
The 8th European Congress on Computational Methods in Applied Sciences and Engineering
ECCOMAS Congress 2022

5-–9 June 2022, Oslo, Norway

A PARALLEL SOLVER FOR CFD BASED ON THE
ALTERNATING ANDERSON-RICHARDSON METHOD

L. J. Chan1, S. Marques2 AND N. J. Hills3

1,2,3 University Technology Centre, Department of Mechanical Engineering Sciences,
University of Surrey, Stag Hill, Guildford GU2 7XH, UK

1l.chan@surrey.ac.uk; 2s.marques@surrey.ac.uk; 3n.hills@surrey.ac.uk

Key words: Alternating Anderson-Richardson, GMRES, linear solver, CFD

Abstract. Recent advancement in the usage and deployment of large supercomputing
resources require the need for algorithmic improvements to make use of the increased
parallelism architecture. The Alternating Anderson-Richardson (AAR) method has been
recently shown to exhibit good performance when solving problems in distributed par-
allel computers. This research will extend and investigate the performance of the AAR
method to solve CFD problems using a modern compressible flow solver. This work will
compare its performance and scalability against commonly used linear solvers, such as
the Richardson method and the Generalised Minimal RESidual (GMRES), for solving
large, sparse linear systems of equations arising from CFD applications. Results using a
range of turbomachinery test cases demonstrate that the current AAR implementation
offers significant performance improvement over the Richardson method. The speedup
of AAR with respect to GMRES is less significant due to the load imbalance across
partitions.

1 INTRODUCTION

Linear systems of equations of the type Ax = b, are encountered in many fields
of science and engineering as a result of discretising the partial differential equations
describing physical processes such as those found in CFD applications. In order to
achieve a steady state solution, a linear system of equations needs to be solved at each
time step. It is well known that most of the time is spent in solving the linear system
of equations and thus it is crucial to improve the current state-of-the-art linear solver
to achieve better performance and scalability to fully exploit the increasing parallel
hardware.

Krylov subspace method such as Biconjugate Gradient Stabilised (Bi-CGStab) [16]
and GMRES [10] are the most commonly used iterative linear solvers for solving general,
large linear system of equations. However, the efficiency of these methods tends to
drop when running in parallel due to the high frequency of global reduction operations
[1, 12, 18, 19]. In contrast, the Richardson [7] and Jacobi [9] methods do not perform
any global reduction, which make them ideal for parallel computation. Nevertheless,
they suffer from low convergence rate compared to Krylov subspace methods.

1



L. J. Chan, S. Marques and N. J. Hills

Recently, Alternating Anderson-Jacobi (AAJ) [6] and Alternating Anderson-Richardson
(AAR) [13] are proposed as a way to improve the convergence rate of the Jacobi and
Richardson iterations by performing Anderson extrapolations at periodic intervals. Both
AAJ and AAR are shown to exhibit speedups, and better strong and weak scaling with
respect to GMRES when solving Helmholtz and Poisson equations [13].

This research focuses on investigating the performance of AAR when solving the
linear system of equations arising from CFD applications. The remainder of this paper
is organised as follows: section 2 describes the theory and implementation of AAR;
section 3 introduces the Hydra CFD solver and the test cases; section 4 includes the
results and analysis of the performance of AAR; section 5 concludes the findings.

2 Alternating Anderson-Richardson Method

The AAR method consists of two stages of operations, which are the Richardson itera-
tions [7] and the Anderson extrapolation [17]. The Anderson extrapolation is performed
periodically to speedup the convergence of the Richardson iteration. The formulation is
summarised in equations 1, 2 and 3.

xk+1 = xk +Gkrk; (1)

rk = b−Axk; (2)

where the matrix Gk is given by:

Gk =

{
ωI if k/p /∈ N
βI− (Xk + βFk)

(
FT
kFk

)−1
FT
k if k/p ∈ N.

(3)

Xk is an array that stores the difference between two successive approximate solutions
from the Richardson iterations as shown in equation 4, whereas Fk stores the difference
between two successive residuals as shown in equation 5.

Xk = [(xk−m+1 − xk−m) (xk−m+2 − xk−m+1) ... (xk − xk−1)] , (4)

Fk = [(rk−m+1 − rk−m) (rk−m+2 − rk−m+1) ... (rk − rk−1)] ; (5)

ω and β are relaxation parameters used in the Richardson and Anderson updates re-
spectively. They can be viewed as a tool to scale the residual vectors. However, these
parameters do not affect the end solution in exact arithmetic. Thus, by convention, they
are set to one. The parameter k is the iteration counter and p represents the frequency
of performing the Anderson extrapolation. The parameter m is the maximum number
of basis vectors.

AAR is a class of Krylov subspace method, where the differences between solutions
of two successive Richardson iterations form the basis vectors that belong to subspace
Km(A, r0), where

Km(A, r0) = span{r0,Ar0, . . . ,A
m−1r0}. (6)

2



L. J. Chan, S. Marques and N. J. Hills

The Anderson extrapolation on the other hand solves the least square problem by finding
the solution, x̄. In the original AAR algorithm proposed in [13], the Anderson extrap-
olation performs one extra Richardson iteration after solving the least square problem
and thus the final solution lies within subspace Km+1(A, r0) as shown in equation 7.

xm+1 ∈ Km+1(A, r0) = span{r0,Ar0, . . . ,A
m−1r0,A

mr0}. (7)

Although the final solution, xm+1 spans one more dimension than x̄, experiments show
that x̄ gives better convergence rate than xm+1 for our applications. This is because
xm+1 is not the solution that minimises the residual in Km+1(A, r0). Thus, the algorithm
is slightly modified so that the Anderson extrapolation stops after solving the least square
problem. The modified preconditioned AAR is summarised in algorithm 1.

Algorithm 1 Modified Preconditioned Alternating Anderson Richardson

1: Initialise x0, ω, β, p,m, tol,maxits
2: Compute r0 = M−1 (b−Ax0)
3: Compute x1 = x0 + ωr0
4: for k = 1 to maxits do
5: Compute rk = M−1 (b−Axk)
6: Compute l = min {k,m}
7: Compute i = mod

(
k−1
p

)
+ 1

8: X (:, i) = xk − xk−1 ∈ Rn×l

9: F (:, i) = rk − rk−1 ∈ Rn×l

10: if mod
(
k
p

)
̸= 0 then

11: Compute xk+1 = xk + ωrk
12: else
13: Compute y = −

(
FTF

)−1
FT rk ∈ Rl

14: Compute x̄k = xk +Xy
15: Update rk = rk + Fy

16: if
∥rk∥2
∥r0∥2

< tol or k == maxits then

17: Exit Loop
18: else
19: Update xk = x̄
20: Compute xk+1 = xk + βrk
21: end if
22: end if
23: end for

In exact arithmetic, the modified AAR is equivalent to GMRES, see for example [3, 17]
for proof. In line 13 of Algorithm 1, both the matrix-matrix multiplication, FTF and
matrix-vector multiplication, FT rk, each require global reductions. However, these two
operations are independent and their results are not dependent on each other. Therefore,
the global reduction can be reduced to one operation by storing both results into a single

3



L. J. Chan, S. Marques and N. J. Hills

array before communicating. The inversion of the matrix FTF is achieved implicitly by
solving a small dense linear system of equations by performing QR factorisation with a
Householder Transformation. These two operations can be easily optimised using level
3 and level 2 BLAS functions respectively.

The frequency of global reductions is proportional to the frequency of performing the
Anderson extrapolation step. Thus, for efficient use of AAR, the Anderson extrapolation
should be performed as infrequently as possible. Ideally, it should only be performed once
at the last iteration unless a restarting strategy is adopted. Thus, the AAR method is
less attractive for applications requiring the solution to meet a fixed relative tolerance.
Unlike GMRES where the residual norm can be obtained cheaply at every iteration,
AAR needs to solve the least square problem by the Anderson extrapolation before
the residual norm can be calculated. This property has a limited impact on iterative
methods, such as those found in most CFD solvers, as the linear system of equations
is solved approximately. For AAR, it is thus advantageous to fix the number of linear
solver iterations only.

3 Experiment Setup

The linear solvers are implemented in Hydra CFD solver, which solves the compress-
ible Reynolds-averaged Navier-Stokes (RANS) flow equations using the finite volume
method, [2, 5]. Several turbulence models are available, including Spalart-Allmaras tur-
bulence model [11] and k − ω SST turbulence model [4]. Hydra employs node-centred
spatial discretisation, where each node forms a dual volume around itself and multiple
faces at its boundary. The convective flux is evaluated at each boundary face with Roe
scheme [8].

For temporal discretisation, Hydra employs an implicit 3-step Runge-Kutta (RK)
scheme, which was introduced in [15] and further optimised in [14].

Although the residual is evaluated with second order accurate scheme, the imple-
mented Jacobian matrix is only first order accurate. This strategy has the benefit of
reducing the computation time of linear solvers but at the cost of the convergence rate.
The linear solvers tested include the Richardson method, GMRES and AAR. The linear
solvers are preconditioned by point-block ILU0 [9]. Note that for this study, we are
only interested in the optimum performance of these solvers. Therefore, the parameters
such as the CFL value and the number of linear solver iterations are tuned for optimum
performance. The convergence tolerance of the Newton iteration is set to 10−16 for all
test cases.

Two test cases representing different typical gas turbine engine components or flows,
are used to assess the linear solvers implemented into Hydra by this work. These include
a rotor stator cavity and a low-pressure turbine (LPT) blade.

The first model tested is a cavity located in between a stator and a rotor rotating at
a fixed angular velocity as shown in figure 1. The two rectangular sides of the sector
are set to periodic boundary condition, whereas the other boundary walls are set to
no-slip viscous wall. It consists of approximately 3.96M number of nodes and adopts the
Spalart-Allmaras turbulence model using a wall function formulation.

4



L. J. Chan, S. Marques and N. J. Hills

The second test model is an LPT blade as shown in figure 1. The model consists of an
LPT blade with subsonic inflow and outflow at both ends. The subsonic inflow profile for
total pressure, total temperature, turbulent kinematic viscosity, whirl angle and pitch
angle are assigned to the inflow surface of the model, whereas the subsonic outflow
profile for static pressure is assigned to the outflow surface of the model. No-slip viscous
wall boundary conditions are enforced at the wall of the LPT blade, and the upper and
lower sides are set as periodic boundaries. This model consists of approximately 11.7M
number of nodes and is modelled with the Spalart-Allmaras turbulence model using a
wall function formulation.

Figure 1: Rotor Stator (left) and LPT Blade (right)

4 Results and Discussion

4.1 Performance Comparison of Linear Solvers

The speedup of GMRES and AAR with respect to the Richardson method is shown
in figure 2. The figure shows that both GMRES and AAR achieve significant speedup
with respect to the Richardson method. However, the speedup of AAR with respect
to GMRES is marginal. Additionally, AAR also exhibits similar strong scaling when
compared to GMRES as shown in figure 3. The outcome is in contrast with the results
obtained in the literature [13], in which AAR achieved better scalability and performance
than GMRES. The literature reports the speedup of 1.38 with respect to GMRES with
ILU(0) preconditioner when solving a Helmholtz equation [13].

5



L. J. Chan, S. Marques and N. J. Hills

Figure 2: Speedup with respect to Richardson for Rotor Stator (left) and LPT Blade
(right) Test Case

Figure 3: Scalability for Rotor Stator (left) and LPT Blade (right) Test Case

4.2 Performance Analysis of AAR

A test model described in Algorithm 2, is setup to investigate how the M−1Ax
operation impacts the global synchronisation times across processes and determine how
this type of operation contributes to the low speedup achieved by the AAR method. In
GMRES, a global reduction is executed after performing an M−1Ax operation, whereas
in AAR, a global reduction is executed only after performing n number of M−1Ax
operations. Therefore, this test is a proxy for the cost of the global reductions performed
by GMRES and AAR. Based on figure 4, the global synchronisation time increases as
the number of M−1Ax operations increases. This implies that the global reduction
performed by AAR is significantly more expensive than that of GMRES.

6



L. J. Chan, S. Marques and N. J. Hills

Algorithm 2 Global Synchronisation Test Model

1: Set a barrier for global synchronisation
2: for i = 1 to n do
3: Perform y = Ax
4: Perform x = M−1y
5: end for
6: t1 = wall clock time
7: Set a barrier for global synchronisation
8: t2 = wall clock time
9: dt = t2− t1

10: Perform global reduction on dt
11: Divide dt by the total number of processor to get the average communication time

Figure 4: Global Synchronisation Time Vs Number of M−1Ax Operations

The increase in the global synchronisation time is likely to be caused by the load
imbalance across processes, in which the distribution of the load is shown in table 1. Load
imbalancing can be interpreted as the difference in the number of operations between
the fastest and the slowest processes. As more M−1Ax operations are performed, the
difference in the number of operations accumulates and thus increases the waiting time
of the processes in the event of global communication.

7



L. J. Chan, S. Marques and N. J. Hills

Number of
Processes

Minimum
Number of
Nodes

Maximum
Number of
Nodes

Average Num-
ber of Nodes

Difference
between Max-
imum and
Minimum

10 389180 403590 396000 14410

20 191510 202950 198000 11440

40 93830 104170 99000 10340

80 47080 51920 49500 4840

160 23034 26070 24750 3036

320 11440 13337 12375 1897

Table 1: Partitioning Data

5 Conclusion

In conclusion, both GMRES and AAR show significant speedup with respect to the
Richardson method in solving compressible flow problems for turbomachinery applica-
tions. However, the speedup of AAR with respect to GMRES is less than expected.
AAR and GMRES are also shown to exhibit similar strong scaling.

The reason for the low speedup of AAR with respect to GMRES is due to the increased
cost of global synchronisation of AAR by having low frequency of global reduction. The
increased cost of global synchronisation is likely caused by the load imbalance across
the processes. As more iterations are conducted without global synchronisation, the
load difference between the fastest and the slowest processes builds up and causes longer
waiting time in the event of global communication.

Acknowledgements

The authors thank Dr. Dario Amirante for providing the test cases used in this
paper. The first author gratefully thanks Rolls Royce and University of Surrey for the
PhD studentship.

REFERENCES

[1] Ashby, T. J., Ghysels, P., Heirman, W., and Vanroose, W. The impact
of global communication latency at extreme scales on krylov methods. In Interna-
tional Conference on Algorithms and Architectures for Parallel Processing (2012),
Springer, pp. 428–442.

[2] Lapworth, L. Hydra-cfd: a framework for collaborative cfd development. In In-
ternational conference on scientific and engineering computation (IC-SEC) (2004),
vol. 30.

[3] Lupo Pasini, M. Convergence analysis of anderson-type acceleration of richard-
son’s iteration. Numerical Linear Algebra with Applications 26, 4 (2019), e2241.

8



L. J. Chan, S. Marques and N. J. Hills

[4] Menter, F. R. Improved two-equation k-omega turbulence models for aerody-
namic flows. Nasa Sti/recon Technical Report N 93 (1992), 22809.

[5] Moinier, P. Algorithm developments for an unstructured viscous flow solver. PhD
thesis, Oxford University Oxford, UK, 1999.

[6] Pratapa, P. P., Suryanarayana, P., and Pask, J. E. Anderson acceleration
of the jacobi iterative method: An efficient alternative to krylov methods for large,
sparse linear systems. Journal of Computational Physics 306 (2016), 43–54.

[7] Richardson, L. F. Ix. the approximate arithmetical solution by finite differences
of physical problems involving differential equations, with an application to the
stresses in a masonry dam. Philosophical Transactions of the Royal Society of
London. Series A, Containing Papers of a Mathematical or Physical Character 210,
459-470 (1911), 307–357.

[8] Roe, P. L. Approximate riemann solvers, parameter vectors, and difference
schemes. Journal of computational physics 43, 2 (1981), 357–372.

[9] Saad, Y. Iterative methods for sparse linear systems. SIAM, 2003.

[10] Saad, Y., and Schultz, M. H. Gmres: A generalized minimal residual algorithm
for solving nonsymmetric linear systems. SIAM Journal on scientific and statistical
computing 7, 3 (1986), 856–869.

[11] Spalart, P., and Allmaras, S. A one-equation turbulence model for aerody-
namic flows. In 30th aerospace sciences meeting and exhibit (1992), p. 439.

[12] Sturler, E. d., and van der Vorst, H. A. Communication cost reduction
for krylov methods on parallel computers. In International Conference on High-
Performance Computing and Networking (1994), Springer, pp. 190–195.

[13] Suryanarayana, P., Pratapa, P. P., and Pask, J. E. Alternating anderson–
richardson method: An efficient alternative to preconditioned krylov methods for
large, sparse linear systems. Computer Physics Communications 234 (2019), 278–
285.

[14] Swanson, R., Turkel, E., and Yaniv, S. Analysis of a rk/implicit smoother for
multigrid. In Computational Fluid Dynamics 2010. Springer, 2011, pp. 409–417.

[15] Swanson, R. C., Turkel, E., and Rossow, C.-C. Convergence acceleration of
runge–kutta schemes for solving the navier–stokes equations. Journal of Computa-
tional Physics 224, 1 (2007), 365–388.

[16] Van d VHA, B. Cgstab: a fast and smoothly converging variant of bi-cg for the
solution of nonsymmetric linear systems. Siam Journal on Scientific & Statistical
Computing 13, 2 (1992), 631–644.

9



L. J. Chan, S. Marques and N. J. Hills

[17] Walker, H. F., and Ni, P. Anderson acceleration for fixed-point iterations.
SIAM Journal on Numerical Analysis 49, 4 (2011), 1715–1735.

[18] Yang, L. T., and Brent, R. P. The improved krylov subspace methods for large
and sparse linear systems on bulk synchronous parallel architectures. In Proceedings
International Parallel and Distributed Processing Symposium (2003), IEEE, pp. 11–
pp.

[19] Zhu, S.-X., Gu, T.-X., and Liu, X.-P. Minimizing synchronizations in sparse
iterative solvers for distributed supercomputers. Computers & Mathematics with
Applications 67, 1 (2014), 199–209.

10


	INTRODUCTION
	Alternating Anderson-Richardson Method
	Experiment Setup
	Results and Discussion
	Performance Comparison of Linear Solvers
	Performance Analysis of AAR

	Conclusion

