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Abstract. Connecting different domains is one possibility to increase the performance of a numerical
solution method. The Mortar Method is one of the well-established methods for this task. In this contri-
bution, we focus on the solution of the elastodynamic wave equation by means of the scaled boundary
finite element method and demonstrate that it is straightforward to connect different polygonal meshes
by employing the Mortar Method in two dimensions. Examples show the stability for higher-order shape
functions when performing h-refinement or p-refinement.

1 INTRODUCTION

The simulation of ultrasonic waves in a linearly elastic body can be computationally intensive. The
reason is the relatively short wavelength compared to the body’s dimensions at high frequencies. One
possible approach to counteract the high computational costs is to decompose the domain into smaller
parts. Each subdomain may be assigned its own efficient simulation method, and the subdomains can be
solved in parallel. The Mortar Method is a well-established approach for coupling such subdomains [1,
2], allowing the combination of multiple solution methods within the same model. For elastodynamic
waves, a few of many examples can be found in [3, 4, 5]. In the simplest case, different meshes can be
connected.

In recent years, discretizations by polygonal elements have been of interest as they show the same flex-
ibility as triangular elements for meshing while offering additional benefits. These benefits can be a
smaller number of degrees of freedom to obtain the same accuracy. They also often show a better sta-
bility in case of distorted elements [6, 7]. Approaches to generating polygonal elements are the Voronoi
Cell Finite Element Method [8], the Virtual Element Method [9] and finite element formulations based
on the generalized barycentric coordinates [10, 11, 12], to name a few. The Virtual Element Method is
based on shape functions which solve the differential equation, but are not directly computed; this leads
to the name ’virtual.’ The Voronoi Cell Finite Element Method, on the other hand, uses explicit stress
functions to calculate the polygons’ stiffness matrix.
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Another approach to discretizing the emerging polygonal elements is the Scaled Boundary Finite Element
Method [13, 14]. This semi-analytical method has many attractive properties, some of which are listed
subsequently. A variety of material distributions, including anisotropic materials, can be considered.
High-order shape functions can be used for optimal convergence properties [14, 15]. The approach treats
singularities at crack tips and corners analytically [13, 16]. Especially in the frequency domain, the
Scaled Boundary Finite Element Method reduces the approximation dimension because only degrees of
freedom associated with the boundary of a polygonal element are required. Those desirable properties
make the method particularly suitable for simulating the dynamic response in bodies with cracks, as is
essential for many non-destructive testing and structural health monitoring applications [17, 18].

We present in this contribution a combination of the Scaled Boundary Finite Element Method with the
Mortar Method in two dimensions. The second section gives a theoretical overview of both approaches.
Subsequently, numerical examples demonstrate the stability of the combination for the polygonal bound-
ary of the elements. The numerical models increase in complexity and are compared to results computed
on non-divided domains by means of the Spectral Element Method (SEM) [15] .

2 Theory

This article considers the linear elastic wave equation on multiple subdomains. For the sake of simplicity,
only two subdomains are used in the notation. The subdomains Ωi, i ∈ {1,2}, are non-overlapping and
have a common internal boundary Γ12. In general, however, the approach can be extended to any number
of subdomains. The strong form of the problem is

∂ttu = ∇ ·σ(u), x ∈Ωi t ∈ [0,T ] (1)

nσ = τ, x ∈ Γ t ∈ [0,T ] (2)

u|Ω1 = u|Ω2 , x ∈ Γ12 t ∈ [0,T ] (3)

u = 0, x ∈Ωi t = 0 (4)

∂tu = 0, x ∈Ωi t = 0 (5)

with the linear stress σ, the displacement u, and a traction force τ on the outer boundary Γ. Note the
continuity condition on the internal boundary Γ12 in Equation (3). Figure 1 shows two polygonal meshes,
which are coloured light and dark green indicating the subdomains. The common boundary is marked
with a black line.

The Scaled Boundary Finite Element Method is deployed to approximate the linear elastic wave equation
in each subdomain. For the approximation, the subdomains must be subdivided into polygons, which we
call S-elements. In this article, the following approach is used to derive a polygonal mesh and its stiffness
matrix:

• Start with a triangulation of the subdomain. For this paper, the triangulations are generated by
‘gmsh’ [19].

• Use the dual mesh of this triangulation to obtain a polygonal mesh. The dual mesh is constructed
by defining each triangle’s midpoints and connecting these midpoints of adjacent triangles. There
are special steps to define the polygons next to the boundary. This approach is similar to [20].

• For each polygon, the local stiffness matrix is computed and assembled into the global stiffness
matrix analogously to the Finite Element Method.
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Figure 1: a) Example mesh and b) Close up of a polygon

In the following paragraphs, we will summarize the crucial points for the derivation of the local stiffness
matrices of each polygon.

The polygon’s stiffness matrix is computed with the help of a particular coordinate system, called the
scaled boundary coordinate system (see Figure 1b). Let γγγ(η) be a boundary parameterization given by
straight line segments, where η is a local coordinate for each element. Choose a point xc that ”sees” the
entire boundary. Then, the scaled boundary coordinates are defined as

x = ξ(γγγ(η)−xc)+xc, (6)

where the point xc is called the scaling center. Typically, the centroid is the scaling centre. In general,
several types of shape functions and boundary parameterizations can be used [21], but, in this work, spec-
tral shape functions of arbitrary degree p are used for the approximation of the displacement field and
straight lines for the boundary of each polygon. Figure 2 shows the one-dimensional spectral shape func-
tions N1d for p = 3. The vector-valued version is computed by N = N1d⊗ I2, where ⊗ is the Kronecker
tensor product, and I2 is the identity matrix of size two.

The SBFEM derivation starts with the weak form or principle of virtual work of Equations (1), (2) and (3)
in the frequency domain, that is,

−
∫

δu ·ω2udΩi =−
∫

∇δu ·σ(u)dΩi +
∫

δu · τdΓ+ I12 (7)

with the angular frequency ω. The term I12 enforces the continuity condition, but does not influence
the derivation of the polygons and will be covered in Equation (22). The finite elements can be used
to re-write the weak form in Equation (7) as an ordinary differential equation in the scaled boundary
coordinate system, called the SBFEM-equation for the nodal displacement in a polygonal S-element:

ξ
2E0∂ξξu(ξ)+ξ(E0 +ET

1 −E1)∂ξu(ξ)−E2u(ξ)+ξ
2
ω

2M0u(ξ) = 0. (8)

Note that u(ξ) is still a function of ξ. The matrices Ei are associated with the stress, and M0 is the
boundary mass matrix,

M0 =
∫

N(η)Tρ(η)N(η)| j(η)|dη , E0 =
∫

B1(η)
TD(η)B1(η)| j(η)|dη , (9)

E1 =
∫

B2(η)
TD(η)B1(η)| j(η)|dη , E2 =

∫
B2(η)

TD(η)B2(η)| j(η)|dη , (10)
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Figure 2: a) Spectral shape functions and b) Quadrature close up

where Bi are matrices that involve the shape functions and their derivatives with respect to η, D is the
linear elastic tensor in Voigt notation, and j(η) denotes the ξ-independent part of the Jacobi-determinant.
Every column of these matrices corresponds to one shape function — similar to the FEM. A detailed
derivation can be found in [13].

Assume that the inner nodal forces q can be expressed by a linear stiffness matrix S(ξ,ω), i.e.,

q =
(

ξE0 ∂ξ +ET
1

)
u(ξ) (11)

= S(ξ,ω)u(ξ). (12)

Considerations regarding the scalability of the wave equation for linear elastic problems lead to the
assumption that the stiffness matrix is a function of a single quantity χ = (iωξ)2, i.e., S(ξ,ω) = S(χ).
After a few transformations, one obtains the following matrix differential equation by considering an
arbitrary displacement [14]

2χ∂χS(χ)+(S(χ)−E1)E−1
0 (S(χ)−ET

1 )−E2−χM0 = 0. (13)

This matrix differential system has no known analytical solution for ω > 0, but Bazyar and Song pub-
lished a rapidly converging iterative solution algorithm [13], which was later refined by Chen et al. [14].
The iterative solution algorithm is based on a matrix continued-fraction approach up to order M:

S(χ) = K+χM−χ
2X(1)(S(1)(χ))−1(X(1))T, (14)

S(m)(χ) = S(m)
0 +χS(m)

1 −χ
2X(m+1)(S(m+1)(χ))−1(X(m+1))T, (15)

S(M)(χ) = S(M)
0 +χS(M)

1 , (16)

where K, M are low-order approximations of the static stiffness and mass matrix, respectively. The
construction of the higher-order matrices S(m)

0 , S(m)
1 , the pre-conditioner matrix X(m), as well as K, M

can be found in [14]. At the boundary (ξ = 1), the inner nodal forces have to coincide with the nodal
tractions f, i.e.,

Sωu = f (17)

with Sω = S(χ), where Equations (14)-(16) are evaluated for χ = (iω)2. Note that the size of Sω corre-
sponds with the number of degrees on the boundary.

In the time domain, the continued-fraction approach can be resolved by introducing auxiliary variables
for the displacement uT = ((u(0))T, . . . ,(u(M))T), where each u(i) is associated with one continued-
fraction step. Equations (14)-(16) can be re-written and transferred to the time domain [13]

(iω)2Mtu =−Ktu+ ft  ∂ttMtu =−Ktu+ ft (18)
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with

Mt =



M −X(1) 0 · · · 0

(−X(1))T S(1)
1 −X(2) . . .

...

0 (−X(2))T
. . . . . . 0

...
. . . . . . . . . −X(M)

0 · · · 0 (−X(M))T S(M)
1


, ft =


f(0)

f(1)
...
...

f(M)

 , (19)

Kt = diag(K,S(1)
0 , . . . ,S(M)

0 ), (20)

where Mt is the mass matrix, Kt is the static stiffness matrix, and ft the time-dependent traction vector.
The matrices Mt , Kt are of size n×n, where n is the number of degrees on the boundary times M+1. For
the following investigations, we choose M = p, where p is the polynomial degree of the shape functions.
To solve Equation (18), many time-stepping methods can be employed. Here, the implicit Newmark-beta
method with β = 0.25 and γ = 0.5 is used with the displacement as the primary variable, leading to the
dynamic stiffness matrix

St = K+
1

β(∆t)2 M. (21)

The continuity condition is enforced weakly in the Mortar Method. This is done by adding Lagrange
multiplier terms (Equation (22)) in the weak form, see Equation (7).

I12 =
∫
(δu|Ω1(x)−δu|Ω2(P (x)))λλλ(x)dΓ12 +

∫
(u|Ω1(x)−u|Ω2(P (x)))δλλλ(x)dΓ12. (22)

The physical interpretation is that the Lagrange multipliers are additional variables representing traction
forces between the subdomains. There are two finite element meshes on the common boundary for this
formulation due to the two subdomains. One of these boundaries – often the finer mesh – is chosen as
the non-mortar side, which can be alternatively termed ’master side.’ The integration and definition of
the Lagrange multipliers are applied on this non-mortar side. The displacement of the mortar/slave side
is evaluated at the nearest point projection P . For interpolating the Lagrange multipliers, spectral shape
functions of the same degree as for the displacements are used in nearly all elements. The Lagrange mul-
tipliers are continuous on each internal boundary. The exceptions are elements adjacent to a cross-point,
at which at least three subdomains intersect. See Figure 7a) for an example. The Lagrange multipliers
are discontinuous across at this cross-point for all polynomial degrees. In general, the cross-point of a
domain can be over-constrained by the Mortar Method [1, 23]. To counteract the over-constraining, a
cross-point modification can be applied, for example, the polynomial degree of elements next to a cross-
point can be lowered by one [1]. For linear shape functions, this leads to discontinuous, constant shape
functions adjacent to a cross-point.

An exact integration is applied to reach higher-order convergence. The process is shown in Figure 2b),
where both sides are separated by a small gap. The quadrature points of a 3-point Gaussian integration
are marked by ’♦’ on the non-mortar side and ’×’ on the mortar side, respectively.
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The final form of the global stiffness matrix constitutes a saddle point problemS1 0 L1
0 S2 L2

LT
1 LT

2 0

u1
u2
λλλ

=

f1
f2
0

 , (23)

where Si is the dynamic stiffness matrix of each subdomain – Equation (17) for the frequency domain
and Equation (21) for the time domain. Li are the matrices associated with Equation (22) coupling the
Lagrange multiplier vector and the displacement of each subdomain.

The saddle point problem quite naturally leads to a parallelization process by considering the first step
of a Uzawa-like-algorithm [22] which solves Equation (23) equivalently

Siyi = fi ∀i ∈ {1,2}, (24)

Cλλλ = ∑
i

Liyi C = ∑
i

LT
i SiLi, (25)

Siui = fi−Liλλλ ∀i ∈ {1,2}, (26)

where the first and last equation can be solved in parallel, and the second equation transfers information
from one subdomain to the other. By the numerical examples in the next section, we show that the
Schur complement matrix C is stable in the context of the SBFEM. In this preliminary study, a direct
solver is applied to each matrix system. For the time domain, the Cholesky factorization is used as a
pre-conditioner for Si as well as the Schur complement matrix C.

3 Numerical Examples

This section presents some numerical examples, starting with the simple case of a rectangle. A bell-
shaped domain consisting of multiple subdomains is investigated as a second example.

a) b)

Figure 3: Problem overview for the rectangle: a) SBFEM-mesh b) Spectral element mesh

Figure 3a) shows a rectangular domain which is split into two subdomains with non-matching meshes.
This domain is subject to a uniform normal traction on the left side. The traction is indicated by black
arrows in the same figure. We will show results for the time and frequency domain, starting with the
former. The traction varies in time as a Gaussian pulse with a center frequency f0 of 1 MHz, i.e.,

τ(t) = sin(2π t f0) · exp
(
−0.5(t−0.25 f−1

0 )2/( f−1
0 )2). (27)

The material parameters are given in Table 1 and plane strain is assumed. The time step is chosen as
(100 f0)

−1 in the Newmark method. The SBFEM and the reference solution use the same Newmark
method with the same time resolution, hence, the error will be dominated by the spatial discretization.
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Figure 4a) shows the result of x-displacement at the upper black point marked in Figure 3a). The SBFEM-
approximation is compared to a reference solution calculated by means of a very highly p-refined Spectral
Element approximation (SEM) – also shown in Figure 4a). We observe a good agreement between
both methods. For a deeper investigation, the error between the reference solution and the SBFEM is
computed as follows

error =
√

∑i ∑ j
(
uh(Pj, ti)−uref(Pj, ti)

)2
/√

∑i ∑ j
(
uref(Pj, ti)

)2
, (28)

where Pi are the two Gaussian integration points on the right boundary (marked with black crosses).
Figure 5 shows the error for h-refinement and p-refinement, respectively. The h-refinement is based
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105
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Figure 4: Example displacements: a) time domain b) frequency domain for the rectangle (Figure 3)

on a new triangulation for each refinement step. For all figures, ‘DoF’ is an abbreviation for all the
degrees of freedom, including the Lagrange multipliers if they exist. We do not report convergence
rates since the plots are based on point-wise evaluation and use the total number of degrees of freedom.
However, comparing the results to the Spectral Element Method on the undivided mesh (see Figure 3),
we observe that the lines approach each other. The usual behaviour with steeper slopes for higher degree
approximation and exponential convergence for p-refinement is visible. The SEM is known to achieve
optimal rates of convergence, so Figure 5 indicates that the proposed SBFEM achieves the same rates on
subdivided meshes. Note that this study only attempts to demonstrate the validity of the approach while
an undivided mesh is more efficient for such a simple domain.
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Figure 5: Error time domain: a) h-refinement b) p-refinement for the rectangle (Figure 3)

For the simulation in the frequency domain, unit tractions for 200 frequencies uniformly spaced between
0 MHz and 1 MHz are used. Figure 4b) shows the results for the SBFEM on two subdomains and
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the Spectral Element Method reference solution on the undivided domain. The error for both methods
between the displacement evaluated at the same locations as in the time domain is summed in the range
marked by the two black lines in Figure 4b). This range was chosen to avoid the resonance peaks where
the numerical solution tends to be inaccurate. The error is shown in Figure 6 for h-and p-refinement. In
the case of h-refinement, the same sequence of polygonal meshes is used as for the time domain. The
number of degrees of freedom is much lower because only degrees on the boundary are required in the
frequency domain.
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Figure 6: Error frequency domain: a) h-refinement b) p-refinement for the rectangle (Figure 3)

The final example shows a subdivision of a bell-shaped domain into three parts. The structure is excited
at the top surface. The same excitation as in the first example is used, but the center frequency f0 is
2 MHz. The material properties and time stepping rule coincide with the first example. Figure 7 shows
the error for h-refinement using the SBFEM (Subplot a)) and the Spectral Element Method (Subplot b))
at the points marked with black crosses. The cross-point modification mentioned in the previous section
is applied. However, in out tests, the error with and without cross-point modification shows the same
behaviour.
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Figure 7: Bell-shaped domain: a) SBFEM-mesh b) Spectral element mesh c) Error for h-refinement

4 Conclusions

The extension of the Scaled Boundary Finite Element Method by the Mortar Method and domain de-
composition is straightforward. The formulation is stable for higher-order shape functions in both the
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Table 1: Structural steel

Isotropic material
E : 200 GPa ν : 0.3 ρ : 7.85 gcm−3

time- and the frequency-domain. The usual convergence behavior is observed if the shape functions
used for the displacement and the Lagrange multipliers are of the same degree (- except elements ad-
jacent to a cross-point). A cross-point modification is applied to counteract an over-constraining of the
approximation if several subdomains intersect. The results are improved by an exact quadrature for the
interface. For these small-scale examples, no decrease in the computation time was achieved due to the
parallelization.
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