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RESUMEN

Este trabajo presenta una formulacién parametrizada de los principios variacionales
de elasticidad lineal. La formulacién incluye como casos especiales todos los principios
variacionales cldsicos en que el campo de desplazamientos varia independientemente. En
articulos relacionados, esta formulacidén, conjuntamente con el tratamiento hibrido de interfases
internas, se usa para justificar y desarrollar clases de elementos finitos de alto rendimiento.

SUMMARY

This paper presents a parametrized formulation of the variational principles of linear
elasticity. The formulation includes as special cases all classical principles with independently
varied displacement field. In related papers this formulation, in conjunction with the hybrid
treatment of internal interfaces, is used as a basis for the variational justification and further
development of high performance finite elements.

INTRODUCCION

El estudio cldsico de métodos variacionales en elasticidad sigue generalmente
dos caminos diferentes: generalizacién progresiva de principios especializados (por
ejemplo, el principio de energia potencial total), o especializacién creciente del principio
mas general (Hu-Washizu). La mayoria de las exposiciones didacticas siguen el
primer camino, mientras que la mayoria de los tratados monogréficos siguen el
segundo. En ambos casos es tradicional presentar los principios clasicos uno por
uno: energia potencial, energia complementaria, Hellinger-Reissner, Hu-Washizu,
etc.. Este trabajo toma una ruta distinta. Todos los principios variacionales de
elasticidad lineal con variacién independiente de desplazamientos se confluyen en una
funcional parametrizada que provee los resultados clasicos para valores especificos de
los parametros. El resultado es una familia continua de formulaciones. El estudio de
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la primera variacién de esta funcional indica que el méximo numero de pardmetros
independientes es tres.

Esta formulacién parametrizada de principios variacionales en elasticidad ha sido
atil como una base para desarrollar elementos finitos de alto rendimiento. En
particular este procedimiento variacional aclara varios puntos dudosos relacionados con
la “formulacién libre” de Bergan y Nygard'?, y con la formulacién de “deformaciones
naturales” estudiada recientemente por los autores!'*?. Un ingrediente importante
de este método es la retencién de los pardmetros libres del principio general ‘al nivel
de los elementos finitos, es decir, a través de la discretizacién. Los valores de estos
parametros se ajustan con un método de balance de energia para mejorar la calidad
de la aproximacién numeérica, y pueden variar de elemento a elemento. Aplicaciones de
esta indole se describen en una serie de articulos recientes®*°.

EL PROBLEMA DE ELASTOSTATICA LINEAL

Consideramos un cuerpo linealmente eldstico bajo carga estitica que ocupa el
volumen V. El cuerpo estd delimitado por una superficie S que descomponemos en
S : 84U S;. Desplazamientos se especifican en Sy y tracciones de superficie en S;. El
vector normal exterior unitario en S es n = n;.

Los tres campos de volumen incdgnitos son los desplazamientos u = wuj,
deformaciones e = e;;, y tensiones ¢ = o;;. Los datos incluyen: el campo de fuerzas
volumétricas B = b; en V', desplazamientos conocidos den Sy, y tracciones conocidas
t =1{; en S,.

Las relaciones que ligan los campos de volumen son las ecuaciones de deformacién-
desplazamiento:

e= %(Vu + VTu) = Du 6 e = %(u,"j + u}",‘) enV, (1)

las ecuaciones constitutivas

oc=Ee & o0y;=Ejuen enV, (2)

¥ las ecuaciones de equilibrio

—~dive=D"¢c=8B ) 0i;;+b;=0 enV, (3)

donde D* = —div es el operador adjunto de D = 3(V + vh.

El vector de tensidn con respecto a una direccién definida por el vector unitario v
se escribe 0, = @.v, 6 0,; = 0i;v;. En la superficie S el vector de tracciones se define
como

2

o, =o0o.n, 6 o = oyn;. 4)

Con esta definicién la condicién de contorno en las tracciones se escribe

o, =t é oy =t sobre S, (5)
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mientras que la condicién de desplazamientos de contorno es

u=d 6 w=d; sobre Sg. (6)

NOTACION

Dependencias Variacionales

En métodos variacionales de aproximacién no se trabaja por supuesto con
los campos exactos que satisfacen las ecuaciones (1)-(3), (5)-(6), sino con campos
independientes (primarios) que estdn sujeto a variaciones, y campos dependientes
(secundarios, asociados, derivados), que no lo estdn. Las aproximacién se determina
tomando variaciones con respecto a los campos independentes.

Un campo variado en forma tindependiente serad identificado con un guifo
superpuesto, por ejemplo 1. Un campo dependiente se identifica escribiendo el campo
independiente del que depende como superscripto. Por ejemplo, si los desplazamientos
se varian independientemente, los campos de deformaciones y tensiones derivados son

e =1(v+Vh)a=Dd, o*=Ee'=EDa (7

Una ventaja de esta convencién es que u, € y o pueden reservarse para los campos
ezactos.

Abreviacién de Integrales

Integrales de volumen y superficie se abreviarin poniendo paréntesis y corchetes,
respectivemente, alrededor del integrando. Por ejemplo:

(5w & [ rav, (s ¥ [ras, 171, ¥ [ 1ds, (915 ¥ [ ras. @

Si f y g son funciones vectoriales y p y q funciones tensoriales, su producto interior en
V se escribe de la manera usual:

(£ g)y & /V fgdv = /V fgdv,  (pav /V p.qdV = /V pisai;dV,  (9)

y similarmente para integrales de superficie, en cuyo caso se usaran corchetes.
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Interfases Interiores

En las subsecciones siguientes se construyen principios variacionales hibridos
en que desplazamientos de borde d se pueden variar independientemente de los
desplazamientos internos u. Estos desplazamientos funcionian como multiplicadores
de Lagrange que relajan la continuidad de los desplazamientos internos. Principios
variacionales que contienen P? se llamarin de desplazamientos generalizados, o d-
generalizados.

La seleccién de d como campo independiente no es variacionalmente admisible
en Sq¢4 6 S;. Por lo tanto debemos extender la definicién de la frontera para incluir
interfases internas designadas colectivamente como S;. Asi

S:S54US,US:. | (10)

En S; ni los desplazamientos ni las tracciones se especifican. Detalles adicionales sobre
la definicidn de integrales de volumen y superficie en la presencia de S; pueden verse
en5—8,11 . .

La aparicién de la frontera S; es una consecuencia natural del uso de elementos
finitos de tipo hibrido. En efecto, la unién de bordes comunes a dos é mds elementos
hibridos, constituye S;. Se nota que en general esta frontera es artificial pues depende
de la discretizacién elegida*.

LAS FUNCIONALES DE ELASTICIDAD LINEAL

Los principios variacionales de elasticidad lineal se basan en funcionales de la forma

I=U-P, (11)

donde U caracteriza la energia interna almacenada en el volumen y P incluye otras
contribuciones como el trabajo de las cargas aplicadas y la energia de “dislocacién”
almacenada en S;. Llamaremos U la energia de deformacion generalizada y P el
potencial de solicitacion.

La Energia de Deformacién Generalizada

La energia de deformacién generalizada (EDG) tiene la expresion general

U = 3511(8, €7 )v +j12(, &)v + j13(8, € )v + 3722(0%, &)y + j23(0%, €*)v + 3 jaa(0", €*)y

(12)
donde j11, ... j33 son coeficientes numéricos. Por ejemplo, la EDG del principio de Hu-
Washizu se obtiene poniendo 712 = —1, j13 = 1, j22 = 1, otros cero. La representacién
matricial del funcional (12) y las relaciones que deben existir entre los coeficientes se
estudian en otro apartado.

* Si hay interfaces naturales interiores —por ejemplo un cambio brusco de material o de dimensiones—
es practica comin disponer la malla de modo que las interfases naturales también sean interfases entre
elementos.
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Potenciales de Solicitacién Hibridos

.Principios variacionales de elasticidad lineal se construyen combinando la integral
volumétrica (12) con P. Dos formas de este potencial de solicitacién (PS), lamado P¢
y P! en lo que sigue, son de interés en el tratamiento hibrido de discontinuidades en la
interfase S;. El PS d-generalizado (desplazamiento generalizado) introduce un campo
independiente de desplazamientos d sobre S;:

P(i1,4,d) = (B, Q)y + [&n, 0 —d]s, + [{,1]s, + [6n, 01— d]s;. (13)

El PS t-generalizado (traccién generalizado) introduce un campo independiente de
tracciones t sobre S;:

Pt(ﬁsa'}i) = (B,ﬁ)v + [i’ﬁ - &]Sd + [isﬁ]& + [E,ﬁ]si. (14)

La forma “convencional” P¢ del PS se obtiene si las integrales sobre S; se anulan
y en adicién se toma t = @, sobre S. En este caso Pt y P9 se convierten en P¢, que
retiene sélo dos campos independientes:

P(d,6) = (B, @)y + [6a, 0 — d]s, + [, 1]s, (15)

PS Modificados

La derivacién de ciertas clases de elementos finitos de alto rendimiento ha
sido basada primordialmente en el potencial P%. Estas derivaciones no se basan
directamente en (13) sino en formas modificadas en la que la integral sobre 5; se
transforma en una integral sobre la frontera totak(10). Estas modificaciones se pueden
estudiar en™® y no son requeridas en el material que sigue.

Funcionales Completos

Las funcionales de elasticidad (11) se obtienen combinando la ETG (12) con uno de
los potenciales (13)-(15). Por ejemplo, las versiones d y t generalizadas de la funcional
de Hu-Washizu son

My = Uy — P4, Yy = Uy — P, (16)

donde Uw se obtiene poniendo j3 = ji3 = 1, 712 = —1, otros cero, en (12).
REPRESENTACION MATRICIAL DE FUNCIONALES

La EDG (12) se puede escribir en forma matricial como*

Ju  J1iz jis] (€
U:%/V(& o %) jre Gas |4 &y dV. (17)
eu

stm J32

* Para justificar la simetria de J nétese, por ejemplo, que j13(5, €% )y = -;53'13(6', e*)y + %jm(e",a“)y, etc..
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La matriz simétrica . . i
S Jun 12 i3
J = J22  Jos3 (18)
sim j33

caracteriza la EDG. Usando las ecuaciones ¢ = Ee, ¢* = EDii, e° = Ele, y
e* = D1, la integral (17) se puede escribir en la forma alternativa
B gl J13D

J12l JzE J23ED

v=1 / (& & a)
4 jlsDT _’fstTE j33DTED

} av. (19)

e M

La Primera Variacién
La primera variacién de la EDG (17) es
U = (Ae, (5&)V + (Ac, sé)y — (diva", 6ﬁ)v + [0’:‘, §ijs, (20)
donde

Ae = ji1€7 + 128 + jize®,
Ao = j120 + j220° + jaszo™, (21)
o' = j130 + j230° + jazo®.

Los dos términos ltimos en (20) se combinan con contribuciones de la variacién
de P. Por ejemplo, si P = P¢ la variacién completa de II* = U — P¢ es

8II° = (Ae, 66)v +(Aw, 6é)y—(divo’-}-B,éﬁ)v«]—[a;—f:,6ﬁ]st+-[ﬁ—£l,6&n]sd. (22)

Usando P2 6 P* no cambia los términos volumétricos. Las ecuaciones de Euler-Lagrange
que corresponden a P? y P! se estudian en®"#**%!! para una forma mas restrictiva de
las funcionales U.

Por consistencia de las ecuaciones de Euler-Lagrange con las ecuaciones de campo
debemos tener Ae = 0, Ae = 0 y ¢ = & si los campos de tensiones y deformaciones
se reducen a los exactos. En consecuencia

Jui+jiz+ 713 =0,
Jiz+ J22+3j23 =0, (23)
Jiz+ jes+ s =1.

Debido a estas condiciones de vinculo, el méaximo nidmero de pardmetros
independientes que define los elementos de J es tres. Un estudio mdés detallado de
las condiciones {23) y del significado fisico de las ecuaciones con relacién al método de
residuos ponderados Ae = 0 y Ao = 0 se presenta en®’.
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Funcionales Especificas

Expresiones de J para ciertos principios cldsicos y parametrizados se tabulan en
lo que sigue. Los subscriptos de J sirven para identificar las funcionales, que aparecen
mas 6 menos en orden de complejidad creciente. Los campos indicados en paréntesis
después del nombre de la funcional son aquellos que varian independientemente.

000
Jp-—‘—-[o 0 0]. (24)

Energia potencial total (0):

0 01

Tension-desplazamiento Reissner, tambien llamada Hellinger-Reissner, (a,1):

-1 0 1
JR=[ 00 0}. (25)

100

Funcional tension-desplazamiento “anénima” que aparece en Oden y Reddy*®: (&,1):
/4 q D y »

10 -1
Ju=| 0 0 0. (26)
-1 0 2

Deformacién-desplazamiento Reissner*® (&,u):

0 00

Js=1|0 -1 1]}. (27)
0 1 0

Hu-Washizu (o,€,1):

0 -1 1
JW:[—I 1 0}. (28)

1 00

Familia de tensién-desplazamiento parametrizada (¢,1) que incluye a Up, Ur y Uy

como casos especiales®™® :
-y 0 7
Jy=1]10 0 0 . (29)

v 0 1-v

Familia deformacidn-desplazamiento parametrizada (€,1) que incluye a Up y Us como
casos especiales’:

0 0 0
Jg= [o -8 B } (30)
0 B 1-8
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Familia tensién-deformacién-desplazamiento doblemente parametrizada (7,&,1) que
incluye a Ug y U, como casos especiales’:

Yoy =(1-P),+(1-1)Is— (1~ B~ 7)Ip
[—7(1 - B) 0 7(1-8) } (31)

0 -B(1-7) B(l-7)
7(1-8) B(l-v) 1-B-7+2By

Familia tensién-deformacion-desplazamiento triplemente parametrizada (4,&,1) que
incluye a Uw y Ug, como casos especiales’:

Jopy = adw + (1 - a)Ip,
[ —(1-B)(1-a) - at+y(l-B)(1-a) ]

a
“a a-Bl-71-0a)  BL-7)1-a)
AP0 AL (=foy Bl
La ltima forma, que contiene tres parimetros independientes, provee todas las
matrices J que satisfacen las condiciones (23). Nétese que Jo3, da funcionales de tipo
tensién-desplazamiento si @ = 8 = 0, de tipo deformacién-desplazamientosi a = v = 0,
y de tipo tensién-deformacidn-desplazamiento en caso contrario.

Descomposiciéon en Energia

Una descomposicion interesante de J como suma de cuatro matrices de rango uno
es

6 0 0 1 -1 90 0 0 0 1 0 -1
J=1{0 0 0} +4+ec|-1 1 0{4¢ 10 1 -1{4¢c3] 0 O 0, (33)
6 0 1 0 0 0 0 -1 1 -1 0 1
donde ¢ = 3(j11+J22—Jas+1), c2 = 3(~J11+ja2+Js3—1), ¥ 3 = 3(j11 —Jaz + 73— 1).

Para reinterpretar (33) como descomposicién en energia, llamemos

U(e) = %(Ee, ev (34)

la habitual energia de deformacién (“strain energy”) asociada con el campo de
deformaciones €. (Si el tensor E is positivo definido, U(¢) es no-negativa.) Entonces

U =U(e") + cilh(e” — &) + colU(€é — e*) + csU(e” — €7}, (35)

donde Up(e*) = Up es la energia de deformacién que aparece en el principio cldsico
de energia potencial total. Descomposiciones de esta forma proveen la base para el
“ajuste” de elementos finitos de alto rendimiento por el método de balance de energia
considerando “parches” de elementos sometidos a ciertos sistemas de deformaciones y
cargas®®7®,
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CONCLUSIONES

Hemos presentado una formulacién parametrizada de las funcionales de elasticidad
lineal, que incluye varios principios cldsicos como casos especiales. Esta formulacién ha
probado su utilidad en la construccién y ajuste de elementos finitos de alto rendimiento.

Debemos notar que la expresién (17) incluye solamente principios variacionales de
elasticidad en que el campo de desplazamientos i varia independientemente y excluye
principios en que eso no ocurre; por ejemplo la funcional de energia complementaria.
Una forma parametrizada mas general que también incluye los principios de tipo
tensién-deformacién (sin desplazamientos independientes) se presenta en'.
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