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RESUMEN 

Este trabajo presenta una formulación parametrizada de los principios variacionales 
de elasticidad lineal. La formulación incluye como casos especiales todos los principios 
variacionales clásicos en que el campo de desplazamientos varía independientemente. En 
artículos relacionados, esta formulación, conjuntamente con el tratamiento híbrido de interfases 
internas, se usa para justificar y desarrollar clases de elementos finitos de alto rendimiento. 

SUMMARY 

This paper presents a parametrized formulation of the variational principles of linear 
elasticity. The formulation includes as special cases aii classical principles with independently 
varied displacement field. In related papers this formulation, in conjunction with the hybrid 
treatment of internal interfaces, is used as a basis for the variational justification and further 
development of high performance finite elements. 

INTRODUCCION 

El estudio clásico de métodos variacionales en elasticidad sigue generalmente 
dos caminos diferentes: generalización progresiva de principios especializados (por 
ejemplo, el principio de energía potencial total), o especialización creciente del principio 
más general (Hu-Washizu). La mayoría de las exposiciones didácticas siguen el 
primer camino, mientras que l a  mayoría de los tratados monográficos siguen el 
segundo. E n  ambos casos es tradicional presentar los principios clásicos uno por 
uno: energía potencial, energía complementaria, Hellinger-Reissner , Hu- Washizu, 
etc.. Este trabajo toma una ruta  distinta. Todos los principios variacionales de 
elasticidad lineal con variación independiente de desplazamientos se confluyen en una 
funcional parametrizada que provee los resultados clásicos para valores específicos de 
los parámetros. El resultado es una familia continua de formulaciones. El estudio de 
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la primera variación de esta funcional indica que el máximo numero de parámetros 
independientes es tres. 

Esta formulación parametrizada de principios variacionales en elasticidad ha sido 
útil como una base para desarrollar elementos finitos de alto ~endimiento. En 
particular este procedimiento variacional aclara varios puntos dudosos relacionados con 
la "formulación libre" de Bergan y Nyg&d'ta, y con la formulación de "deformaciones 
naturales'' estudiada recientemente por los autoresnJa. Un ingrediente importante 
de este método es la retención de los parámetros libres del principio general 'al nivel 
de 1'0s elementos finitos, es decir, a través de la discretización. Los valores de estos 
parámetros se ajustan con un método de balance de energía para mejorar la calidad 
de la aproximación numérica, y pueden variar de elemento a elemento. Aplicaciones de 
esta índole se describen en una serie de artículos recientes3-'O. 

EL PROBLEMA DE ELASTOSTATICA LINEAL 

Consideramos un cuerpo linealmente elástico bajo carga estática que ocupa el 
volumen V. El cuerpo está delimitado por una superficie S que descomponemos en 
S : Sd U St. Desplazamientos se especifican en Sd y tracciones de superficie en St. El 
vector normal exterior unitario en S es n S ni. 

Los tres campos de volumen incógnitos son los desplazamientos u S u;, 
deformaciones e S e,, y tensiones u u;j. Los datos incluyen: el campo de fuerzas 
volumétricas B - b; en V, desplazamientos conocidos d en S¿, y tracciones conocidas .. .. 
t ~ t ;  en St. 

Las relaciones que ligan los campos de volumen son las ecuaciones de deformación- 
desplazamiento: 

las ecuaciones constitutivas 

y las ecuaciones de equilibrio 

donde D* = -div es el operador adjunto de D = 5 '(v + vT). 
El vector de tensión con respecto a una dirección d e h d a  por el vector unitario v 

se escribe u, = u.v, ó u,; = u;jvj. En la superficie S el vector de tracciones se define 
como 

Con esta deñnición la condición de contorno en las tracciones se escribe 

un = f ó ( ~ . . n .  13 3 = i; sobre St, ( 5 )  



PRINCIPIOS VARIACIONALES EN ELASTICIDAD LINEAL 

mientras que la condición de desplazamientos de contorno es 

u = d ó u; = d; sobre S¿. 

NOTACION 

Dependencias Variacionales 

En métodos variacionales de aproximación no se trabaja por supuesto con 
los campos exactos que satisfacen las ecuaciones (1)-(3)) ( 5 ) - ( 6 ) )  sino con campos 
independientes (primarios) que están sujeto a variaciones, y campos dependientes 
(secundarios, asociados, derivados), que ' no lo están. Las aproximación se determina 
tomando variaciones con respecto a los campos independentes. 

Un campo variado en forma independiente será identificado con un guiño 
superpuesto, por ejemplo ú. Un campo dependiente se identifica escribiendo el campo 
independiente del que depende como superscripto. Por ejemplo, si los desplazamientos 
se varían independientemente, los campos de deformaciones y tensiones derivados son 

e" = +(v + vT)ú  = Dú, c" = EeU = EDú. (7) 

Una ventaja de esta convención es que u, e y u pueden reservarse para los campos 
exactos. 

Abreviación de Integrales 

Integrales de volumen y superficie se abreviarán poniendo paréntesis y corchetes, 
respectivemente, alrededor del integrando. Por ejemplo: 

Si f y g son funciones vectoriales y p y q funciones tensoriales, su producto interior en 
V se escribe de la manera usual: 

dzf 
(f, g)v dcf /y f.g dV = /y figi dV, (P, 9 ) ~  - /y p.qdV = /y Pij% d v )  (9) 

y similarmente para integrales de superficie, en cuyo caso se usarán corchetes. 
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Interfases Interiores 

En las subsecciones siguientes se construyen principios variacionales hz%ridos 
en que desplazamientos de borde d se pueden variar independientemente de los 
desplazamientos internos u. Estos desplazamientos funcionan como multiplicadores 
de Lagrange que relajan la continuidad de los desplazamientos internos. Principios 
variacionales que contienen pd se llamarán de desplazamientos genemlizados, o d- 
generalizados. 

La selección de d como campo independiente no es variacionalmente admisible 
en Sd ó St. Por lo tanto debemos extender la definición de la frontera para incluir 
interfases internas designadas colectivamente como Si. Así 

En S; ni los desplazamientos ni las tracciones se especifican. Detalles adicionales sobre 
la definición de integrales de volumen y superficie en la presencia de S; pueden verse 
en6-8,11 

La aparición de la frontera Si es una consecuencia natural del uso de elementos 
finitos de tipo híbrido. En efecto, la unión de bordes comunes a dos ó más elementos 
hííridos, constituye S;. Se nota que en general esta frontera es artificial pues depende 
de la discretización elegida*. 

LAS FUNCIONALES DE ELASTICIDAD LINEAL 

Los principios variacionales de elasticidad lineal se basan en funcionales de la forma 

donde U caracteriza la energía interna almacenada en el volumen y P incluye otras 
contribuciones como el trabajo de las cargas aplicadas y la energía de "dislocación" 
almacenada en S;. Llamaremos U la energia de deformación generalizada y P el 
potencial de solicitación. 

La Energía de Deformación Generalizada 

La energía de deformación generalizada (EDG) tiene la expresion general 

donde jll, . . . jS3 son coeficientes numéricos. Por ejemplo, la EDG del principio de HU: 

Washizu se obtiene poniendo j12 = -1, j13 = 1, j22 = 1, otros cero. La representación 
matricial del funcional (12) y las relaciones que deben existir entre los coeficientes se 
estudian en otro apartado. 

* Si hay interfaces naturaies interiores -por ejemplo un cambio brusco de material o de dimensiones- 
es práctica común disponer la malia de modo que las interfases naturales también sean interfases entre 
elementos. 
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Potenciales de Solicitación Hibridos 

.Principios variacionales de elasticidad lineal se construyen combinando la integral 
volumétrica (12) con P. Dos formas de este potencial de solicitación (PS), llamado pd 
y Pt en lo que sigue, son de interés en el tratamiento híbrido de discontinuidades en la 
interfase S;. El PS d-generalizado (desplazamiento generalizado) introduce uii campo 
independiente de desplazamientos d sobre S;: 

- .. 
p d ( ~ , o , d )  = (B,Ú)v + [ün,ú - d]s d + [i > t  ÚlS + [ü n 9 ú- alS i' (13) 

El PS t-generalizado (tracción generalizado) introduce un campo independiente de 
tracciones i sobre S;: 

p t (ú ,ü , i )  = (B,+ + [ i , ú -  dls, + [ i , ~ ] ~ ,  + [i,úlsi. (14) 
La forma "convencional" PC del PS se obtiene si las integrales sobre S; se anulan 

y en adición se toma t S u,, sobre S. En este caso Pt y pd se convierten en Pc, que 
retiene sólo dos campos independientes: 

Pc(Ü, 6) = (B, Ú)v + [ü,, ú - d]sd + [i, ÜISt. (15) 

PS Modificados 

La derivación de ciertas clases de elementos finitos de alto rendimiento ha 
sido basada primordialmente en el potencial pd. Estas derivaciones no se basan 
directamente en (13) sino en formas modificadas en la que la integral sobre S; se 
transforma en una integral sobre la frontera total (10). Estas modificaciones se pueden 
estudiar en7n8 y no son requeridas en el material que sigue. 

Funcionales Completos 

Las funcionales de elasticidad (11) se obtienen combinando la ETG (12) con uno de 
los potenciales (13)-(15). Por ejemplo, las versiones d y t generalizadas de la funcional 
de Hu-Washizu son 

r I & = U w - p d ,  r I b = u w - ~ t ,  (16) 

donde Uw se obtiene poniendo j22 = j13 = 1, j I 2  = -1, otros cero, en (12). 

REPRESENTACION MATRICIAL DE FUNCIONALES 

La EDG (12) se puede escribir en forma matricial como* 

[ j l l  j12 j22 323 !13]  {TI d v .  

s i m  333 eU 

* Para justificarla simetría de J nótese, por ejemplo, que j l3 (Ü,  ea)v = f j l 3 ( ü ,  ea)" + f j 1 3 ( e u , o u ) V ,  etc.. 
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La matriz simétrica 
. ili j12  j13 

= [si, jz2 !=] 
caracteriza la EDG. Usando las ecuaciones t f  = Ee, a" = EDÚ, e" = E-'e, y 
eU = DY, la integral (17) se puede escribir en la forma alternativa 

La Primera Variación 

La primera variación de la EDG (17) es 

6U = (Ae, 6 6 ) ~  + (Au, 6é)v - (divul, + [un, 6UIs, (20) 

donde 

Los dos términos últimos en (20) se combinan con contribuciones de la variación 
de P .  Por ejemplo, si P = PC la variación completa de lIc = U - Pc es 

Usando Pd ó Pt no cambialos términos volumétricos. Las ecuaciones de Euler-Lagrange 
que corresponden a pd y Pt se estudian en6~798910911 para una forma más restrictiva de 
las funcionales U. 

Por consistencia de las ecuaciones de Euler-Lagrange con las ecuaciones de campo 
debemos tener Ae = O,  Au = O y u' = u si los campos de tensiones y deformaciones 
se reducen a los exactos. En consecuencia 

Debido a estas condiciones de vínculo, el máximo número de parámetros 
independientes que d e h e  los elementos de J es tres. Un estudio más detallado de 
las condiciones (23) y del significado físico de las ecuaciones con relación al método de 
residuos ponderados Ae = O y Au = O se presenta en1". 
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Funcionales Especificas 

Expresiones de J para ciertos principios clásicos y parametrizados se tabulan en 
lo que sigue. Los subscriptos de J sirven para identificar las funcionales, que aparecen 
mas ó menos en orden de complejidad creciente. Los campos indicados en paréntesis 
después del nombre de la funcional son aquellos que varían independientemente. 

Energia potencial total (ii): 

Tensión-desplazamiento Reissner, tambien llamada Hellinger-Reissner, (5, U): 

-1 O 1 
J R = [  O O]. 

1 0 0  

Funcional tensión-desplazamiento "anónima" que aparece en Oden y Reddg3: (ü, ii): 

Deformación-desplazamiento Rei~sner'~ (6, ii): 

Hu- Washizu (ü, &, U): 

Familia de tensión-desplazamiento parametrizada (5, U) que incluye a U p ,  UR y UU 
como casos e ~ p e c i a l e s ' ~ ~ ~ ~  : 

Familia deformación-desplazamiento parametrizada (6, ú) que incluye a U p  y US como 
casos especiales7: 
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Familia tensión-deformación-desplazamiento doblemente pammetrizada (ü, é, ií) que 
incluye a Up y U, como casos especiales': 

Familia tensión-deformación-desplazamiento thplemente panzmetrirada (6, 6 ,  ü) que 
incluye a Uw y Up, como casos especiales7: 

La última forma, que contiene tres parámetros independientes, provee todas las 
matrices J que satisfacen las condiciones (23). Nótese que Jap, da funcionales de tipo 
tensión-desplazamiento si a = p = O, de tipo deformación-desplazamiento si a = 7 = 0, 
y de tipo tensión-deformación-desplazamiento en caso contrario. 

Descomposición e n  Energía 

Una descomposición interesante de J como suma de cuatro matrices de rango uno 
es 

1 
donde ci = $ ( j11+ j22 - j33+1) ,  c2 = 2 ( - j l l + j 2 2 + j 3 3 - 1 ) ,  Y c3 = $(jll- j 2 2 t  j33-1). 
Para reinterpretar (33) como descomposición en energía, llamemos 

la habitual energía de deformación ("strain energy") asociada con el campo de 
deformaciones 6. (Si el tensor E is positivo definido, U(€) es no-negativa.) Entonces 

U = U(e") + c1U(eu - 6 )  + c2U(é - e") + c3U(eU - e"), (35) 

donde Up(eu) = Up es la energía de deformación que aparece en el principio clásico 
de energía potencial total. Descomposiciones de esta forma proveen la base para el 
"ajuste" de elementos finitos de alto rendimiento por el método de balance de energz'a 
considerando "parches7' de elementos sometidos a ciertos sistemas de deformaciones y 
 carga^*+^^*^. 
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CONCLUSIONES 

Hemos presentado una formulación parametrizada de las funcionales de elasticidad 
lineal, que incluye varios principios clásicos como casos especiales. Esta formulación ha 
probado su utilidad en la construcción y ajuste de elementos finitos de alto rendimiento. 

Debemos notar que la expresión (17) incluye solamente principios variacionales de 
elasticidad en que el campo de desplazamientos ú varía independientemente y excluye 
principios en que eso no ocurre; por ejemplo la funcional de energía complementaria. 
Una forma parametrizada más general que también incluye los principios de tipo 
tensión-deformación (sin desplazamientos independientes) se presenta enlo. 
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