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Abstract: This study investigates the ability of three different approaches for construct-
ing smooth and continuous mesh-free basis functions, namely: (i) assuming one degree
of freedom per node with the moving least squares method, (ii) assuming six degrees of
freedom per node with moving least squares method, and (iii) assuming six degrees of
freedom per node with Hermite-type moving least squares method. Further, it provides
evidence that all three approaches can generate continuous mesh-free basis functions;
however, the first and third approach results in a C? continuous mesh-free basis, where
the function and its first and second-order derivatives are related. Finally, a comparative
study is performed among the three approaches using fourth-order polynomial basis and
fiftth-order spline weight function.
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1 INTRODUCTION

While solving different boundary value problems (BVPs), the field variable generally
varies over the problem domain in a non-linear manner. The numerical solution for such
BVPs is obtained by approximating the field variable using continuous functions over the
domain. The finite difference and the finite element method are mesh-based methods used
to numerically solve ordinary/partial differential equations subjected to some boundary
conditions. However, in mesh-based methods, the interpolation functions used for the
approximation depend on the shape and size of the element. Also, in FEM, it is impossi-
ble to construct continuous interpolation functions of C? and above for arbitrary-shaped
elements when the geometric mapping is not isoparametric. On the other hand, meshless
approximations do not require topological mapping, can handle problems with chang-
ing geometry and provide easier formulation of higher-order approximation functions [I].
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Therefore, meshless approximation theories are used to formulate higher-order continuous
basis functions.

Recently, [2]proposed a numerical scheme to address some difficulties in solving plane
BVPs involving implicit constitutive relations. A relation in which the kinematic and
kinetic variables are related through an implicit functional in the implicit constitutive
framework [3]. In the scheme of [2], the stress and the displacement fields are taken as
unknowns, and the physical requirements, such as balance laws and strain-displacement
relationship are met point-wise. Finally, the stress and displacement fields are obtained
by satisfying the constitutive relation between the stress and strain in a weak integral
sense subject to the satisfaction of the traction and displacement boundary condition.
The scheme is advantageous over the classical displacement-based finite element method
as it provides better stress estimate and faster convergence rate for non-linear material
response. This scheme expresses the divergence-free stress field in terms of Airy’s stress
potential function [4]. Therefore, the stress components are related to the second deriva-
tive of Airy’s potential. Furthermore, the basis functions must be C? continuous over the
domain to satisfy the traction continuity over the domain. Hence, this study proposes
to perform a comparative study of three different approaches to generate C? continuous
meshless basis functions.

The paper is organized as follows. Section [2| briefly discusses the Moving Least square
and Hermite-type MLS methods. In section [3] the MLS basis functions are obtained.
Sections [4] and [5| derive basis functions for MLS with six degrees of freedom (DOF) per
node and the Hermite-type MLS with six DOF per node, respectively. The basis functions
for all three approaches are plotted in section [ and finally, in section [7] the conclusion is
presented.

2 MOVING LEAST SQUARES METHOD (MLS)

The Moving Least Squares method approximates the unknown variable using polyno-
mials in meshless approximation. [5] developed a method to generate a smooth approx-
imation surface by fitting two-dimensional irregularly spaced field data. Later, [6lused
the moving least squares approximation to generate a smooth and interpolating surface
for the scattered data and demonstrated that Shepard’s method is a special case of MLS
approximation. The seminal work of [7] and others [8 O, [10, 1T, 12} T3] uses MLS to
approximate displacement fields. The method provides smoother approximation with
reasonable accuracy. However, in problems where the stress boundary condition is pre-
scribed, the gradient of the field variable is required to be continuously approximated.
The Hermite-type MLS method approximates function and its derivatives over the do-
main [14]. Although Hermite-type MLS increases the DOF, the accuracy of the field
variable and its derivative is improved. [I5] presented the mathematical background of
Hermite-type moving least squares (HMLS) approximation. In a recent work, [17] pro-
poses a mixed approximation using MLS and the Hermite-type MLS to approximate
rotation and displacement, respectively, for studying behavior of thin plates in pre and
post-buckling. Therefore, MLS and HMLS approximation approaches are explored in this
work to generate C? continuous basis functions. Next, the MLS method and its first and
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Figure 1: Problem domain with scattered field nodes.

second-order derivatives are derived.

3 FIRST APPROACH: MLS WITH ONE DOF PER NODE

In this first approach, the Moving Least Squares method is derived considering one-
degree of freedom for each node to approximate any scalar function. Subsequently, the
higher-order derivatives of the basis functions are obtained. The choice of polynomial
and weight function is decided depending on the required order of continuity for the basis
functions.

Let a scalar-valued vector function ®: Q — R with its local approximation ®": O — R
is represented around a point xg, such that xy € )y and evaluated at x € () as

@h(x7x0) = ijaj = pT(X)a(X0)7 (1)

where a is a vector of non-constant coefficients, and p is the polynomial function of order
m. The unknown coefficient vector a is computed at node point xy, by minimizing a
discrete weighted Ly norm J defined as:

J =3 Wixo = x:) [p"(x)alx) - o], 2)

where W(xo —x;) is the value of the weighting function at the i node in the neighborhood
of point xg, such that x; € {2 and the shaded region around x, is known as the support
domain as depicted in Fig.. The weight function W(xo —x;) # 0 for all n nodes inside
the support domain, and ¢; is the unknown nodal parameter. [I4] suggests that support
domain size influences the accuracy and efficiency of the approximation. This study
employs a circular support domain.
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The value of coefficient vector a is obtained by minimizing J in Eq. with respect to
a as:

Z W(XO —x;)p(x 2) Z W (x0 — ;)P (i) i, (3)

where x; = (z;,4;) and ||xo — x;|| = \/(z0 — z:)? + (vo — v;)®. Further, Eq.(3) can be
compactly written as:

A(x0)a(xo) = B(x0)9, (4)

where the moment matriz A and matrix B are of dimension m xm and m xn, respectively
and expressed as:

x0) = > W(xo — x:)p(x:)p" (x);
i=1 ()

B(xo) = |W(xo = x)p(x1) W(xo—x)plxa) -+ Wixo = x)p(x,)|
where the vector ¢ = [¢1 ¢o ¢35 -+ ¢,]" is defined for the support domain of each
node. The value of a is obtained using Eq. as
a(xo) = A" (x0)B(x0), (6)

only when the moment matrix A is invertible. A necessary condition for the matrix to
be invertible is that when n > m, i.e. the number of nodes inside the support domain
must be greater than or equal to the number of terms in the polynomial basis such that
the nodes in the support domain do not form a pattern. Finally, the approximation ®”"
evaluated at x is obtained by substituting the value of a in Eq. and represented as

O"(x,%0) = P (x) A7 (x0)B(x0)¢p = ¥ (x)¢p = Z‘I’ )®i, (7)

with W(x) as the vector of Moving Least Squares basis function for the point x, and
represented as

¥ (x) = p’ (x)A™ (x0)B(xo). (8)

where N is the total number of nodes in the domain. Further, the first derivative of the
MLS basis functions with respect to spatial coordinates (z,y) is given as

8_\Il:8p A-IB 4 p! OA~! . 0B
ox ox ox O (9)
ovw op” 1 o (OA™! 18B
8y a9 —A""B+p < Jy B+ A~ 6y
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and the second derivative is given as

o <@;‘;B+A ) (2
T [k () (2 )
(S m o )

where the expressions for derivatives of moment matriz A and matrix B can be obtained
in terms of W and p.

3.1 Weight function

The form of weight function used influences the continuity and shape of the basis func-
tions [14], [16]. This work employs fifth-order (quintic) spline weight function to generate
the MLS basis functions. The fifth-order spline weight function corresponding to the 7
node can be represented as:

d.\? d.\? d:\* d.\° d
A 1_10(:) +20(—’) _15(:) +4<:) | Og(—’)gl
W (d;) = T T T Ti Ti (11)

0 (%)=

where, d; = |x — x;| is the distance between support node x; and chosen point x, and
r; is the radius of the circular support domain for the node x;. The fifth-order spline
weight function is constructed such that it is C* over the support domain following the
suggestions of [14].

4 SECOND APPROACH: MLS WITH SIX DOF PER NODE

In this approach, the MLS method is used to approximate the field variable and its
derivatives, namely: ®, &, &, &, ®, and ®,, at a node such that the unknown
coefficients vary over the domain. In other words, the MLS method derived in Sec[3] is
applied to all six degrees of freedom. The construction of the basis functions using this
approach is illustrated next.

Let the approximation of all six degrees of freedom at an arbitrary point x €  is
written in the form

~h ~ .
® (xay) = P(xay)a<x0ay0)7 (12)
~h
where the approximation vector @ is of dimension 6 x 1 and represented as:

&' (x) = {O(x) (x) ©y(x) Dau(x) Byy(x) Boy(x)}, (13)

)
I
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with the non-constant unknown coefficients vector a of dimension 6m x 1 is defined as
A (A . A A - . ~ T 14
a — {al P am e a2m P a3m P a4m P asm P aﬁm} s ( )

and the polynomial matrix P is of dimension 6 x 6m and is defined as:

[ p(x) 0 0 0 0 0
p,zgxg p(x) ?) 0 0 0
s o Py\X 0 P(X 0 0 0
PO =1px) 2. 0 px) 0 o0 | (15)
p,yy(x) 0 2p,y<x) 0 p(x) 0
Pay(X) Py(x) Pu(x) 0 0 p(x)]

where p is a general complete-order polynomial function of order m. Now, to find the
vector of unknown coefficients a at xg, the discrete weighted Ls norm of the error between
approximation and nodal parameters for all the degrees of freedom is calculated. The
function J can be written as:

] = Z W — o) [Poo)ate) - dx)] [Plx)ate) ~ 6], (19

where n is the number of nodes in the support domain, W is the weight function such
that its value is non-zero inside the support domain, and the vector of nodal parameter
¢(x;) is of dimension 6 x 1 is defined as:

P(x;) = {d;(xz) 02(X1) Gy(X1) Gua(Xi) Dyy(xs) ngy(xz)} : (17)
Minimizing J with respect a the following relation is obtained:
A(x0)a(x0) = B(x0)p(xi), (18)

where the moment matriz A and matrix B are of dimension 6m x 6m and 6m x 6n
respectively, and defined as:

ZW x; — x0)PT(x)P(x;); Bl(xg) = ZW x; — x0)PT(x;), (19)

where n is the number of neighboring nodes in the support domain. Finally, the coefficient
vector & is written in terms of matrices A and B using Eq. (18] and substituted in Eq.(12)),
resulting in the approximation as

" (x) = P(x)A " (x0)B(x0) b, (20)

where the inversion of moment matriz A is ensured by the requirement of 6n > m which
is governed by the size of the support domain for a given distribution of nodes. Using
Eq.(20)), the basis function can be written as:

U(x) = P(x)A ™ (x0)B(x0), (21)
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where W is represented as
W(x) = {U(x) Vo(x) Wy(x) Wan(x) Uyy(x) Uoy(x)} (22)

which encompasses six basis functions at each node corresponding to six degrees of free-
dom. Therefore, this approach results in a total of 6/N basis functions, where N is the
total number of nodes in the domain.

5 THIRD APPROACH: HERMITE-TYPE MLS WITH SIX DOF PER NODE

The Hermite-type MLS is previously used to approximate displacement field as dis-
cussed in Secf2l However, the notion of developing C? continuous basis functions using
Hermite-type MLS is novel. Therefore, this work attempts to develop C? continuous
meshless basis function using Hermite-type MLS with six degrees of freedom per node.
In this study, the gradient of the unknown field variable is required to be approximated.
Therefore, the ability of the Hermite-type MLS method to approximate the field variable
® along with its derivatives is utilized to obtain the basis functions.

Let the MLS approximation of a scalar valued vector function ® about any node x is
given as:

m

" (x) = p"(x)a(x0) = Y _ p;(%)d;(x0), (23)

J=1

where p is a polynomial function, and a is the vector of unknown coefficient. The ap-
proximation is evaluated at least at n > m points within the support domain of point xg
to determine the unknown coefficients in the least square sense. Therefore, the approxi-
mation function in Eq.(23) is evaluated at n neighborhood point as:

" (x1) Loz oy oo pm(z,m) a
Cbh('X2> _ 1 917'2 3/.2 : Pm(l’?, Y2) ' 51'2 ’ (24)
o" (Xn) 1 xn yn ’ Pm (‘TTH Yn) a;n
which can be rewritten in a compact form as:
®"(x) = P(x)a(xo), (25)

where P is a non-square matrix and 3" is the vector of the field variable to be approx-
imated at each node. Further, the first and second-order derivatives of the function ®”"
in Eq. with respect to z and y can obtained considering a as a constant unknown
coefficient vector and written as:

oP _ OP _ 0*P _
" (x;) = —axo); P (x) = ——alxo); P, (x) = ——a(xo),
ox dy Ox
0*P o’P (26)
h h ~ .
Q,yy(xi) = a 2 a(X0)7 (ﬁxy( 7«) = (9558?] (X0)7
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which can be combined together to form the approximation of all six degrees of freedom
at n nodes in the support domain of point xq as

3" (x;) = P(x,)a(xo), (27)

where the vector ® and the non-square matrix P is of dimension 6n x 1 and 6n x m
respectively, are defined as

o (x;) = {®"(x;) ‘I>7hl,(xi) @Z(XZ) @h #(Xi) <I>h , (i) <I>h (x; } P(x;) =

where (-),; denotes the partial derivative with respect to the spatial coordinate. To find
a, the discrete weighted L, norm with respect to all degrees of freedom is determined as

J = ZW xi = x0) [Pl)ate) - 6% [Poate) - dlx)]. (29)

where W is the weight function value at the ith node inside the support domain, n is the
number of nodes inside the support domain for which W(x — x;) # 0, and ¢(x;) is the
nodal parameter defined as

d(x;) ={d(x1) -+ O(Xn) Pa(x1) - ¢,x(xn) Gy(x1) & y(xn) ¢,mx(xl) T ¢,xx(XN)
Dyy(X1) *++ D yy(Xn) Pay(x1) - - ¢,xy<xn)}T

with six degrees of freedom per node. The Eq. is minimized with respect to a to get
A(xo)é = B(x0)¢, (31)

where moment matriz A and matrix B are of dimension m x m and m x 6n respectively,
are defined as

(30)

ZW i — x0)PT(x,)P(x,); ZW x; —x0)PT(x;),  (32)

which are summed over all the support nodes. The approximation in Eq. is obtained
by substituting the value of a from Eq.(31) as,

®"(x) = p (x)A™" (x0)B(x0)¢ = ¥ (%), (33)

subject to the condition that matrix A always remain invertible. This is enforced by
selecting the size of the support domain such that 6n > m. The Hermite-type MLS
approximation basis function ¥ is defined as:

T (x) = p’ (x)A ™ (x0)B(x0), (34)
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Figure 2: Error in approximation using first approach.

where ¥ is a matrix of dimension 1 x 6/N containing six basis functions for each field
node and N is the total number of nodes in the domain. The Hermite approximation of
® given by Eq. can alternatively be written as:

M%) =D (VX)) + Va(X)0” + 1y (X)0Y + Ve (X)0™ + 1hyy (X)W + 0y (X)) 3 (35)

i=1

a linear combination of the contribution from each degree of freedom. Subsequently, the
first and second-order derivatives of the basis function ¥ in Eq. are obtained in a
similar manner as demonstrated in Eq.. Next, the basis functions developed using
three approaches are plotted.

6 RESULTS

The approximation function in the first, second and third approaches is given by Eq.@,
Eq.(20) and Eq.(33). The polynomial and weight functions are chosen in such a way
that the basis functions are at least C? continuous in the domain. This work uses a
complete fourth-order polynomial and fifth-order spline weight function to construct the
basis functions. The three approximations are validated by fitting a function, chosen
randomly of the form as:

f(x,y) = sin(z) sin(y) (36)

over a domain R = {(z,y)| —1 <2 <1,—1 <y < 1} and plotting on a grid of 51 x 51.
The size of the support domain in each approach is obtained using numerical experiments.
The function, its first and second derivative with respect to x, is approximated using all
three approaches for the function given in Eq.. The first approach uses the MLS
method with 1 DOF per node to approximate ®. The error in approximating ®,® , and
® ., as obtained for the first approach, is shown in Fig[2] Here, the error in approximating
the function is of order ~ 10~7. The error increases while approximating first and second-
order derivatives. The second approach employs the MLS approximation with six DOF's
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Figure 3: Error in approximation using second approach.
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Figure 4: Error in approximation using third approach.

per node. The error incurred in approximating the function, its first and second derivative
with respect to x for the same function form as given in Eq. is depicted in Fig The
error in approximating the function is of order ~ 107°. However, the first and second
derivatives show higher errors between the computed and exact values. The Hermite-
type MLS approximation is employed in the third approach for all six DOFs. The error
in approximating the value of the function, its first and second-order derivative is shown
in Figldl Contrary to the second approach, the approximation of first and second-order
derivatives in the third approach results in lower error of order ~ 10~*. Also, in the third
approach, the error in approximating the function, as given in Eq., is the least among
the three approaches.

7 CONCLUSION

This paper presents three different approaches for constructing C? continuous meshless
basis functions. In the first approach, one DOF is considered at each node, and the
higher-order derivatives are obtained through differentiation. The approximation error,
as shown in Fig2] indicates that the function and its first and second derivatives are well

10
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approximated.

In the second approach, the MLS method approximates six DOFs at each node, and the
unknown field a is taken as a variable. The second approach results in six basis functions
at each field node corresponding to each DOF'. The error in approximating the first and
second-order derivative of the function is higher. This is attributed to the fact that
the first and second derivatives are not derived from the function; the form of the basis
function is the same for both the function and its derivatives. Hence, it can be concluded
that the second approach is not appropriate to generate C? continuous functions.

The last approach approximates all six DOFs using the Hermite-type MLS method.
The error in the approximation of function, its first and second-order derivative, is lower
compared to the other approaches. Therefore, it can be concluded that among the three
approaches studied, the Hermite-type MLS method can be employed where accuracy is
more important than computational effort, and the Moving Least Squares method can be
considered where computational power is also of concern.
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