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Xavier Álvarez-Farré1, Àdel Alsalti-Baldellou1,2, Guillem Colomer1, Andrey
Gorobets3, Assensi Oliva1 and F. Xavier Trias1

1 Heat and Mass Transfer Technological Center, Technical University of Catalonia,
Carrer de Colom 11, 08222 Terrassa (Barcelona), Spain; www.cttc.upc.edu

{xavier.alvarez.farre, adel.alsalti, guillem.colomer, asensio.oliva, francesc.xavier.trias}@upc.edu

2 TermoFluids SL
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Abstract.
Continuous enhancement in hardware technologies enables scientific computing to advance in-

cessantly and reach further aims. Since the start of the global race for exascale high-performance
computing, massively-parallel devices of various architectures have been incorporated into the
newest supercomputers, leading to an increasing hybridization of compute nodes. In this context
of accelerated innovation, software portability and efficiency become crucial. Traditionally, sci-
entific computing software development using mesh methods is based on calculations in iterative
stencil loops over a discretized geometry—the mesh. Despite being intuitive and versatile, the
interdependency between algorithms and their computational implementations in stencil appli-
cations usually results in a large number of subroutines and introduces an inevitable complexity
when it comes to portability and sustainability. An alternative is to break the interdepen-
dency between the algorithm and its implementation, and then to cast the calculations into a
minimalist set of kernels. Algebra-based implementations rely on a reduced set of basic linear
algebra subroutines, which simplifies the deployment of software in hybrid computing systems.
In this work, we tackle the development of a fully-portable, algebraic library that can be coupled
beneath other high-level, algebra-oriented framework. Namely, this library provides platform
portability in the simplest possible manner (i.e., the user develops applications in a purely se-
quential style). Internally, algebraic objects are distributed among computing devices using a
multilevel decomposition approach. Data exchanges between computing units or between nodes
are hidden by a multithreaded overlapping scheme.
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1 INTRODUCTION

In solving major challenges, scientific computing relies on high-performance computing
(HPC) systems, also known as supercomputers. Many algorithms employed in scientific computing
have a very low arithmetic intensity (AI), which is the ratio of computing work in floating-point
operations (flop) to memory traffic in bytes. Hence numerical simulation codes are usually
memory-bounded, making processors suffer from severe data starvation [1, 2, 3]. To top it off,
the calculations often result in irregular, non-coalescing memory access patterns, reducing the
memory access efficiency. Ironically, the memory bandwidth of computing hardware grows much
slower than its peak performance, aggravating the problem. All this motivates the introduction of
new parallel architectures with faster and more complex memory configurations into HPC systems.
A quick look at the world’s fastest supercomputers today [4] reveals the huge variety of hardware
architectures and system configurations competing in the race for exascale computing.

The divergence in hardware architectures started back in 2004 when the increase in core’s
complexity and clock speeds reached a plateau, and therefore the demands for more computing
power had to be met by other means [2]. Rapidly, systems based on multicore processors or multi-
socket configurations seized the top supercomputers list, adding additional levels of parallelism.
The default message-passing interface (MPI) parallel models assuming data equidistance between
processes ceased to be valid. Hybrid approaches combining MPI and open multi-processing
(OpenMP) appeared in response, although they could easily end up delivering even worse
performance on complex non-uniform memory access (NUMA) configurations [5, 6]. To top it off,
the divergence intensified in 2008 when devices of various architectures introducing completely
different parallel paradigms came into play, such as many integrated cores (MICs) or graphics
processing units (GPUs). The stream processing (SP) parallel paradigm must be met to deal
with such devices. Ever since, the scientific computing community has been facing significant
challenges.

The use of GPUs in scientific computing is nowadays rather mature, and there are many
successful examples in the literature [7, 8, 9, 10, 11]. For instance, the early GPU implementations
in [12], extended in [13], proved to be two orders of magnitude faster than its central processing
unit (CPU) counterpart. Moreover, the solution of two-phase flows on multi-GPU systems [14]
was not only faster but also more energy-efficient. An example of a GPU porting of an open-source
Navier–Stokes solver, the AFiD code, is found in [15]. Further examples of multi-GPU simulations
of supersonic and hypersonic flows can be found in [16]. One of the most impressive GPU-based
simulations is found in [17], after [18], on the solution of turbulent flows, reporting a sustained
performance of 13.7Pflop/s.

Traditionally, scientific computing software development using mesh methods is based on
calculations in iterative stencil loops (ISL) over a discretized geometry—the mesh. In this work,
this implementation approach is referred to as stencil or stencil-based. Despite being intuitive and
versatile, the interdependency between algorithms and their computational implementations in
stencil applications usually results in a large number of subroutines and introduces an inevitable
complexity when it comes to portability and sustainability [19].

Implementing new physics or numerical methods in a stencil-based framework or its spe-
cialization for different mesh types usually requires the design of new computing subroutines
and data structures. This is the main drawback of such an approach because the effort is not
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necessarily accumulative and thus reduces the software’s sustainability. Some authors propose
domain-specific tools to address this, generalizing the stencil computations for specific fields.
For instance, a framework that automatically translates stencil functions written in C++ to
both CPU and GPU codes is proposed in [20]. However, these generalizations are still heavily
restricted by the shape of the stencil they target.

An alternative to stencil implementations is to break the aforementioned interdependency
between algorithm and implementation so that the calculations are cast into a minimalist set of
universal kernels. In other words, the idea is to use the classical ISL just for data building and
leave the calculations to a reduced set of basic operations; in this way, legacy codes can be used
and maintained indefinitely as preprocessing tools, and the calculation engines become easy to
port and optimize.

By casting discrete operators and mesh functions into sparse matrices and vectors, it is shown
that all the calculations in a typical computational fluid dynamics (CFD) algorithm for the
direct numerical simulation (DNS) and large-eddy simulation (LES) of incompressible turbulent
flows boil down to the following basic linear algebra subroutines: sparse matrix-vector product
(SpMV), linear combination of vectors (axpy) and dot product (dot) [21, 22, 6, 23]. From now
on, we refer to this implementation based on algebraic subroutines as algebraic or algebra-based.
In this algebraic approach, the kernel code shrinks to dozens of lines; the portability becomes
natural, and maintaining OpenMP, open computing language (OpenCL), or compute unified
device architecture (CUDA) implementations takes minor effort. Besides, standard libraries
optimized for particular architectures (e.g., cuSPARSE [24], clSPARSE [25]) can be easily linked
in addition to specialized in-house implementations. A similar approach is found in PyFR [18],
where the majority of operations are cast in terms of matrix-matrix multiplications linking with
appropriate BLAS libraries. In the context of the DNS, the preconditioned conjugate gradient
(CG) method following such an algebraic approach was implemented in [26], and its potential
was exploited in [27] to perform petascale CFD simulations. Using an algebra-based formulation
provided robust, portable, and optimized implementations in all cases. Consequently, the design
of algebra-based algorithms for its use in massively parallel architectures seems a smart strategy
for the efficient solution of both industrial and academic scale problems.

2 OVERVIEW OF MODERN SUPERCOMPUTERS

In general, hybrid supercomputers consist of multiple nodes interconnected via a high-
bandwidth network (see Figure 1). An efficient distributed-memory (DM) multiple instruction,
multiple data (MIMD) parallelization capable of hiding the inter-node communication overhead
is required to engage the nodes of an HPC system. The MPI standard is typically used at this
level. In turn, hybrid nodes combine several computing units of various architectures that feature
different parallel paradigms. Indeed, there are still many powerful traditional supercomputers
based on single-processor nodes. However, these are considered just a particular case of the more
general hybrid nodes described from now on.

The CPU, the so-called host , consists of a pool of cores packed into NUMA nodes: different
CPU sockets, even groups of cores within sockets, with separate memory banks and controllers.
The non-uniform memory access allows for faster access to local memory at the expense of
slower access to remote memory. A fine-tuned, NUMA-aware shared-memory (SM) MIMD paral-
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Figure 1: Example of a hybrid supercomputer consisting of two six-core CPUs and four GPUs.

lelization is required to engage all the CPU cores, ensuring thread affinity and local memory
access. Moreover, modern manycore CPUs integrate dozens of cores and allow for simultaneous
multithreading (SMT), from two threads per core in Intel CPUs up to eight in IBM ones. In
most cases, SMT is intended for hiding memory latency, thus increasing the throughput delivered
per core. The OpenMP interface is a common choice for multithreaded programming on CPUs,
despite that it offers very little facility to express information about data locality or data move-
ment. Special emphasis is also given to the increasingly larger vector registers such as advanced
vector extensions (AVX), which introduce the single instruction, multiple data (SIMD) paradigm.

On the other hand, massively-parallel coprocessors, also known as accelerators, integrate
an on-chip memory space separated from the host. Such devices are independent processors
in their own right, although they are not intended for general-purpose programming. Indeed,
coprocessors usually feature a limited instruction set focused on accelerating specific tasks and
thus have to be driven by the host processor. For this reason, it is common to find the terms
master and slave in the literature referring to such a workflow. Nowadays, the GPU is the most
common accelerator, and algorithms must be compatible with the SP paradigm to deal with
such processors efficiently. There are two common choices for implementing SP algorithms: the
vendor-locked platform from NVIDIA, CUDA, and the open-source application programming
interface (API) developed by Khronos, OpenCL. While the latter is a highly portable option
compatible with virtually any hardware device, CUDA is geared towards NVIDIA GPUs only.
However, in NVIDIA environments, it is usually preferred because it is easier to master and, in
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most cases, delivers higher performance.
Supercomputers’ topology, the way computing units and nodes are interconnected, is also

paramount in code development and decision making. In computer architecture, any communica-
tion system that transfers data between components inside a node or between nodes is called a
bus. Different buses are used depending on which components connect, and their specifications
can vary in orders of magnitude. Complex topologies introduce an important non-uniform
input-output access (NUIOA) factor because I/O devices and accelerators are directly connected
to single processor sockets, and hence accessing such devices from remote sockets results slower.
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Figure 2: Ratio of halo to inner elements, ρ, with respect to different mesh partitioning approaches
considering a Laplacian matrix derived from the symmetry-preserving discretization [28] on a hex-
dominant unstructured mesh. Blue lines represent the theoretical maximum ratio supported by different
supercomputers.

Unfortunately, the efforts to increase the memory bandwidth of compute nodes have strength-
ened another bottleneck. Hitherto, the B/F ratio was the major enemy of most scientific
computing applications; now, the network to main memory balance (the N/B ratio) is also
very harmful, specially in large-scale DM computing. Namely, the N/B ratio in a traditional
CPU-based system such as MareNostrum 4 is 12.5 to 256GB/s. An application must access the
main memory at least 20 times more than the network to be able to scale. This means that the
SpMV considering a Laplacian matrix derived from the symmetry-preserving discretization [28]
on a hex-dominant unstructured mesh (i.e., seven non-zeros per row) supports a maximum of
50% halo elements. In Frontier this value falls to 2.5%. On the other hand, the distribution
of a 134 million cells mesh among 8 processes results in 2.3% halo elements. Therefore, future
implementations must minimize the total amount of halo in the system. Implementations relying
on one or multiple MPI process per device can be considered obsolete in favor of a single MPI pro-
cess per node, as shown in Figure 2. Furthermore, optimized NUMA-aware, multithreaded data
exchange protocols are required.
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3 THE HPC2 FRAMEWORK

3.1 Motivation

Let us assume there is a framework that provides us with discrete differential operators
(matrices) and fields (vectors), without going into detail about the numerical method used to
discretize. Matrices are provided in standard compressed sparse row (CSR) format, while vectors
are given as one-dimensional arrays. No workload distribution or partitioning is regarded yet.
Following the nomenclature in [28] consider, for instance, the evaluation of the heat flux as

qs = −kGT c. (1)

Presuming that the discrete gradient operator and temperature field are given, we want to write
Equation 1 in our computer program as

1 q = - k*G*T;

where T is the discrete temperature field, built as an element of the vector space the gradient
maps from, G is the discrete gradient operator, k is the thermal conductivity and q is the discrete
heat flux, built as an element of the vector space the gradient maps to.

The hierarchical parallel code for high-performance computing (HPC2) project aims at
computing any algebra-based model on, say, both a laptop and a hybrid supercomputer without
changing any line of the code. Namely, it would be interesting for a research laboratory to execute
a large-scale DNS of turbulent flow on a massively parallel supercomputer (e.g., via a PRACE
project on MareNostrum 4) and then to compute multiple overnight industrial simulations on
different GPU-accelerated nodes. Thus, such a framework must rely on data structures and
kernels that are appropriately managed at a lower-level code block, a black box that is simply
configured through command-line parameters.

3.2 Portable implementation model

In a nutshell, our portable implementation model introduces three types of objects: actuator,
container and shaper. A shaper is some sort of instructions manual that allows transforming
any initial sequential input into a set of hierarchical partitions enabled for parallel processing.
Containers are the data storage objects that stock such hierarchical partitions. Finally, the
actuator is the object that provides with methods and functions to firstly create shapes and
then manipulate and operate containers. This portable implementation model will be described
throughout the section.

The solution we propose is depicted in Figure 3. Namely, there are four objects conceived for
developers and four for users. The set of objects intended for users are nothing but high-level
handlers or wrappers that contain lists of their low-level counterparts. Recall that the hierarchical
parallel implementation of HPC2 is designed to work with multilevel partitions as described in [6].
Therefore, each high-level object operates with the required number of nth-level partitions on the
backs of the users. In other words, no specification of the parallel environment or configuration is
required in deploying an algorithm using HPC2 library (the user can use HPC2 objects in a way
as simple as std::vector). This is illustrated in Listing 1 following the example in Equation
1.
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Figure 3: Diagram of classes in our pure virtual approach for managing platform portability.

Listing 1: Heat flux computation using hpc2lib.

1 #include "hpc2lib.h"
2

3 /* NODE object is a singleton and is accessed through a pointer */
4 NODE *Node;
5

6 int main(int argc, char** argv){
7 /* initialize MPI stuff */
8 int prov, req = MPI_THREAD_MULTIPLE;
9 MPI_Init_thread(&argc, &argv, req, &prov);

10

11 /* initialize NODE with command line arguments */
12 Node->Init(&argc, &argv);
13

14 /* initialize HPC2 objects using plain sequential data in binary files */
15 DOMAIN Cells, Faces;
16 Node->CreateDomain(Cells, Faces, "input_G.bin");
17

18 VECTOR q = Node->BuildVector(Faces, 0.0);
19 VECTOR T = Node->BuildVector(Cells, "input_T.bin");
20 MATRIX G = Node->BuildMatrix(Cells, Faces, "input_G.bin");
21

22 /* compute the gradient */
23 double k = 0.598;
24 Node->SpMV(G, T, q, -k);
25

26 MPI_Finalize();
27 }
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The code in the example above (Listing 1) can be compiled and executed on virtually any
modern computing environment. By way of example, Listing 2 shows three command-line
configurations to execute the simulation on: 1) 200 nodes with 48 cores each, 2) a fat node with
4 NVIDIA GPUs, 3) two hybrid nodes with one 14-core CPU and one AMD GPU each.

Listing 2: Execution of an application with HPC2 on different parallel, potentially hybrid systems. Only
command-line parameters change.

1 mpirun -np 200 ./heat -devices=1 -imp=openmp -thr=48
2 mpirun -np 1 ./heat -devices=4 -imp=cuda,cuda,cuda,cuda
3 mpirun -np 2 ./heat -devices=2 -imp=openmp,opencl -thr=13,1 -wgt=68,288

The parameter devices determines the number of virtual devices to be used, that is, the
number of second-level partitions. We specify virtual devices to highlight that a physical
computing unit or device can be assigned to multiple virtual devices and, therefore, to multiple
second-level partitions. This is particularly interesting in units with device queues such as
GPUs. Then, at least one processor thread is assigned to each virtual device. It is possible
to assign multiple threads to a virtual device using the parameter thr, which is particularly
necessary in multi-core units. To deal with load balancing, the parameter wgt determines the
relative workload for each virtual device. Last, but not least, the parameter imp determines the
implementation, or backend, assigned to a virtual device. In this portable implementation, all
architecture-specific implementations is encapsulated in a single, pure virtual class (the actuator).

Unit and node

The node is the actuator provided to the user. As a singleton class, only one instance exists
during the execution; and it always exist [29]. Node must be initialized at the beginning of the
program using command-line parameters (line 3 of Listing 1) to determine the number of virtual
devices, their implementation and relative weight, or the number of threads that operate. Then,
if the user wants to create a domain, he uses the node (line 16 of Listing 1); if he wants to build
vectors or matrices using plain binary files, he uses the node (lines 18–20 of Listing 1); if he wants
to execute kernel, he uses the node (line 24 of Listing 1). At a glance it may seem a sequential
application, but a powerful hierarchical parallel implementation is managed in the background.

In this approach, all the architecture-specific implementation is encapsulated in a single
low-level, pure virtual class, the virtual unit, which can be specialized for different architectures.
Currently, there are three different implementations of virtual unit: OpenMP, OpenCL, and
CUDA. Each implementation is designed to allocate and operate second-level partitions of vectors
and matrices. In each execution, the node will generate as many derived instances of virtual
units as requested by the parameters, one per second-level partition. If a new architecture or
parallel paradigm comes into play, the implementation of a new virtual unit is sufficient to port
the entire numerical simulation framework.

Vector and matrix

This pair of objects are containers used to store discrete mesh functions and operators. Vectors
must be bound to a domain so that the user-given plain data, the input binary file, is transformed
and distributed accordingly among the required compute nodes and units. Moreover, matrices
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are bound to two domains representing the input and output vector spaces. The former is used
to renumber column indices, while the latter is used to transform and distribute matrix rows
among the hardware.

There are multiple sparse matrix storage formats deployed (e.g., the diagonal format, the
standard CSR, or the ELLPACK [30] and its variants [31]), and more can be added easily.

Domain

This object describes a (computational) vector space, and contains the information required
to transform such space from the user-given plain or sequential form, the input binary file, into
the HPC2-based multilevel form. It is required for allocating and operating containers, which
are vector and matrix. Therefore, the domain is the shaper that describes the size of second-
and third- level partitions of the vector space and the size and offset of its subsets. Besides, it
contains maps to reorder the data back and forth, and to perform the required data exchanges
in DM parallelization.

4 CONCLUSIONS

A portable implementation model of a low-level, algebra-based library has been proposed.
It is based on three types of objects: actuator, container, and shaper. In this approach, all
the architecture-specific implementation is encapsulated in a single low-level, pure virtual class,
the virtual unit, which can be specialized for different architectures. It has been shown that
implementing a new virtual unit is sufficient to port the entire numerical simulation framework.

On the other hand, the architecture-agnostic implementation model presented in this work
allows users of higher-level, algebra-oriented frameworks developing codes in a purely sequential
fancy, while still executing simulations on the most modern hybrid supercomputers.
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doctoral grants DIN2018-010061 and 2019-DI-90, given by MCIN/AEI/10.13039/501100011033
and the Catalan Agency for Management of University and Research Grants (AGAUR), re-
spectively. The work of A. G. has been funded by the Russian Science Foundation, project
19-11-00299. The studies of this work have been carried out using computational resources
of the Barcelona Supercomputing Center (IM-2020-3-0030 and IM-2022-1-0015). The authors
thankfully acknowledge these institutions.

REFERENCES

[1] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: An insightful visual
performance model for multicore architectures. Communications of the ACM, 52(4):65–76,
2009.

9
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