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SUMMARY

A two noded, straight element which includes shear deformation effects is presented and shown to be
extremely efficient in the analysis of axisymmetric shells. A single point of numerical integration is essential

. for its success when applied to thin shells where the results compare favourably with those achieved with
more complex curved elements.

INTRODUCTION

To avoid the introduction of slope continuity in the general displacement analysis of plates and
shells a number of workers have used an independent interpolation of slopes and displacements
thus allowing for shear deformation effects.”> Approximations thus achieved worked well for
thick situations but were not successful in reproducing as a limit the Kirchhoff type of behaviour
encountered in thin sections. A breakthrough was achieved here by introducing a ‘reduced’,
numerical integration procedure””—although the full reasons for its success were, at the time,
improperly understood. Several such reasons are now known,* the mostimportant being the fact
that when the solution involves the minimization of a penalty type functional’ in which the
second quadratic term is introduced to impose certain constraints C= 0

¥ =11+ ally; H2=J c'cda a >0 &9)]
[

leading on discretization to equations of the form
(K1 + aKg)a =f (2)

then, unless the matrix K; is singular, the only available solution isa > 0 as @ becomes very large.
The use of approximate integration is one of the methods of ensuring such a singularity.
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It is easy to show that the introduction of shear strain energy to the predominating bending

energy introduces precisely the same situation with the ratio of the appropriate stiffnesses

playing the role of the penalty parameter a.

This greater understanding allowed the introduction of many new elements, in addition to the
isoparametric parabolic quadrilateral, to the reduced integration family and many old problems
have now beensuccessfully reformulated.’Ina paper dealing with the problems of plates Hughes
et al.® show how a single point numerical integration allows an extremely simple beam element
to be generated. In this paper an almost identical process is applied to the generation of an
equivalent axisymmetric element family with particular attention being given to its lowest, linear
member,

Although the formulation permits the use of curvilinear elements the linear segment will be
elaborated. Here the examples will show that the additional errors introduced by this approxi-
mation to geometry of curvilinear shells are insignificant providing consistent, single point
sampling of stresses is reported. In many situations we shall indeed find that the results with this
simple element are superior to those reported in the literature using eloborate curvilinear
elements,

BACKGROUND THEORY

In a general curvilinear system the Kirchhoff type ‘strain’ in an axzsymmetnc shell (under
axisymmetric load) can be written using the notation of Figure 1% a

r ~ g

du+w
B ds R
eg{ [(wcosg+usinag)/r
ng =l d*w ) (3)

Xs ——+d{u/R)/ds

ds

) dw u
%) -_SIM(EE—R)/’_

where the first two terms correspond to membrane and the latter to flexural forces or
moments. 7 o
Introducing now the shear strain y defined as

v=5-8 @

where 8 is the section rotation, and rewriting appropriately the flexural strains we can redefine
the ‘strains’ as

ooy r ' —
du w
&, ds R
£g (wcosd+using)/r
dg
E=q Yy, > = ~a+d(u/R)ds

5
Xeo —sin‘cﬁ(ﬁ'—%)/r

dw
04 a—ﬁ'
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Figure 1. Axi-symmetric shellf definition
We can define the appropriate elasticity matrix D as’
| ; A |
D', I D;
—— T T i
D=| (D |= S (6)
1D | D?

where the approriate matrices D', D* and the scalar D stand respectively for axial, flexural and
shear rigidities.
In isotropic materials these are

1 Er |:1 V] 3_ Et _ e
Dv_l“vz r 1 b k2(1+1/) ke
C g Er 1 » 7
D= 12(1—-@)2)[p 1] k=5/6

but in sandwich type structures much more general values can obviously be used.
The above simple theory is, indeed, identical with that derived directly by Naghdi.’®
If, now, the energy of the system is written as

=4 J £ De2nr ds "J qul2mrds  w=<w (®)
: B
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we note that the energy can be expressed in the ‘form’ of equation (1) where

=3 J £TD&27r ds —J’ qul27T?‘ ds (9a)

all,= %J yD>y27r ds (9b)

The first of these includes only axial and flexural strain energy whilst the second involves the
shear strain energy terms only. For thin shell theory D? tends to become very large and can be
identified simply as 2a—the penalty number of equation (1) introduced to enforce the
Kirchhoff constraint (y = 0).

With the above formulation we note that immediately an interpolation involving only C°
continuity is required as only first derivatives of u, w and 8 occur. Obviously any of the
numerous isoparametric formulations are possible.

With an interpolation of the type

i U;
u=<{w>=7y Na,; & =W (10)
B Bi

the form of equation (2) will be obtained in a fairly straightforward manner, involving
appropriate integrals with respect to 5. Such integrals can be evaluated by an approximate
numerical integration which, if convergence order is to be maintained, must be capable at least
of exactly integrating polynomials of order 2(p — 1) where p is complete polynomial order
contained in the shape function N,

To ensure singularity it is now necessary that in the establishment of the overall stifiness
matrix K, the total number of degrees-of-freedom is less than the number of independent
relations provided at the integration points.* For this matrix as only a single such relation is given
at each point this matter is casy.

LINEAR ELEMENT
For a straight element the simplest interpolation can be written as
Ni=Q+nm)/2  =n=2/L  m=2s/L (11)
for an element with nodes at n = £1.

Standard manipulation with respect to local nodal co-ordinates defined in equation (10) gives
the element matrices in a form

1
Kij:J' BFDBIZ#)' ds dT]
-1

ifi= J‘ N:q2#rL dn (12)

where ¢ is the vector of forces in the direction of u, w, 8 per unit length of the shell.
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Figure 2. A typical linear element
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In the above B, is the standard strain matrix obtained from equation {5) putting R = as the

element is straight, viz

- AN -

Fe 0 0
N, sin¢g Njcos¢ 0
r v
4N
B:= 0 0 ds
0 0 N;sin ¢
r
dN;
0 Bl N,
L. ds N .
i /L 0 0 7
(1+nm) . +nm
P sin ¢, 3 cos ¢, 0
_ 0 0 —ni/L
A+nm) .
0 0 —_—
2 sin ¢
+n;
0 /L _HTT”?)

(13)

To ensure singularity of the X, part of the matrix a single integration point is necessary (which
also corresponds with the minimum order of integration required). The remainder of the
stiffness matrices can be evaluated exactly but no overall singularity develops if a single
integration point is used and in the subsequent examples it was found that a single point
integration sufficed for all calculations, no additional accuracy being gained by a two point
integration of the K, part of the matrix. Clearly an explicit form of the element matrices can be
written now by simply replacing the integrals in (12) by the approprlate values of the integral

evaluated of the element mid paint (7 =0; r =1 ).
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To demonstrate the effectiveness of the element several thin plate and shell solutions were

analyzed,

Figure 3 shows an analysis of a circular clamped plate with various subdivisions. It is

0. C. ZIENKIEWICZ, }. BAUER, K. MORGAN AND E. ONATE

NUMERICAL EXAMPLES

remarkable to note that very accurate results are attainable with two elements only.
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Figure 3. Bending of circular plate under uniform load. Convergence study
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Figures 4 and 5 show two examples of curved shells. In the first the resuits are compared to
the ‘exact’ Timoshenko® and to other finite element solutions using curved element formula-
tions. > Other solutions*>™*® are shown for comparison in Figure 5 as here exact solutions are

not available.
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Figure 4. Spherical dome under uniform pressure. E =2 X 10°1b/in?, v =3
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In the ahove examples we note that the errors introduced by a straight line approximation to
the curved shapes appear insignificant,

Figure 6 shows the use of the present element in a ‘branching’ solution and once again
excellent comparison is attainable with alternative solutions.'”
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Figure 5. Toroidal shell under internal pressure, E = 1.0x 107 Ib#/in>, » = 0:3,p=10 lbf,/iﬂ2
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Figure 6. Branchingshell. E=1-0 10, »=0-3, N'= 50000 Ibf/in, p = 1000-0 Ibf/in?, t; = 0-4in, =05 in, £;=0-3 in

The final example is one of application to a more realistic problem of a water tank where the
convergence of the solution is indicated by a two mesh analysis (Figure 7).

CONCLUSIONS

The element described in this paper provides not only an illustration of the effectivness of the
‘reduced integration’ principle but results in probably the simplest accurate element avajlable
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Figure 7(b). Plot of membrane forceresultants

for axisymmetric shell analysis. Its algebraic form is extremely simple and extensions for dealing
with large deformation, stability or non-axisymmetric load distribution can follow a routine

pattern.
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