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Abstract— Driver assistance systems based on video process-
ing deliver a number of warnings to the driver, such as lane
departure, lane invasion by other vehicles, collision prediction,
etc. This have been a field of intense research for many years,
providing solutions based on road models where vehicles are
afterwards detected and tracked. Robustness is essential in this
field of road safety where outliers represent one of the major
problems for road modeling.

The motivation of this work is to provide a robust and, at
the same time, flexible road model which identifies a variable
number of lanes, their widths, the curvature of the road and
the position of the vehicle in its lane. The major advantage of
this model is that the system gives confidence measures for each
lane, determining which lanes are actually present and which
not. The model is structured as a hierarchical bipartite graph
which simplifies information management, reduces sub-module
dependencies and classifies elements of the road in different
levels. At each level different strategies are applied, following
four overall steps: measurement, estimation, evaluation and
extrapolation, which lead to enhanced road model accuracy,
reliability and flexibility. Several experimental results are pro-
vided, showing the robustness of the system, its stability and
accurate results for large test paths.

I. INTRODUCTION

Driving safety means continuously acquiring knowledge

of the surrounding of the vehicle, both the driver and the

Advanced Driver Assistance Systems (ADAS). In the case of

in-vehicle video-based ADAS, this knowledge level depends

on the features that are extracted from the images and used

to create a virtual model of the road. The more information

is obtained, the more accurate the model is. Compared with

other systems, video may go beyond gathering information

about lane markings, curvature, position in the own lane, etc.

Road modeling plays one of the key roles in any ADAS, as

it may serve as basis for most of the services a driver might

desire: e.g. lane departure warning, frontal collision warning

or safety distance warning.

Although the task of extracting white lane markings from

a dark surface like the road may seem easy, it leads to an

enormous amount of problems due to: e.g. lighting condi-

tions or pavement conditions dramatically change contrast

between lane markings and road, vehicles may appear and

occlude them, casted shadows, weather conditions, etc. Many

different systems have been developed as the result of an

intense research activity in this field, mainly focusing on

lane modeling [1]-[4] and obstacle detection [5][6]. Most of

these works apply specific strategies to focalize on detecting

single features. For example, [1] works on the identification

of lane changing by fusing video and vehicle status data.

An accurate 3D model of the own lane is given in [2] by

analyzing the geometry of the lane markings. Free spaces

in the road are detected in [4], and volumes obtained with

stereo-vision depth maps in [5].

Nevertheless, none of these works establishes a structured

road model on which it is possible to add or modify func-

tionalities easily, and that may include all the information

of interest about the surroundings of the vehicle. As stated,

most of them focalize on solving particular aspects: i.e. no

solution gathers an accurate model of the own and other

lanes, their curvature, the position of the vehicle in the own

lane, the position of other vehicles in the other lanes, etc.

The motivation of this work is to introduce a flexible,

structured and robust road model which benefits from the

implementation using graphs. Conceptually, it is based on a

structured description of the information of the surroundings

of the vehicle, in terms of elements (lane markings, lanes,

etc.), properties (width, curvature), and links (lane marking

belonging to a lane, etc.).

Typically, information structuring problems have been

solved using graphs [7], as they are designed to easily

manage elements, element properties and links between

elements. For that reason, the model has been implemented

into a hierarchical bipartite graph (HBG) which is composed

of a set of bipartite sub-graphs that link different levels

containing elements of the same type.

Road modeling using the HBG has a number of advan-

tages, mainly enhancing the flexibility of the system: (i)

information is structured allowing the access, storage and up-

date of data in a simple way; (ii) each level has an associated

processing stage, which depends only in the neighbor levels,

thus speeding up calculations and simplifying dependencies;

and (iii) modifications at each level, in terms of changing

the processing algorithms, do not affect other levels.

Robustness is achieved by a four steps approach explained

in detail in Section III: measurements related to the lane

markings are taken, containing outliers and noise; estima-

tion fit curves taking into account previous time instants

to enhance temporal coherence; evaluation validates the

estimates by checking them against a priori knowledge,

and extrapolation propagates the model into areas where no

observation was obtained.

II. ROAD MODELING STRATEGY OVERVIEW

The proposed strategy is based on the definition of the

HBG and the processing stages associated to it. The next
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Fig. 1. Hierarchical Bipartite Graph.

TABLE I

HIERARCHICAL BIPARTITE GRAPH LEVEL DESCRIPTION.

Element-Level Subset of Nodes Node Information

Road {Vk,3} Vk,3 = {κk}

Lanes {V i
k,2

}N2

i=1
V i

k,2
= {wi

k
, Ψi

k
}

Lane Markings {V i
k,1

}N1

i=1
V i

k,1
= {pi

k
, Φi

k
}

Control points {V i
k,0

}N0

i=1
V i

k,0
= {xi

k
, {zi,j

k
}

Mi
j=1

}

subsections describe this conceptual organization, and the

way it has been implemented.

A. Hierarchical Bipartite Graph

There is a direct way of representing a road as a hierarchi-

cal bipartite graph, with different levels that group elements

and links between them. Fig. 1 depicts the graph; as it is

shown, this graph is bipartite between each consecutive pair

of levels. Each level is denoted as {V i
k,l}Nl

i=1
, where k is the

discrete time index, l is the index of the level, and i and Nl

are, respectively, the index of the node and the total number

of nodes at each level. Table I shows the assignments of

elements to levels, specifying the information contained at

each level.

The highest level corresponds to the road node, which

contains a single parameter, κk, the road curvature. This node

is linked to an unrestricted number of lane nodes, {V i
k,2}N2

i=1
,

each one containing its width wi
k and a confidence level, Ψi

k.

The following is the set of lane markings, which delimit

each lane. These nodes contain the vector of parameters

of the curve used to model the lane marking, p
i
k, and a

confidence level Φi
k. There are two lane markings per lane,

and each lane marking is shared by two lanes. Therefore,

the number of lane markings is N1 = N2 + 1. Finally, the

base nodes, {V i
k,0}N0

i=1
represent the control points of the

curve that model each lane marking. Each control point is

determined by its position x
i
k and a set of measurements

{zi,j
k }Mi

j=1
. The number of control points per lane marking, c,

may depend on the type of model applied. The total number

of nodes at this level is N0 = c · N1. Details about these

parameters are given in Section III.

B. Processing Stages

Fig. 2 depicts the processing stages applied on the HBG:

(a) measurements of the position of the control points are

taken at the base level. At the lane markings level these

measurements are robustly fit into curves, which are used
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Fig. 2. Processing stages: (a) Measurement; (b) Estimation; (c) Evaluation;
and (d) Extrapolation, where black nodes are those having estimations and
then do not require extrapolation from higher levels.

back to estimate, as shown in (b), the positions of the control

points. In (c) the estimated lane markings are further used

to define the confidence levels of lanes which are evaluated

to check the correctness of the estimations. Finally, in (d),

the a priori knowledge of the road is used to extrapolate the

parameters of the nodes which have not been involved in the

measurement-estimation process to maintain coherence with

the road model.

III. HIERARCHICAL BIPARTITE GRAPH

In the following subsections each processing stage is

described in detail as well as the involved levels of the graph.

A. Measurement - Control points

The nodes of the base level correspond to the points that

model the lane markings appearing in the images. They are

called control points as they are used to estimate a curve that

best fits to them, for example through the use of SVD [14]

to give the least squares solution. The more control points

considered, the more complex may be the curve modeling

each lane marking. The number of control points per lane

marking, c, models different curve types. If c = 2 the

model could be a line [8][9] (which can be determined by a

minimum of two points); c = 3 fits with generic second order

curves, such as parabolas [1][10] circles, and constrained

cubic curves approximating clothoids [11], while for c = 4
more complex spline shapes [12] can be estimated.

To estimate the parameters of these models most works

use the likelihood maximization method [9][10]. However,

RANSAC is used in this proposal, as it is a robust estimation

approach that shows much better performance by removing

outliers from the set of points [13]. The number of points

used in RANSAC, c′, is larger than the minimum number

of points required c. That way, for example, to estimate a

circumference arc, c′ = 6 can be used. Anyway, this number

is still small enough not to increase the computational cost

of RANSAC.

To take measures of these control points, a warped image,

I ′k, with removed perspective, like the one shown in Fig. 3, is
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firstly computed. It is usually denominated inverse perspec-

tive mapping (IPM) [6] or plane to plane image warping

[14]. The procedure to generate it follows the approach

shown in [15].

Each control point is defined by its two-dimensional

position x
i
k which is dynamically estimated through time.

Measures are obtained as the intersection of the extended

lane markings with a pattern of virtual horizontal lines. This

extension is achieved by first applying an edge detection, a

thresholding and a dilation on the result. The obtained mask

is shown in Fig. 4 (a) where there are a number of white

stripes corresponding both to correct lane markings, and to

outliers (in this case a vehicle). The pattern of horizontal

lines is shown in thin white lines. Blob coloring is applied

on this mask and for each blob-stripe large enough a straight

line is estimated using the Hough transform. The intersection

of these lines with the horizontal pattern are marked as

measures only for those horizontal lines close to the blob.

This process is depicted in Fig. 4 (b), where estimated lines

are shown in green, and measures in green circles. As it is

shown, this strategy allows to obtain reliable and accurate

control points even for non-continuous lane markings.

Measures are clustered around previous, in time, control

points, so that each control point has an associated set of Mi

measures {zi,j
k }Mi

j=1
, not shared with any other control point.

A Delaunay triangulation is used on the immediate previous

set of control points {xi
k−1

}N0

i=1
to obtain the Voronoi cells

which classify the image into regions of pixels which are

closer to a certain control point than to any other in the

image. An example of this image division is shown in

Fig. 4 (c).

Therefore, the estimation of the control point depends on

the number of measures that fall inside its corresponding

cell. The estimated value is computed as follows:

x
i
k =











x
i
k−1

if Mi = 0

z
i
k if Mi = 1

z
i,∗
k elsewhere

(1)

where z
i,∗
k is the measure with lower distance to the previous

control point:

z
i,∗
k = min

z
i,j

k

{‖xi
k−1

− z
i,j
k ‖} (2)

B. Estimation - Curve fitting

Among the control points V i
k,0 linked to each lane marking

node V i
k,1, those having an estimation x

i
k obtained from a

set of measures with Mi ≥ 1 are used to fit a curve. As

it was stated previously, any type of curve may be used

here. Typical approaches use parabolic models [1], which

offer enough accuracy for both IPM and natural images.

However, for IPM images, generic circumference arc models

show better performance for most situations. The parametric

expression of a circumference is given by:

x2 + y2 + 2Ax + 2By + C = 0 (3)

(a) (b)

Fig. 3. Inverse Perspective Mapping of a road scene: (a) Ik original
perspective image; and (b) I′

k
image warping.

(a) (b)

(c) (d)

Fig. 4. Measures generation: (a) Blobs from dilated edges; (b) Intersection
of Hough lines from each blob with horizontal lines; (c) Previous image with
its Voronoi cells division in green solid lines, and the set of points x

i
k−1

in red circles; (d) Current image: (green) measures z
i,j

k
; (blue) estimated

z
i,∗

k
; and (red) no measures, using x

i
k−1

.

where the center is the point xC = (−A,−B), and the radius

is r =
√

A2 + B2 − C. Therefore, the vector of parameters

of the node is expressed as pk = (xC , yC , r)T.

The minimum number of control points required is c = 3,

but for enhancing robustness against outliers, RANSAC

method is used for any set of points: c ≥ 3, with a number

of outliers removed denoted as c̃.

The accuracy of the model is improved if one particular

assumption is applied: the vehicle is moving approximately

parallel to the lane markings, so that the curve follows a

vertical straight line in the lower part of the IPM image. The

model is accordingly restricted to have its center at the known

y = H coordinate corresponding to the height of the image.

This can be implemented in several ways, such as stating

B = −H and reducing one degree of freedom the expression

in (3), or, equivalently, duplicating the control points as the

specular image around the y = H edge. Fig. 5 depicts

this idea: for the left marking, the non-restricted estimation

of circumferences (red) gives an erroneous circumference

estimation due to the outlier at the top of the image; however,

for the duplicated set of points (blue), the impact of outliers

is highly decreased and the curve fits correctly.

Given the set of inliers {xi, yi}c
i=1

, the curve is estimated
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as the least squares solution to the following system of

equations:

















2x1 2y1 1
... ... ...

2xc 2yc 1
2x1 2y′

1
1

... ... ...

2xc 2y′
c 1





















A

B

C



 =

















−(x2

1
+ y2

1
)

...

−(x2

c + y2

c )

−(x2

1
+ y

′
2

1
)

...

−(x2

c + y
′
2

c )

















(4)

where y′
i is the height of the specular points, computed as:

y′
i = yi + 2(H − yi) (5)

Once {V i
k,1} has been estimated, this processing stage

updates the control points of nodes {V i
k,0} as the intersection

points between the estimated curves and the abovementioned

horizontal lines. For each horizontal line defined by its

coordinate yi, the intersection with the circumference is

given by:

xi =
1

2

(

−2A ±
√

4A2 − 4(y2

i + 2Byi + C)

)

(6)

which gives two solutions: the one falling inside the limits

of the image is selected as the new control point, with

coordinates x
i
k = (xi, yi).

The confidence level is assigned accordingly to the accu-

racy of the estimation and the number of detected outliers.

Therefore, the confidence level is given by the following

expression:

Φk =

(

1 − c̃

c

)

exp(−τDi) (7)

where the first term is the confidence factor given by the

number of outliers; τ is a factor that determines how fast

the exponential decreases; and Di is:

Di =
1

c

c
∑

i=1

di (8)

where di is defined as the distance from the point (xi, yi) to

the curve (A,B,C):

di = |
√

(xi + A)2 + (yi + B)2 −
√

A2 + B2 − C| (9)

C. Evaluation

Evaluating the correctness of the estimations is done

through the analysis of the confidence level of lanes, and

their width. The estimation of the lane widths is carried out

with a Kalman filter with the following state vector:

sk = (w1

k, w2

k, ..., wN2

k )T (10)

where wi is the width, in pixels, of the i-th lane in the IPM

image. These values are supposed to vary smoothly within

the range of road displayed on the image (usually less than

80 m), so that the dynamics of the system is reduced to:

x

y

H

Fig. 5. Robust circumference arc fitting. Left lane marking contains one
outlier control point and the LSE solution gives an incorrect circumference
(in red). Applying the specular duplication the problem is fixed (blue).

sk = Ask−1 + vk (11)

where vk is Gaussian noise with zero mean and standard

deviation that identifies the uncertainty in the evolution of the

system, and the transition matrix, A, is the identity matrix

of dimensions N2 × N2. Measurement values are directly

obtained as the distances between the modeled curves, with

parameters p0 and p1, corresponding to the lane marking

nodes linked to the lane node at height y = H .

The a priori information introduced in the proposed strat-

egy applied is that lanes are assumed to have similar widths,

and that the central lane is usually the best estimated one (as

it is the easiest lane to observe in the IPM image). Therefore,

the confidence level associated to the lane is obtained as

follows:

Ψi
k = w̃i

k

∏

n={0,1}

Φn (12)

where Φ0 and Φ1 are the confidence levels of the left and

right lane markings, respectively, linked to the lane node;

and w̃k is the confidence factor given by:

w̃i
k = exp(−τ‖wc

k − wi
k‖2) (13)

where wc
k is the width, at time k, of the estimated central

lane, and τ is a decreasing factor. Therefore, the more

the width is different to that of the central one, the more

penalization is applied to the confidence of the lane.

The overall model of the road is evaluated at the highest

level of the graph. The curvature of the road, parameterized

as κk, is computed as κk = r−1

k where rk is the radius of

the circumference corresponding to the lane marking with

highest confidence level.

D. Extrapolation

After the processing stages, all the parameters of the HBG

have been estimated for the lanes that appear in the IPM

image. Calling these lanes as the viewed ones, the HBG

allows to compute the parameters of the nodes corresponding

to the non-viewed lanes through an extrapolation process.
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(a) (b)

Fig. 6. Extrapolation example: (a) IPM showing the measures and
estimations done on the viewed lanes; and (b) extrapolated grid of lanes
containing viewed and non-viewed lanes.

Extrapolation is useful to have a pre-computation of lanes

even when they do not appear in the images but may appear

at any moment due to the movement of the vehicle between

lanes.

The extrapolation is done at lanes, lane markings and

control points levels: (i) it is easy to add a number of lanes at

the left and right of the viewed lanes, with width equal to the

nearest viewed lane; (ii) lane markings are also extrapolated

at left and right of the viewed lane markings. The parameters

of the curve are the same as those of the nearest lane

marking, increasing the radius of the circumference w pixels,

where w is the extrapolated width of the lane:

pex = (xC , yC , r ± w)T (14)

(iii) control points are extrapolated from these curves by

computing the intersection of the curves with the horizontal

lines as explained in Section III-A.

Fig. 6 shows an example of the extrapolation process. In

(a), the IPM contains the viewed lanes, while in (b), the

model, with the extrapolated non-viewed lanes is shown.

IV. RESULTS AND DISCUSSION

Successful results have been obtained with long test se-

quences recorded from a vehicle as it was driven along

motorways around Madrid (Spain), gathering all the ele-

ments required to check the robustness of the model: cast

shadows due to sunny weather, variable number of lanes,

variable types of lane markings (continuous, discontinuous,

double, etc.), presence of vehicles, severe occlusions of

lane markings, changes of lanes, etc. Fig. 11 shows some

images corresponding to different test sequences, with the

superimposed grid of estimated control points.

An important issue is the inherent instability of the IPM

images that may cause the bird-view to show non-parallel

lane markings, and the detected curvature to be incorrect. For

that purpose, the IPM is stabilized through the continuous

estimation of the vanishing point, whose vertical component

is used to determine the homography that transforms the

natural image into the IPM image [15]. This vanishing point

is estimated as the least squares intersection of those lane

markings with high confidence level, Φi
k. Fig. 7 shows two

images where the vanishing point is significantly different

but correctly estimated. The overall variation along the whole

sequence of its vertical component in shown i Fig. 8.

(a) (b)

Fig. 7. Two images belonging to the same sequence, with notably different
vanishing points that are correctly estimated.

0 100 200 300 400 500 600 700
90

100

110

120

k

v
y

Fig. 8. Vertical coordinate of the vanishing point for a test sequence.

One of the most relevant events that has to be detected is

lane changes by lateral movements of the car. Thanks to the

continuing monitoring of several lanes, this issue is simple,

and the position of the vehicle within its lane is computed

as:

xoff =
W − 2xw

w
(15)

where W is the width of the image, xw is the position of

the center of the lane in the image, and w is the width of

the lane, computed as explained in Section III-C. This is a

value between −1.0 and 1.0, corresponding to the maximal

left and right deviation within the lane, respectively. Fig. 9

shows the evolution of this lateral offset, where two lane

changes have been addressed.

The road model is supported by the confidence measures

taken from the estimations. Fig. 10 shows the variation of

the confidence level for eight lanes, indexed from 0 to 7, for

an example test sequence. The road corresponding to this

sequence has four lanes, shown in light gray. Dark shadow

regions correspond to the lane that is occupied by the own

vehicle at each time instant. Lane changing corresponding

to the lateral offset depicted in Fig. 9 makes that lane

number 1 changes from viewed to non-viewed, so that its

confidence level falls to zero when the vehicle is in lane

number 4. As a remark, the observed intermittencies on

the signals are mainly caused by the discontinuous lane

markings, that increase and reduce the number of control

points periodically.

Regarding computational issues, the whole system have

been tested in a laptop CoreDuo@2GHz, working in real-

time for a framerate of 10 fps for sequences with image

resolution 360 × 256 in 8-bit grayscale.

V. CONCLUSIONS

In this paper a novel road modeling strategy has been

introduced, showing robustness against outliers, caused by
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Fig. 9. Estimation of the horizontal position xc of the own vehicle within
its lane. Lane changes are denoted as large jumps between −1.0 and 1.0.

Fig. 10. Confidence levels, {Ψi} for a test sequence evaluating eight lanes.

the variable lighting conditions, occlusions, shadows, ego-

motion, etc., and flexibility due to a structured way of

representing elements of the road.

Robustness is enhanced by the use of a probabilistic

approach that assigns confidence levels to lane markings and

lanes according to the quality of the measurements. Robust

estimation techniques like RANSAC are also used.

The hierarchical bipartite graph ensures a working ap-

proach that simplifies dependencies, allowing the introduc-

tion of modifications or upgrades easily while keeping the

coherence of the full model. The graph is used in a four

steps processing, with measurement, estimation, evaluation

and extrapolation steps.

Additional levels might be added naturally: e.g. vehicles

level, gathering an unrestricted number of vehicles in the

road, directly linked to the lanes level. The graph represents

all the elements that may appear in a road scene, clearly

specifying restrictions and dependencies in a flexible way

allowing to configure each level independently.
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