
15th World Congress on Computational Mechanics (WCCM-XV) 

   8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII) 

Virtual Congress: 31 July – 5 August 2022 

S. Koshizuka (Ed.) 

 
 

 

DEVELOPMENT OF ISOLATED ELEMENT METHOD AND 

ANALYSIS OF UPPER AND LOWER BOUND SOLUTIONS BY A NEW 

MIXED-HYBRID VARIATIONAL PRINCIPLE 

ETSUO KAZAMA ¹ AND ATSUSHI KIKUCHI ² 

 1 Numerical Analysis Development Co., Ltd., 4-81 Wakatsuki-danchi, Nagano City, 381-0051, 

E-mail: e.kazama@kjb.biglobe.ne.jp    URL: http://suuchi.rakusaba.jp/ 
2 Numerical Analysis Development Co., Ltd., 6-chome Kanai, Machida City, Tokyo 195-0072,  

E-mail: kikuchi.atsushi@job.zaq.jp   URL: http://suuchi.rakusaba.jp/ 

 

Key words: Isolated element method, Node-less element, Upper and lower bounds, Mixed and 

hybrid variational principle, FEM 

Abstract. A new discretization analysis method named the isolated element method, that 

differ from conventional FEM, for solid mechanical problems is proposed. An object to be 

analyzed is divided into the elements that are separated from each other. A set of 

displacement functions providing arbitrary number of degrees of freedom is used for each 

isolated element which expresses the translation and rotation of a rigid body. The extended 

principle of minimum potential energy is applied to satisfy the continuity of the displacement 

of isolated elements adjoining to each other. Any node or spring, penalty functions and 

Lagrange multipliers are not used in this method. The displacement functions of the power 

series are used to describe the mechanical state of the isolated element and finally, the 

coefficients of series are determined by a variational principle derived from the extended 

principle of minimum potential energy.  Furthermore, a new mixed and hybrid variational 

principle which is composed from the potential and the complemental energy functional is 

proposed. The pair of these energy are constrained by a formula. Using this new principle, in 

which stress and displacement can be used as independent variables, the stress and 

displacement are computed at the same time. Besides, upper and lower bounds solutions are 

analyzed using the new principle and the isolated element method. Some computed examples 

of the plane stress problems are presented. We show the good convergency of the numerical 

results, and also present the upper and lower bound results of stress and displacement by the 

new mixed and hybrid variational principle using the isolated element method. 
 

1 INTRODUCTION 

In this paper a new discretization analysis method for solid mechanics problems is 

proposed. Isolated elements without nodes are used for the new method named the isolated 

element method. Furthermore, a new mixed and hybrid variational principle which is 

composed from the potential and the complemental energy functional is proposed. 

By facilitating and universalizing the implementation of the new discretization analysis 

method, we aim to extend the fields for its application and to ensure higher reliability and 

versatility. Then we consider focussing on two points to be important under the condition that 
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the target region is divided into elements as conventional. One is that the functions, which 

represent the physical state of elements with arbitrary shape, are relatively free to adopt 

compared with the collocation methods, and furthermore, boundary conditions can be 

satisfied automatically. The other one is to estimate the accuracy of stress and displacement at 

the same time. To finally solve the above two problems, we develop a new discretization 

analysis method consisting of the isolated elements [1].  

In this new method, the solid to be analyzed is divided into multiple separated and isolated 

elements. In the isolated element method, we use the minimum potential energy principle to 

guarantee convergence to the correct solution, without using the connecting factors such as 

nodes, springs, penalty functions etc.  A common method that automatically satisfies such as 

separated boundary conditions is to use the Lagrange multiplier [2]or to identify it and reduce 

the number of unknowns [1]. A new variational approach is proposed to satisfy the condition 

of the continuity for displacement without Lagrange multipliers or those identification. Each 

isolated element is defined as one that can be deformed independently. The continuities of the 

displacement and stress between the elements are required, therefore the isolated elements 

need to have the feature of satisfying both of geometrical boundary conditions and mechanical 

boundary conditions automatically. To give the above features to the isolated elements, we 

extend the principle of the minimum potential energy. The divided isolated elements are 

reconstructed into the continuum deformed by natural boundary conditions [3]. By providing 

a local coordinate system for each isolated element, the displacement functions of power 

series including the translation and rotation of rigid bodies are used. In numerical analysis, the 

coefficients of the power series are determined by a variational principle derived from the 

extended principle of minimum potential energy. 

A new mixed and hybrid variational principle, also proposed in this paper, is composed 

from the potential energy functional and the complemental energy functional that the pair of 

these energy are constrained by a formula [4]. Using this principle, we can compute the upper 

and lower bounds results of stress and displacement at the same time.  

Some computed examples of the plane stress problems are presented. We show the good 

convergency of the numerical results, also present the upper and lower bound results of stress 

and displacement by the new mixed and hybrid variational principle using the isolated 

element method. 

In this paper, the isolated element method is abbreviated as IEM. 

2 FEATURES AND VARIATIONAL FORMULATION OF IEM  

2.1 Objects discretized by isolated elements 

The symbolic of this paper is shown below. The lower index i of the symbol represents the 

component of the vector, and i,j represent the components of the tensor. Symbols with an 

upper index  ( ̅ )   represent the specified value. The summation convention is used. 

A continuum solid is divided into a set of isolated elements as shown in Fig.1, in which 

elements and elements or elements and supporting objects are completely separated. Figure 2 

shows a loaded activate state in which elastic energy is charged. A local coordinate system is 

provided to describe the motion of the element and the mechanical state inside the element, 

and a displacement function is assumed for each element. When each element is completely 

isolated, each one moves freely because rigid body displacement is not constrained. The 
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displacement function consists of terms representing translation and rotation of rigid body and 

a power series of one or more orders. Finally rigid body translation and rotation, and 

undetermined coefficients of power series are solved by variational equations.  

 

 

 

 

 

 

 

 

 

 

2.2 Expression of boundary conditions in IEM  

An important point to be considered in the isolated element method is the condition of 

continuity between the elements. Both mechanical and geometrical boundary conditions are 

satisfied as natural boundary conditions [3] by the Euler-Lagrange equations.  

We express the type of the boundary condition of the element as 𝑆𝑚 and 𝑆𝐿 attached to the 

integration symbol. All boundaries of the element are represented by S and 𝑆 = 𝑆𝑚 + 𝑆𝐿. 

𝑆𝑚: represents a boundary where the equilibrium conditions of the traction and the continuity 

conditions of the displacement are imposed.𝑆𝐿 : represents a boundary where the load is 

applied or a boundary where no load is applied. The sides 𝑆1, and 𝑆2 of the element 𝑒1 in Fig. 

1 are 𝑆𝑚 , because the boundary condition of the traction between the element 𝑒1  and the 

adjacent elements, and the continuity condition for the displacement are imposed. The side 

𝑆3  of the element 𝑒1  is 𝑆𝐿  because a load is applied. The side 𝑆4  of the element 𝑒1  is 𝑆𝑚 , 
because the condition of traction of the element 𝑒1 between the reaction force of the 

supporting body and the condition of displacement constraint must be satisfied.  

2.3 Functional of the isolated elements with boundary potential energy system 

In IEM, we use the principle of minimum potential energy to define the functional Eq.(1) 

same as previous paper [1]. 

 

                             𝛱𝑝(𝑢𝑖) ≔ ∫ 𝑢𝑝(𝜀𝑖𝑗)𝑉
𝑑𝑉 − ∫ 𝑡𝑖̅𝑢𝑖𝑑𝑆𝑆𝐿

− ∫ 𝑝̅𝑖𝑢𝑖𝑉
𝑑𝑉                               (1)                                                       

 

where 𝑢𝑖  is displacement, 𝜀𝑖𝑗  is Cauchy’s strain tensor, 𝑢𝑝(𝜀𝑖𝑗)  is strain energy per unit 

volume, 𝑡𝑖̅ is prescribed traction on the boundary, that is the external load on the 𝑆𝐿 and 𝑝̅𝑖 is 

body force in 𝑉. The linear displacement-strain relation and linear elastic stress-strain relation 

are used. Each element has its own rigid body displacement so that it can move freely. In 

addition, the continuity of the displacement and boundary conditions between the isolated 

elements are automatically satisfied by the Euler-Lagrange equations. 

In this paper, we propose a new variational approach that satisfies the condition of the 

continuity of displacement between the target element and adjacent element without Lagrange 

Fig.1Divided isolated elements       Fig.2 A loaded activate state 
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multipliers or those identifications. Equation (2) is the definition of the supplementary 

function for the continuity of displacement, and we will refer to the integrals on the right side 

in Eq.(2) as the “boundary potential energy”. 

 

𝐼𝐵 ≔ ∫ 𝜎𝑖𝑗𝑛𝑗𝑢𝑖
𝐵

𝐴
𝑑𝑆 + ∫ 𝜎𝑖𝑗𝑛̅𝑗𝑢̅𝑖

𝐵′

𝐴′
𝑑𝑆                                           (2) 

 

where, 𝜎𝑖𝑗  and 𝜎𝑖𝑗 are the stress tensors at point 𝑃 common to elements 𝑒 and 𝑒̅, 𝒖 and 𝒖̅ are 

the displacement vectors at point 𝑃, 𝑛𝑖 and 𝑛̅𝑖 are the unit normal outward vectors at point 𝑃 

of the surface of elements 𝑒 and 𝑒̅ respectively. The first integral on the right side of Eq.(2) 

represents the  boundary potential energy of surface 𝐴𝐵 of solid 𝑒 in Fig.3, and the second 

integral represents the boundary potential energy of surface 𝐴′𝐵′ of solid 𝑒̅. In Fig. 3, the 

boundary potential energy in Eq. (2) is  generated by the mechanical and geometrical coupling 

and matching of 𝑒 and 𝑒̅ at each other's boundaries. From Cauchy's formula and 𝜎𝑖𝑗 = 𝜎𝑖𝑗 , 

𝑛̅𝑖 = −𝑛𝑖 at point P, we have Eq. (3). 

 

𝐼𝐵 = ∫ 𝑡𝑖𝑢𝑖
𝐵

𝐴
𝑑𝑆 − ∫ 𝑡𝑖𝑢̅𝑖

𝐵′

𝐴′
𝑑𝑆                                              (3) 

 

Figure 4 shows the relationship between the global coordinate system X-Y and the local 

coordinate systems in terms of position vectors for solids 𝑒 and 𝑒̅ respectively. 

 

 
 

Fig.3 Variables for boundary potential energy      Fig.4 Local and global coordinate systems 

 

Based on the global coordinate system, the starting point 𝐴  of the integration can be 

represented in the two local coordinate systems as Eq. (4). 

 

𝑿̅𝑮 + 𝒙𝑨 = 𝑿𝑮 + 𝒙𝑨  →  𝒙̅𝑨 = 𝒙𝑨 + 𝑿𝑮 − 𝑿̅𝑮                       (4) 

 

Using Eq. (4), the integration with respect to 𝒙̅ on the right side of Eq. (3) can be performed in 

the local coordinate system x-y. Therefore, Eq. (3) can be rewritten as Eq. (5)  

 

𝐼𝐵 = 𝑠𝑖𝑔𝑛 ∫ 𝑡𝑖(𝑢𝑖 − 𝑢̅𝑖)
𝐵

𝐴
𝑑𝑆                                             (5) 

 

To maintain convergence to a unique solution, it is important that the positive or negative sign 

of the terms in the quadratic form of the functional coincide with the “𝑠𝑖𝑔𝑛” of the prefix of 
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the integral in Eq. (5). In this case, the first integral on the right side of Eq. (1) is positive 

quadratic form because it is strain energy, and the integral of 𝑡𝑖𝑢𝑖 in Eq. (5) is positive for the 

target element 𝑒. Since the inequality  𝛱𝑝(𝑢𝑖) + 𝐼𝐵 ≥  𝛱𝑝(𝑢𝑖) is hold, “𝑠𝑖𝑔𝑛” in Eq. (5) must 

be positive. Adding Eq. (5) to the right side of Eq. (1), we obtain the extended functional 

shown in equation (6). 

 

𝛱𝐼(𝑢𝑖) ≔ ∫ 𝑢𝑝(𝜀𝑖𝑗)𝑉
𝑑𝑉 − ∫ 𝑡𝑖̅𝑢𝑖𝑑𝑆𝑆𝐿+𝑆𝑚

− ∫ 𝑝̅𝑖𝑢𝑖𝑉
𝑑𝑉 +∫ 𝑡𝑖𝑆𝑚

(𝑢𝑖 − 𝑢̅𝑖)𝑑𝑆                (6) 

 

where 𝛱𝐼(𝑢𝑖) is rewrite of 𝛱𝑝(𝑢𝑖) in Eq. (1). 

Equation (6) is the basic functional of the isolated element method. 

2.4 Weak form variational equation 

From Eq. (6), we can derive the weak and the strong forms of variational equations. We 

will derive weak form variational equation for numerical analysis. Substituting strain energy 

function 𝑢𝑝(𝜀𝑖𝑗) ≔
1

2
𝜎𝑖𝑗𝜀𝑖𝑗  into Eq. (6) and setting the first variation of 𝛱𝐼(𝑢𝑖) as zero, we 

derive the minimization conditional equation of the functional. In this derivation, we simplify 

a formula as Eq. (7) 

 

 𝛿 ∫ 𝑡𝑖𝑆𝑚
(𝑢𝑖 − 𝑢̅𝑖)𝑑𝑆 = ∫ (𝑢𝑖 − 𝑢̅𝑖)𝑆𝑚

𝛿𝑡𝑖𝑑𝑆 + ∫ 𝑡𝑖𝛿(𝑢𝑖 − 𝑢̅𝑖)𝑆𝑚
𝑑𝑆 = ∫ (𝑢𝑖 − 𝑢̅𝑖)𝛿𝑡𝑖𝑆𝑚

𝑑𝑆 (7)            

 

, because 𝑢𝑖 − 𝑢̅𝑖 = 0 by the Euler-Lagrange equation so   𝛿(𝑢𝑖 − 𝑢̅𝑖) = 0. The external force 

𝑡𝑖̅ not only acts on 𝑆𝐿 of the target element, but also the traction of adjacent elements acts on 

𝑆𝑚. Therefore, when the first variation of the functional 𝛱𝐼 is set to zero, we have 

 

∫ 𝜎𝑖𝑗𝛿𝜀𝑖𝑗𝑉
𝑑𝑉 − ∫ 𝑡𝑖̅𝛿𝑢𝑖𝑑𝑆𝑆𝐿

− ∫ 𝑝̅𝑖𝛿𝑢𝑖𝑉
𝑑𝑉 +∫ (𝑢𝑖 − 𝑢̅𝑖)𝑆𝑚

𝛿𝑡𝑖𝑑𝑆 − ∫ 𝑡𝑖̅𝛿𝑢𝑖𝑆𝑚
𝑑𝑆 = 0     (8)             

 

,in which 

   ∫ 𝜎𝑖𝑗𝛿𝜀𝑖𝑗𝑉
𝑑𝑉 = ∫ 𝜎𝑖𝑗𝑛𝑗𝑆

𝛿𝑢𝑖𝑑𝑆 − ∫ 𝜎𝑖𝑗,𝑗𝛿𝑢𝑖𝑉
𝑑𝑉     

                                           = ∫ 𝑡𝑖𝑆𝐿
𝛿𝑢𝑖𝑑𝑆 + ∫ 𝑡𝑖𝑆𝑚

𝛿𝑢𝑖𝑑𝑆 − ∫ 𝜎𝑖𝑗,𝑗𝛿𝑢𝑖𝑉
𝑑𝑉                           (9)                                                 

 

where 𝑛𝑗  represents the outward unit normal vector on the boundary surface S of the element.  

Then, substituting Eq. (9) into the first integral term of Eq. (8), we have the so-called a 

strong form variational equation, and the equations of Euler-Lagrange can be derived [1]. 

3 ASSUMPTION OF DISPLACEMENT FUNCTIONS 

We use a displacement function based on M.A.Biot's displacement-strain theory [5], which 

is effective in stabilizing numerical calculations for IEM [1]. We assume a displacement 

function consisted of the only strains of 2-dimensional as Eq. (10), 
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𝑢𝑒 ≔ 𝜀𝑥0𝑥 + 𝜀𝑥𝑦0𝑦 + 𝑎1𝑥
2 + 𝑎2𝑥𝑦 + 𝑎3𝑦

2 +⋯

𝑣𝑒 ≔ 𝜀𝑦0𝑦 + 𝜀𝑥𝑦0𝑥 + 𝑏1𝑥
2 + 𝑏2𝑥𝑦 + 𝑏3𝑦

2 +⋯
}        (10) 

 

where 𝜀𝑥0, 𝜀𝑦0, 𝜀𝑥𝑦0  are unknown constant strains. Adding a rigid displacement to the 

displacement-strain relationship devised by Biot [5], we have 

 

               

𝑢 = 𝑢0 − 𝜔𝑧𝑦 + 𝑒𝑥𝑥𝑥 + 𝑒𝑥𝑦𝑦                     

  = 𝑢0 − 𝜔𝑧𝑦 +
𝜕𝑢𝑒

𝜕𝑥
𝑥 +

1

2
(
∂𝑢𝑒

∂y
+
𝜕𝑣𝑒

𝜕𝑥
) 𝑦  

𝑣 = 𝑣0 + 𝜔𝑧𝑥 + 𝑒𝑦𝑦𝑦 + 𝑒𝑥𝑦𝑥                      

  = 𝑣0 + 𝜔𝑧𝑥 +
𝜕𝑣𝑒

𝜕𝑦
𝑦 +

1

2
(
∂𝑢𝑒

∂y
+
𝜕𝑣𝑒

𝜕𝑥
) 𝑥   }

 
 

 
 

          (11) 

 

, where 𝑢0, 𝑣0 𝑎𝑛𝑑 𝜔𝑧 are rigid body translation and rotation respectively. 

4 STABILIZATION OF RIGID BODY DISPLACEMENT 

There is essentially a rigid body displacement in the isolate element, we explicitly describe 

what is necessary for rigid body displacements from the viewpoint of stabilizing numerical 

analysis same as previous paper [1]. 

The displacement function 𝑢𝑖  of the isolated target element is represented by the sum of the 

rigid body displacement component 𝑢𝑖
𝐺  and the strain-causing component 𝑢𝑖

𝜀 , that is         

𝑢𝑖 = 𝑢𝑖
𝐺 + 𝑢𝑖

𝜀. Substituting this equation into the integration Eq. (12)  

 

                                                          ∫
1

2
(𝑢𝑖 − 𝑢̅𝑖)

2𝑑𝑆
𝑆𝑚

                                                                       (12) 

 

, in which 𝑢𝑖 , 𝑢̅𝑖 represent the displacement of the target element and the adjacent element 

respectively, and applying a small variation only to 𝑢𝑖
𝐺 of the target element, we have  

 

𝛿 ∫
1

2
(𝑢𝑖 − 𝑢̅𝑖)

2𝑑𝑆＝
𝑆𝑚

∫ (𝑢𝑖 − 𝑢̅𝑖)
𝜕(𝑢𝑖−𝑢̅𝑖)

𝜕𝑢𝑖
𝐺 𝛿𝑢𝑖

𝐺𝑑𝑆
𝑆𝑚

   

                                       ≅ ∫ (𝑢𝑖 − 𝑢̅𝑖)𝛿𝑢𝑖
𝐺𝑑𝑆𝑆𝑚

                                                    (13) 

 

In the case of plane stress, Eq. (13) is expressed by the following equations. 

 

∫ (𝑢 − 𝑢̅)𝛿𝑢0𝑑𝑆𝑆𝑚
, ∫ (𝑣 − 𝑣̅)𝛿𝑣0𝑑𝑆𝑆𝑚

                                    (14A), (14B) 

 

To make the element matrix positive-definite, in the case of plane stress analysis, it is 

necessary to superimpose Eq.(14A) and Eq.(14B) on the corresponding row of the element 

matrix. When using low-order power functions of displacement, the boundary conditions for 

each side of the element may not be fully satisfied due to the small number of degrees of 

freedom. Then, an unbalanced force or an unbalanced moment is generated, and the rigid 

body displacement becomes unstable. We used a method to minimize these unnecessary 

forces and moments.  
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5 A MIXED-HYBRID VARIATIONAL PRINCIPLE AND UPPER AND LOWER 

BOUND SOLUTIONS 

Lower bound solutions can be analyzed by FEM which is based on the displacement 

method, and by IEM in which if the displacement function is used. However, the quantitative 

accuracy of the solutions is unknown only by the lower bound analysis. We propose a new 

mixed-hybrid method. The accuracy of the solutions of stress and displacement can be 

quantitatively calculated in the linear elastic problems by upper and lower solutions using the 

new mixed-hybrid method with IEM.  

5.1 Variational principle of the mixed-hybrid energy functional  

In the local coordinate system, the displacement 𝑢𝑖  of the independent variable and the 

stress 𝜎𝑖𝑗  of the independent variable are assumed by polynomials. The generalized 

parameters, which are undetermined coefficients, of the displacement polynomial are 

represented by 𝛼𝑘(𝑘 = 1,2⋯𝑚) , and of the stress polynomial are represented by  𝛽𝑘(𝑘 =
1,2⋯𝑛)  . Displacement 𝑢𝑖(𝛼𝑘 ) and stress 𝜎𝑖𝑗(𝛽𝑘 )  are defined as independent variables 

respectively. The 𝜏𝑖𝑗(𝛼𝑘)   is the stress derived from 𝛼𝑘  , 𝑡𝑖 (𝛼𝑘) and  𝑡𝑖(𝛽𝑘)   are the tractions 

derived from  𝛼𝑘   and 𝛽𝑘  respectively. Strain energy 𝑢𝑝(𝛼𝑘) is defined as a function of 𝛼𝑘 , 

and complementary energy 𝑢𝑐(𝛽𝑘) is defined as a function of 𝛽𝑘.  

We define the functional 𝛱𝑚 for the mixed method based as 

 

   𝛱𝑚(𝛼𝑘, 𝛽𝑘) = 𝐼𝑝 + 𝐼𝑐 + 𝐼𝐵 + 𝐻|𝑠𝑖𝑔𝑛=−1                                     (15) 

 

The functional 𝐼𝑝(𝛼𝑘) of the principle of minimum potential energy is expressed as Eq. (16)  
 

                         𝐼𝑝(𝛼𝑘) = ∫ 𝑢𝑝(𝜀𝑖𝑗)𝑉
𝑑𝑉 − ∫ 𝑡𝑖̅𝑢𝑖𝑑𝑆𝑆𝐿+𝑆𝑚

− ∫ 𝑝̅𝑖𝑢𝑖𝑉
𝑑𝑉                      (16) 

𝑢𝑖 − 𝑢̅𝑖 = 0                                                            (17) 

 

in which 𝑝̅𝑖  is a body force, and 𝑡𝑖̅  is the traction of an adjacent element acting on the 

boundary 𝑆𝑚. The auxiliary conditions for this functional is Eq. (17) .  The functional 𝐼𝑐(𝛽𝑘) 
of the principle of minimum complementary energy is expressed as Eq. (18), and the auxiliary 

conditions are the Eqs. (19) and (20). 

 

𝐼𝑐(𝛽𝑘) = ∫ 𝑢𝑐(𝛽𝑘)𝑑𝑉 − ∫ 𝑢̅𝑖𝑡𝑖𝑑𝑆𝑆𝑚𝑉
                                             (18) 

𝜎𝑖𝑗,𝑗 + 𝑝̅𝑖 = 0                                                           (19)           

  𝑡𝑖 − 𝑡𝑖̅ = 0                                                            (20) 

 

The functional 𝐼𝐵 is Eq. (5) with sign = (-1). The variational equation of the functional 

extended by 𝐼𝑝 and 𝐼𝐵  to satisfy Euler-Lagrange equations is Eq. (21). From the respective 

integrals on the left-hand side of Eq. (21), the auxiliary conditions for the functionals 𝐼𝑝, 𝐼𝐵, 

namely Eqs. (17),(19),(20), are satisfied as Euler-Lagrange equations. 
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Fig5 A constraint condition of 

energy 

 ∫ (𝑡𝑖 − 𝑡𝑖̅)
𝑆𝐿

𝛿𝑢𝑖𝑑𝑆 + ∫ (𝑡𝑖 − 𝑡𝑖̅)
𝑆𝑚

𝛿𝑢𝑖𝑑𝑆 − ∫ (𝜎𝑖𝑗,𝑗 + 𝑝̅𝑖)𝛿𝑢𝑖
𝑉

𝑑𝑉 + ∫ (𝑢𝑖 − 𝑢̅𝑖)
𝑆𝑚

𝛿𝑡𝑖𝑑𝑆 = 0 

            (21) 

 

   We described about a fomula of energy constraint 

condition, that express the coupled condition related to 

displacement and stress.  Figure 5 show that even if 𝑢𝑝 

and 𝑢𝑐  change independently, the boundary between 𝑢𝑝 

and 𝑢𝑐  has no gap or overlap, and the sum of 𝑢𝑝 and 𝑢𝑐 

are always rectangular. We called this state a constraint 

condition of energy functions. Eq. (22) is defined to 

express the relationship between 𝑢𝑝 and 𝑢𝑐. 

 

𝐻(𝛼𝑘, 𝛽𝑘) = 𝑠𝑖𝑔𝑛 ∫ (𝜎𝑖𝑗𝜀𝑖𝑗 − 𝑢𝑝 − 𝑢𝑐)𝑑𝑉𝑉
          (22)                                       

 

From the requirement that the element matrix, be in 

positive-valued quadratic form, sign must be (-1) [4]. 

Using 𝛿𝑢𝑝 = 𝜏𝑖𝑗𝛿𝜀𝑖𝑗 ,  𝛿𝑢𝑐 = 𝑒𝑖𝑗𝛿𝜎𝑖𝑗  , from the 

variational expression in Eq. (22), Eq. (23) can be 

obtained as a constraint on the energy inside the element. 

 

∫ 𝛿{𝜎𝑖𝑗𝜀𝑖𝑗 − (𝑢𝑝 + 𝑢𝑐)}𝑑𝑉
𝑉

= ∫ (𝜎𝑖𝑗 − 𝜏𝑖𝑗)𝛿𝜀𝑖𝑗𝑑𝑉
𝑉

+∫ (𝜀𝑖𝑗 − 𝑒𝑖𝑗)𝛿𝜎𝑖𝑗𝑑𝑉
𝑉

= 0        (23) 

 

, where 𝜀𝑖𝑗 is the strain derived from the 𝑢𝑖 and 𝑒𝑖𝑗 is the strain derived from the 𝜎𝑖𝑗. 

Substituting Eqs. (5), (16), (18) and (22) into Eq. (15), we have Eq. (24) 

 

𝛱𝑚(𝛼𝑘, 𝛽𝑘) = ∫ 𝑢𝑝𝑑𝑉𝑉
+ ∫ 𝑢𝑐𝑑𝑉𝑉

 −∫ 𝑡𝑖̅𝑢𝑖𝑑𝑆𝑆𝑚
− ∫ 𝑝̅𝑖𝑢𝑖𝑉

𝑑𝑉 − ∫ 𝑡𝑖̅𝑢𝑖𝑑𝑆𝑆𝐿
− ∫ 𝑢̅𝑖𝑡𝑖𝑑𝑆𝑆𝑚

  

+∫ 𝑡𝑖𝑆𝑚
(𝑢𝑖 − 𝑢̅𝑖)𝑑𝑆 − ∫ (𝜎𝑖𝑗𝜀𝑖𝑗 − 𝑢𝑝 − 𝑢𝑐)𝑑𝑉𝑉

                 (24)                                                         

 

In linear solid mechanics problems, Eq. (24) is established due to the uniqueness of the 

solution, and in the principle of minimum complementary energy. 

Substituting 𝛿𝑢𝑝 = 𝜏𝑖𝑗𝛿𝜀𝑖𝑗,  𝛿𝑢𝑐 = 𝑒𝑖𝑗𝛿𝜎𝑖𝑗 , and Eq. (23) into Eq. (24), with the first 

variation of the functional 𝛱𝑚 as zero, we find the variational equation Eq. (25) 

 

∫ 𝜏𝑖𝑗𝛿𝜀𝑖𝑗𝑑𝑉𝑉
+ ∫ 𝑒𝑖𝑗𝛿𝜎𝑖𝑗𝑑𝑉𝑉

+ ∫ (𝑢𝑖 − 𝑢̅𝑖)𝑆𝑚
𝛿𝑡𝑖𝑑𝑆 − ∫ 𝑡𝑖̅𝛿𝑢𝑖𝑑𝑆𝑆𝑚

− ∫ 𝑝̅𝑖𝛿𝑢𝑖𝑉
𝑑𝑉 −

            ∫ 𝑢̅𝑖𝛿𝑡𝑖𝑑𝑆𝑆𝑚
− ∫ 𝑡𝑖̅𝛿𝑢𝑖𝑑𝑆𝑆𝐿

− ∫ (𝜎𝑖𝑗 − 𝜏𝑖𝑗)𝛿𝜀𝑖𝑗𝑑𝑉𝑉
− ∫ (𝜀𝑖𝑗 − 𝑒𝑖𝑗)𝛿𝜎𝑖𝑗𝑑𝑉 = 0     𝑉

 (25) 
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Fig.7 Convergency of stress by IEM 

 

 
 

5.2 Assumption of the admissible functions for the mixed method  

The three types of admissible functions [4] are described for computing of plane stress, as  

1) Self-equilibrium function assuming stress.  

Using a function in which some variables are deleted so that Eq. (19) is satisfied.  

2) Self-equilibrium function assuming displacement. 

Using the M.A. Biot type displacement function, Eq. (11) in 2-dimentional. 

3) Airy's stress function. 

Using the stress function Φ must be satisfied the bi-harmonic equation. 

 

6 NUMERICAL EXAMPLES 

6.1 Verification of convergency of IEM 

To verify the convergency of the numerical solutions by IEM, the first quadrant area in 

Fig.6 is analyzed using the biaxial symmetry of the plane stress problem and applying a 

distributed load of  𝑡𝑥̅ = 𝑆(1 − 𝑦
2 𝑏2⁄ ) on both sides, and S is the magnitude of the basis load 

at point 𝐴. The description of the element mesh in Fig.6 is a typical example. 
 

 

 
 

Biot’s displacement function including a constant is used. Triangular element with 20 

unknowns of cubic displacement function (T3) is used. Timoshenko's theoretical solution [7] 

sets the power series of the stress function to the eighth order including a constant. The 

specifications are as follows, 𝑎 =  500mm, Young's modulus = 200GPa, Poisson's ratio = 0.3 

and unit thickness.  𝑆  = 1N / mm2 , 𝜎𝑥
(𝑇)

= 0.858832MPa. In Fig.7, 𝜎𝑥
(𝑇)

 is Timoshenko's 

theoretical value and  𝜎𝑥
(𝐼𝐸𝑀)

 is the stress of the same point analyzed by IEM at origin O. The 

ratio of 𝜎𝑥
(𝑇)

 and  𝜎𝑥
(𝐼𝐸𝑀)

 is shown in Fig.7 as a relative error.  

 

 

 
 

 

Fig.6 Rectangular flat plate subjected to 

parabolic tensile load 
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Fig.8 Upper and lower bound solutions of 

stress by IEM , compared to FEM 

Fig.9 Stress concentration problem of 

square flat plate with circular holes 

6.2 Verification of upper and lower bound analysis by the new mixed-hybrid method 

with IEM 

  First, Fig.6 is analyzed for upper and lower 

bound solutions by the new mixed-hybrid 

method with IEM, and compare with the 

results by FEM. Airy's quadratic stress 

function and 1-4th order Biot’s displacement 

function are used with rectangular elements in 

IEM, and triangular constant strain elements 

are used in FEM. Figure 8 shows the relative 

error of the Mises stress at the origin in Fig.6, 

the criterion of relative error is Timoshenko's 

theoretical solution. One block in on the 

horizontal axis in Fig.8, which is a rectangular 

elementin in IEM, shows four elements in 

FEM. Figure 8 shows that the convergence 

curve of 𝜎𝑀(𝛽𝑘) is a monotonically increasing 

lower bound, and the convergence curve of 

𝜏𝑀(𝛼𝑘) is upper bound, and the FEM (𝜎𝑀) is 

lower bound. 

Next, a plane stress concentration problem of 

the square plate with a circular hole shown in 

Fig. 9 is analyzed, using the mixed–hybrid 

method with IEM. We applied the weak 

formulation Eq. (25) to this analysis.  The 2nd-

4th order Airy stress function and the 1st-4th 

order Biot’s displacement function are used. 

Distributed load 𝑓𝑥 = 1(
N

mm
)，𝑎 = 500m ,   

  𝑑 = 40mm , Young's modulus=200GPa, 

Poisson's ratio = 0.3 . 

Figure 10 shows the convergence of the 

stress concentration factor at point A in Fig.9. 

The convergence curve of  𝜏𝑥(𝛼𝑘)  is lower 

bound and the  𝜎𝑥(𝛽𝑘) is upper bound.  

Figure 11 shows the convergence of the horizontal displacement of point B in Fig.9, 𝑢(𝛼) 

and 𝑢(𝛽)  represents the displacements derived from  𝛼𝑘   and 𝛽𝑘   respectively. The curve 

𝑢(𝛼)shows a monotonically increasing lower bound precisely, and the curve of 𝑢(𝛽) shows an 

upper bound in   
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7 CONCLUSIONS 

Based on the principle of extended minimum potential energy, a new discrete analysis 

method, named the isolated element method (IEM), of solid mechanics is proposed without 

using the connecting factors such as nodes, springs, penalty functions and Lagrange 

multipliers. It is clarified that the geometrical boundary condition, the mechanical boundary 

condition and each equilibrium condition inside the element are automatically satisfied by the 

Euler-Lagrange equation in each of the divided isolated elements, and the condition of the 

continuity for displacement is valid by the new variational approach proposed in this paper. In 

the isolated element method, it is possible to use any polygonal or polyhedron element with 

the functions providing arbitrary number of degrees of freedom. We show a basic numerical 

example for verification of convergency of this method. 

The new mixed-hybrid method is proposed. Displacement and stress are defined as 

independent variables respectively. We treat the mixed method as a coupling problem. Using 

the coupled condition related to displacement and stress by the constraint condition formula of 

strain energy and complementary energy, we devise an approach to analyze the coupling 

problem of two types of generalized parameters by the variational method. It is possible to 

analyze upper and lower bound solutions of stress and displacement by the new mixed-hybrid 

method with IEM. We show the numerical examples of the upper and lower bound solutions 

of stress and displacements. 

By the isolated element method, it is expected that analysis of assembly structure, 

discontinuous object, contact problem etc. can be applied more flexibly than with the nodal 

point method. The mixed-hybrid method is expected to be applied to various kinds of 

problems. 
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