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Abstract. In recent years, heavy rain which frequently occurred in various places in Japan 

have been caused severe damage. It is important to identify the damaged area for disaster 

recovery and reconstruction. In this study, we focus on the optical satellite images that are easy 

to process and interpret, and extract the damaged area by combining a land cover classification 

method using machine learning and an additive color mixture method. As the results, it is 

possible to visually express the land cover changes before and after the disasters in a specific 

category and to extract the damaged area from the optical satellite image. 
 

 

1 INTRODUCTION 

In recent years, heavy rain which frequently occurred in various places in Japan have been 

caused severe damages. The average temperature in Japan is increasing at a rate of 1.19°C per 

100 years, and the annual frequency of intense rainfall (80 mm or more per one hour), the 

highest rank in the index indicating rainfall intensity in Japan, is also increasing. Therefore, 

there is a high possibility that more large-scale water-related disasters will occur in the future. 

In such a situation, it is necessary to promptly recovery and reconstruction from water-related 

disasters. In particular, "2018 Japan Floods" is a representative example of a heavy rain in Japan. 
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This heavy rain brought about the damage due to multiple factors such as inland inundation, 

sediment run-off and flood inundation. A large number of human resources for disaster response 

were required, and it was also difficult to fly a helicopter due to the weather. As a result, the 

problem that it took a long time to grasp the disaster situation, and that recovery and 

reconstruction were difficult are mentioned. Therefore, it is important to identify a wide range 

of damaged areas for recovery and reconstruction. 

Images taken by unmanned aerial vehicles such as drones and satellite images are often used 

to grasp the damaged areas. The advantages of drone image are that it allows a rapid response 

from the occurrence of a disaster to image. However, since images can only be taken over a 

localized area, it takes time to grasp the situation over a wide area. On the other hand, satellite 

images are very useful for grasping the damage situation over a wide area. In addition, satellite 

images include optical images and Synthetic Aperture Radar (SAR) image. During heavy rain, 

many clouds are generated. For this reason, many researches using SAR images which can 

observe day and night regardless of weather are carried out. However, the SAR image is 

complicated to operate and expensive, and it is not easy to use for users without expert 

knowledge. On the other hand, optical sensors can take images only in the clear daytime after 

the passing of rain cloud and typhoon, but it has the advantage that it is possible to obtain 

information in many bands, and that it is easy to decipher in comparison with SAR. 

As the mentioned above, Shirozu et al. [1] and Honda et al. [2], tried to extract flooded areas 

from satellite images in order to evaluate damaged areas using SAR. Thus, many studies using 

SAR have been proposed. On the other hand, research using optical satellite images have been 

conducted by Sakuno [3] and Suhama et al. [4] However, it remains in the research of 

preliminary level due to the issues with filming conditions mentioned above. 

Then, in this study, we focused on optical satellite images that are easy to process and 

intercept, and extracted the damaged area by combining existing methods such as a land cover 

classification method by machine learning and an additive color mixture. 

2 SATELLITE IMAGE DATA 

In order to extract the damaged areas from the satellite image, the satellite image of Landsat8 

(30m resolution) were obtained from LandBrowser which a satellite data platform provided by 

the National Institute of Advanced Industrial Science and Technology (AIST). Satellite images 

before and after the disaster were prepared to extract the damaged areas from land cover 

changes caused by the disaster (Fig. 1). As a point to be noticed in analyzing the image in two 

different periods, the land cover in each season in the target areas is mentioned. For example, 

paddy fields are covered with water during the rice planting season, but there is no water in 

paddy fields in other seasons. Therefore, during the rice planting season, the area that is not 

originally water area may be determined to be water area by image analysis such as land cover 

classification. Since water level of paddy fields is managed seasonally, it is possible to prevent 

misclassification by using the data from the period when there is no water in the paddy field. 

The study areas was Mabi-cho, Kurashiki City, Okayama Prefecture, which was severely 

damaged by 2018 Japan floods. Mabi-cho is surrounded by mountains. In Mabi-cho, houses 

and structures are comparatively few, and paddy field and croplands are widely distributed near 

the urban area. As shown in Fig. 1, the Takahashi River and Oda River run through the eastern 

part and the southern part of Mabi-cho, respectively.  There are many water areas such as 
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reservoirs located near the Takahashi River. The dates of the used optical satellite images are 

as follows. As an image before the disaster, the image of April 20, 2018, taken on the closest 

to July 7, 2018, when the flooded damage in Mabi-cho reached its peak, is used, and as an 

image after the disaster, the image of May 25, 2019, about 10 months after the disaster 

occurrence day, is used. As for the image after the disaster, it is difficult to obtain the image 

taken in the day closet to the disaster occurrence day in LandBrowser due to the satellite's orbital 

position. Therefore, as noted above, in order to prevent misclassification, the images taken at 

the time closet to the day of disaster occurrence and with little seasonal effect were adopted. 

3 IMAGE ANALYSIS METHOD 

In this study, after land cover classification using a machine learning method for the optical 

images, an additive color mixture method is applied to the classified maps to extract the area 

where the land cover has changed. 

3.1 Machine learning method 

As a method to carry out the land cover classification, there is a technique called supervised 

classification in the machine learning method. Supervised classification is a method which 

applies supervised learning to image processing, and classifies specific geographical features 

included in an image using supervised data. Generally, if a geographical feature is known before 

classification, the feature data is classified as the training data. Among the supervised 

classification algorithms, the Maximum Likelihood (ML) method was used for land cover 

classification in this study. 

The ML method expresses the feature values of geographical features to luminance value 

and variance of each band, and classifies these as training data. The following parameters are 

used to classify the objects into those with the maximum value (likelihood) as shown in Eq. 1. 

First, the luminance value in each band of the pixel to be classified. Second, the deviation matrix 

and the transposition matrix of the deviations calculated from the average luminance values in 

each band of the geographical feature. The third is the covariance-covariance matrix of the 

object and the inverse covariance-covariance matrix of the object. Likelihood is a function of 

the distribution of data in a category and is assumed to follow a normal distribution. In other 

 
 Fig. 1 Satellite image data (left : before the disaster, right : after the disaster) 
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words, it indicates the degree to which it is likely that certain data belong to a certain category. 

To calculate the likelihood in the ML method, the features obtained from image pixels are 

represented by an 𝑛-dimensional vector 𝑥, where 𝑥 = [𝑥1, 𝑥2, ⋯ , 𝑥𝑛]. Here 𝑛  is the number 

of bands in the satellite image. An optical satellite image is a combination of several bands, and 

red, green, and blue bands are used for color display. Therefore, the number of bands is 𝑛 = 3. 

The mean vector 𝑥 of elements; 𝑚 = [𝑚1, 𝑚2, ⋯ , 𝑚𝑛], and the variance matrix is expressed 

in Eq. (1). 

Σ = (
𝜎11
2 ⋯ 𝜎1𝑛

2

⋮ ⋱ ⋮
𝜎𝑛1
2 ⋯ 𝜎𝑛𝑛

2
) 

 

(1) 

lead to the following parameters. The vector of a classification category 𝑘  is 𝑥𝑘 =
[𝑥𝑘1, 𝑥𝑘2, ⋯ , 𝑥𝑘𝑛], its mean vector is 𝑚𝑘 = [𝑚𝑘1, 𝑚𝑘2, ⋯ , 𝑚𝑘𝑛], and its variance matrix is 

expressed in Eq. (2). 

Σ𝑘 = (
𝜎𝑘11
2 ⋯ 𝜎𝑘1𝑛

2

⋮ ⋱ ⋮
𝜎𝑘𝑛1
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2
) 

 

(2) 

Assuming that the likelihood of unclassified image pixel x for classification category k is 

represented by normal distribution, the likelihood is calculated as in Eq. (3). 

𝐿(𝑥, 𝑘) =
1

(2𝜋)
𝑛
2|Σ𝑘|

1
2

exp {−
1

2
𝑑𝑀
2 (𝑥, 𝑘)} 

 

(3) 

Here, 𝐿(𝑥, 𝑘) is the likelihood of data 𝑥 for category 𝑘, |Σ𝑘| is the variance-covariance matrix 

for category 𝑘, 𝑛 is the number of bands (number of features), and 𝑑𝑀
2 (𝑥, 𝑘) is the Mahalanobis 

Distance. The Mahalanobis Distance is the Euclidean Distance (Eq. (4)), which represents the 

distance between points in space, normalized by the variance-inverse matrix and expressed as 

Eq. (5). 

𝑑𝐸
2(𝑥, 𝑘) = (𝑥 −𝑚𝑘)(𝑥 − 𝑚𝑘)

𝑡 (4) 

𝑑𝑀
2 (𝑥, 𝑘) = (𝑥 − 𝑚𝑘)Σ𝑘

−1(𝑥 − 𝑚𝑘)
𝑡 (5) 

Here, 𝑥  is an 𝑛 -dimensional vector, 𝑚𝑘  is the mean vector of category 𝑘 , (𝑥 − 𝑚𝑘) is the 

deviation matrix, (𝑥 − 𝑚𝑘)
𝑡 is the transpose matrix of the deviation, and Σ𝑘

−1 is the variance-

covariance inverse matrix for category 𝑘. That is, Eq. (3) can be rewritten as Eq. (6) using Eq. 

(5). 

𝐿(𝑥, 𝑘) =
1

(2𝜋)
𝑛
2|Σ𝑘|

1
2

exp {−
(𝑥 − 𝑚𝑘)Σ𝑘

−1(𝑥 −𝑚𝑘)
𝑡

2
} 

 

(6) 

However, in the actual classification process, the computational complexity is reduced as in Eq. 

(7) by taking the logarithm against the likelihood. 

𝐿′(𝑥, 𝑘) = ln(|Σ𝑘|) + {(𝑥 − 𝑚𝑘)Σ𝑘
−1(𝑥 −𝑚𝑘)

𝑡} (7) 

That is to say, the ML method is the technique by which the value obtained from the above 

equations is classified into the geographical features with the minimum [5,6]. 
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3.2 Additive color mixture 

The additive color mixture in image analysis is a method to confirm the image change by 

using the RGB value which expressed the image color, and by carrying out the addition 

processing of the pixel value for the image of two time period of red and cyan scaling. The 

colors represented in an image are called RGB values and are represented as (R, G, B) as shown 

in Fig. 2. In RGB values, red is represented as (255, 0, 0), green as (0, 255, 0), and blue as (0, 

0, 255). Green + blue is cyan (0, 255, 255), red + green is yellow (255, 255, 0), and blue + red 

is purple (255, 0, 255). When all three colors are added the color is white (255, 255, 255), and 

when the color is represented by (0, 0, 0), the color is black. 

In this study, we attempt to apply the additive color mixture to optical satellite images. Only 

the pixels that indicate the specific category in the land cover classification map are extracted 

and binarized. The same process is applied to both the image before and after the disasters and 

the result is added to the image to confirm for land cover changes based on the principle of 

additive color mixture. If there is no change in the geographical feature, it is represented as 

white; if red in the before image becomes black in the after image, it is expressed as red; 

conversely, if black in the before image becomes cyan in the after image, it is expressed as 

cyan; otherwise, it is expressed as black. 

4 EXTRACTION OF DAMAGED AREA FROM SATELLITE IMAGE 

4.1 Land cover classification using supervised classification 

4.1.1 Training data 

In order to conduct supervised classification, the training data is set in the areas indicated by 

the red frame in Fig. 3 for image before and after the disasters. The numbers in the legend on 

right side of Fig. 3 correspond to the numbers of yellow-colored circle in the figure. On the 

setting of each training data, the area indicating a specific category was selected visually on the 

satellite image. As has described above, the area is indicated by a red frame in Fig. 3. For 

example, in Fig. 3, a part of the image which is clearly a pond (1 of yellow-colored circle ) is 

selected, and blue is assigned as a color indicating the pond. The same process was also carried 

   
 Fig. 2 Conceptual diagram 

            of addtive color mixture 
Fig. 3 Training data for classification 

categories 
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out for the categories of river, mountain (vegetation), urban (building), grassland, paddy filed 

and cropland, road, and bare land. A total of eight categories of training data were created. For 

each category, colors were determined as follows so that land cover could be easily 

discriminated by color. The color was set as light blue for river, dark green for mountain 

(vegetation), red for urban (building), light green for grassland, olive for paddy field and 

cropland, light brown for road, and brown for bare land.  

4.1.2 Land cover classification using image before the disaster 

Fig. 4 shows the results of land cover classification by the above method for the satellite 

image (Fig. 1, left) before the disaster. First, the used satellite image (Fig. 1, left) and the results 

of land cover classification were visually deciphered to ensure that the geographical features 

were correctly classified. The water areas other than those set as the training data (region in the 

red flame indicated as 1 of yellow-colored circle in Fig. 2) are colored light blue, indicating that 

they were appropriately classified. For example, the Oda River, whose width is narrower than 

the Takahashi River, and the reservoirs scattered in the northern part of Mabi-cho as shown in 

light blue. Urban area with dense buildings is shown in gray color in the satellite image due to 

roof reflections. The area is classified by red, indicating buildings. As far as the coloring 

situation in Fig. 4 is concerned, the paddy filed or cropland and the buildings have different 

colors indicating that it is possible to classify them. However, regarding buildings and roads in 

urban area, the roads that are not adjacent to buildings (e.g., national roads) can be properly 

classified, but the roads adjacent to dense building area cannot be classified. In this study, we 

employed the expressway running east-west in the center of the satellite image and the national 

road running east-west in the urban area of Mabi-Cho as training data. The results showed that 

the roads set as the training data were properly classified, but the other two-lane roads were 

misclassified as the surrounding land cover which was classified into a different category from 

roads. From these results, it was proven that it is difficult to discriminate all two-lane roads 

using the satellite image of 30 m resolution adopted in this study. The reason of the 

misclassification can be attributed to the fact that many roads in rural area are not clearly 

divided into two laned (roads without a center line), and a single pixel in a low-resolution 

satellite image can contains multiple geographical features. Therefore, it is desirable to reduce 

the number of objects in a pixel to a single object.  

       
 Fig. 4 Land cover classification 

(before the disaster) 
Fig. 5 Land cover classification 

(after the disaster) 
Fig. 6 Land cover classification 

(produced from JAXA) 
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4.1.3 Land cover classification of the image after the disaster 

Fig. 5 shows the results of land cover classification by the above method for the satellite 

image (Fig. 1, right) after the disaster. The used satellite image (Fig. 1, right) and the results of 

land cover classification were visually deciphered to ensure that the geographical features were 

correctly classified. Regarding building and paddy field and cropland in the urban area can be 

properly classified as before the disaster, but the two-lane roads without a center line cannot be 

properly classified in some points. As for water area, the Oda River which flows south of Mabi-

cho, is not classified as light blue. The reason for this is considered to be that the brown spots 

of the river were observed sporadically from the satellite image Fig. 1, that is, the earth and 

sand flowed into the river and the condition of the land cover become different. When it is 

difficult to accurately discriminate geographical features due to low resolution, 

misclassification can occur on land cover. From the above, it can be said that the classification 

of geographical feature below the resolution is difficult in both the images before and after 

disaster, but that other geographical feature can be classified as land cover in general. 

4.1.4 Accuracy verification of land cover classification   

An accuracy verification was conducted the land cover classification map in addition to 

visually deciphering. Compare the per-pixel RGB values of the land cover classification map 

and the reference data to see if they indicate the same geographical feature. As an image data 

(reference image data) used accuracy verification, a high-resolution land use and land cover 

map provided by the Japan Aerospace Exploration Agency (JAXA) was utilized (Fig. 6). The 

images taken by Landsat8 were also used for the land cover classification map prepared by 

JAXA as well as this study.  

The discrimination efficiency table shown in Table 1 is prepared to verify the accuracy, and 

then the accuracy is evaluated by calculating the Overall Accuracy (OA). The OA is an accuracy 

evaluation index that indicates what percentage all pixels are correctly classified. The 

Producer’s Accuracy (PA) and User’s Accuracy (UA) were calculated in preparing the 

discrimination the confusion matrix. The PA is an index that indicates what percentage of the 

reference data is correctly classified, and the UA is an index that indicates what percentage of 

the classification results are correct. The OA of land cover classification map in this study was 

 

 
 

Table 1  Confusion matrix 



Daiki Seno, Shiori Kubo, Chikako Isouchi, Hidenori Yoshida 

 8 

calculated to be 67%. Thomlinson et al. [7] set a criterion of minimum of 85% for OA. This 

figure represents the accuracy standard for practical use of the land cover classification by 

Thomlinson et al. The results of this study were lower than the standard values. The reason why 

the value of OA is low is that the classification accuracy of grassland is especially low, which 

lowers the whole accuracy. As a reason why the classification accuracy of grassland become 

especially low, “low resolution of satellite image” is considered. The low resolution obscured 

the difference in color between grassland and mountains (vegetation), resulting in 

misclassification. By using higher resolution image, the difference in pixel color can be more 

clearly discriminated, and the frequency of misclassification may be reduced. 

However, since the main objective of this study is to "extract the damaged areas," it is 

important to be able to confirm changes in land cover even at low resolution. Focusing on Mabi-

cho, the land cover change (decrease in red pixels) can be visually confirmed. Therefore, in this 

study, the land cover change is captured by the additive color mixture method. 

4.2 Result of image analysis using additive color mixture 

By using the additive color mixture method for satellite image, only pixels corresponding 

specific categories are extracted. Then, binarization was conducted the image which was 

extracted the pixel, and the images before and after the disaster were added together. The areas 

that changed to white through the additive process were converted to black because cyan cannot 

be clarified when white and cyan coexist in the part changed to white due to contrast. In this 

paper, we present the following two categories that were most characterized by the additive 

color mixture method. 

4.2.1 Urban area 

First, Fig. 7 shows the results of applying additive color mixture to the image before the 

disaster (Fig. 4) and the image after the disaster (Fig. 5). Fig. 7 shows that red pixels are more 

distributed than cyan pixels over the entire region. This indicates that many of the buildings 

have disappeared for some reason between the two periods. Especially, when Mabi-cho is 

noticed, red pixels increase. Comparing with the flooded terrace map provided by the 

Geospatial Information Authority of Japan (GSI) [8], it is consistent with the flooded area by 

heavy rains. This indicates that most of the changes of buildings in Mabi-cho can be attributed 

        
 

Fig. 7 Additive color mixture map 

             (urban area) 

Fig. 8 Additive color mixture map 

             (paddy field and cropland area) 
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to the disaster. It can be said that the method proposed in this study can classify the damaged 

areas appropriately. 

4.2.2 Paddy field and cropland area 

Fig. 8 shows the results of applying additive color mixture to the image before the disaster 

(Fig. 4) and the image after the disaster (Fig. 5) in the paddy field and cropland area as well as 

the urban area. In Fig. 8, there many cyan pixels as a whole, and it can be said that there are 

many geographical features classified as paddy field and cropland area after the disaster. In 

Mabi-cho, it is obvious. Especially, it is remarkable in the flooded area. It is considered that the 

buildings damaged by the disaster are not recognized as buildings because of the demolition, 

but as paddy fields and fields. It can be said that the reason why there are many cyan pixels 

indicating fields is also due to disasters.  The result of the application of the additive color 

mixture to the paddy field and cropland area confirms that the number of buildings in Mabi-

cho is decreasing due to the disaster. 

4.2.3 Consideration 

The above results show that the number of pixels indicating buildings decreased and the 

number of pixels indicating paddy field and cropland increased in the damaged areas. These 

areas correspond to the damaged areas. In this study, the relationship between land cover change 

in the urban area and the paddy field and cropland area enables us to easily identify the damaged 

areas. The satellite image data used in this study was taken after a certain period had passed 

since the disaster. However, if it is possible to obtain images immediately after the disaster, 

cyan pixels in the urban area of Mabi-cho can be more likely to appear in the result of additive 

color mixture. That is to say, after the disaster, it seems to be the result in which the wide area 

seems to be flooded. In such a case, the damaged areas would be extracted from the urban area 

and water area. 

5 CONCLUSIONS 

In this study, in order to extract the damaged area by the heavy rain disaster, the extraction 

of the damaged area was carried out by combining machine learning and image processing 

technology. To extract the damaged area, the land cover classification by machine learning was 

carried out, and the additive color mixture method was applied to the classified maps, followed 

by additive processing. As a result of the application, it become possible to visually represent 

the land cover changes before and after the disaster in specific categories and to extract the 

damaged areas. 

This study is positioned as basic research on the extraction of damaged areas immediately 

after a disaster. On the other hand, it is necessary to pay attention to issues such as low 

resolution for practical application. In the future, the examination for the practical application 

should be carried out using the image with high resolution in order to improve the accuracy of 

land cover classification. 
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