optimal decomposition that minimizes the distance
between f

i

and fni
⇡,i

, i = {1, 2}, in the L2 norm. Note, that every time the PGD-projection
is constructed using two separable functions the same coincidence with SVD is observed.

A.3 The butterfly curve

This last test uses a highly non-separable 6D function based on the family of “butterfly
curves”, see [25], that is

f(✓, a, b, c, d, e) = a exp(cos ✓) � b cos(c ✓) + sind(✓/e),

with ✓ 2 [0, 2⇡], a 2 [�1, 1], b 2 [�3, 3], c 2 [0, 4], d 2 [0, 5] and e 2 [1, 12].

The PGD-projection must seek an approximation in the following form:

fn

⇡

(✓, a, b, c, d, e) =
nX

m=1

�mFm

⇡,1(✓)F
m

⇡,2(a)F
m

⇡,3(b)F
m

⇡,4(c)F
m

⇡,5(d)F
m

⇡,6(e). (31)
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Figure 15: Butterfly curve: relative error of the PGD-projection (solid line) and the
(n1, n2, . . . , n6) HOSVD (dashed line). Markers on the HOSVD curve represent those
cases where n1 = n2 = · · · = n6.
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Figure 16: Butterfly curve: polar plots of f(✓, a⇤, . . . , e⇤) for fixed values a⇤, b⇤, . . . , e⇤.
Approximations given by the PGD-projection (solid line) and the HOSVD (dashed line)
are shown. Values of a⇤ = 1, b⇤ = 2.1213, c⇤ = 4, d⇤ = 5, e⇤ = 12 (left), a⇤ = �0.5736, b⇤ =
�2.7189, c⇤ = 0, d⇤ = 2, e⇤ = 11.9791 (center), and a⇤ = �0.0872, b⇤ = �2.9886, c⇤ =
1.8257, d⇤ = 3, e⇤ = 7.9235 (right).

Discretized 6D domain uses 100 nodes along dimension ✓, whereas 20 nodes are used for
the rest of dimensions but the parameter d, that uses 6 equally spaced nodes.

The higher-order approach provided by the standard HOSVD is also computed in this
example. Using a similar notation as in Eq. (31), the HOSVD approximation of the function
f writes

f
(n1,n2,...,n6)
hosvd

(✓, a, . . . , e) =
n1X

i=1

n2X

j=1

· · ·
n6X

l=1

�ij...lF i

1(✓)F
j

2 (a) · · ·F l

6(e).

The evaluation of f (n1,n2,...,n6)
hosvd

is done by means of tensor decomposition methods, see [36]
for details. Note that, for practical purposes, comparison between PGD-projection and
HOSVD requires comparing the number of PGD terms (n), and the number of HOSVD
terms (n1n2 · · ·n6).

Relative errors of fn

⇡

and f
(n1,n2,...,n6)
hosvd

are depicted in Figure 15. These errors are mea-
sured with the L2 norm of the di↵erence between f and both approximations. The often
suggested choice n1 = n2 = · · · = n6 is used for the HOSVD, notwithstanding that other
combinations have been also explored with no significant changes in the results. The PGD-
projection clearly outperforms the HOSVD, requiring three orders of magnitude less terms
to reach the same level of accuracy. The Figure 16 illustrates this conclusion particularizing
three polar plots of the curve f ⇤(✓) = f(✓, a⇤, . . . , e⇤) for di↵erent fixed values a⇤, b⇤, . . . , e⇤

of the parametric dimensions. Note that abrupt changes in the curve shape between the
three cases indicate the highly nonlinear behavior of the exact function f . The PGD-
projection with 200 terms satisfactory captures the exact values for all the cases, while
on the contrary the approximation f

(4,4,...,4)
hosvd

, that provides 20 times more terms, does not
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exhibit acceptable results specially for the last case.
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