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Abstract

The paper presents the Strong Discontinuity Approach for the analysis and simulation of strong
discontinuities in solids using continuum plasticity models. Kinematics of weak and strong discon-
tinuities are discussed, and a regularized kinematic state of discontinuity is proposed as a mean to
model the formation of a strong discontinuity as the collapsed state of a weak discontinuity (with
a characteristic bandwidth), induced by a bifurcation of the stress-strain field, which propagates
in the solid domain. The analysis of the conditions to induce the bifurcation provides a critical
value for the bandwidth at the onset of the weak discontinuity and the direction of propagation.
Then a variable bandwidth model is proposed to characterize the transition between the weak and
strong discontinuity regimes. Several aspects related to the continuum and, their associated, dis-
crete constitutive equations, the expended power in the formation of the discontinuity and relevant
computational details related to the finite element simulations are also discussed. Finally, some
representative numerical simulations are shown to illustrate the proposed approach.
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1 Introduction

Strong discontinuities are understood here as solutions of the quasi-static solid mechanics problem
exhibiting jumps in the displacement field across a, material line (in 2D problems}) or a material surface
(in general 3D problems) which from now on will be named the discontinuity line or surface. The
corresponding strains, involving material gradients of the displacements, are then unbounded at the
discontinuity line or surface and remain bounded in the rest of the body.

The strong discontinuity problem can be regarded as a limit case of the strain localization one,
which has been object of intensive research in the last two decades [Rots et al., 1985, Ortiz et al., 1987,
Ortiz and Quigley, 1991, de Borst et al., 1993, Lee et al., 1995], and where the formation of weak dis-
continuities, characterized by continuous displacements but discontinuous strains which concentrate
or intensify into a band of finite width, is considered. As the width of the localization band tends to
zero and the value of the strains Jump tends to infinity the concept of strong discontinuity is recovered.

Plasticity models have been often analyzed in the context of strain localization and related topics:
the slip lines theory [Chakrabarty, 1987] for rigid-perfectly plastic models is a paradigm of the use of
plasticity models to capture physical phenomena, involving discontinuities; the observed sheay bands in
metals can also be explained by resorting to J2 plasticity models in the context of strain-localization
theories and weak discontinuities [Needleman and Tvergard, 1992, Larsson et al., 1993), etc..

Regarding strong discontinuities and their modeling via plasticity models, the topic has been tackled
by different authors in the last years. In one of the pioneering works [Simo et al.; 1993] the strong
discontinuity analysis was introduced as g tool to extract those features that make a, standard con-
tinuum (stress—strain) plasticity model compatible with the discontinuous displacement field typical
of strong discontinuities. This work was later continued in [Simo and Oliver, 1994, Oliver, 1995a,
Armero and Garikipati, 1995, Armero and Garikipati, 1996, Oliver, 1996a, Oliver, 1996b, Oliver et al., 1997,
Oliver et al,, 1998], where different aspects of the same topic were examined, as well as in [Larsson et al., 1996,
Runesson et al., 1996] in a slightly (regularized) different manner.

This paper aims to clarify the following questions concerning the capture of strong discontinuities
using plasticity models:

- Under what conditions typical elasto-plastic (infinitesimal strains based) continuum constitutive
equations, once inserted in the standard quasi-static solid mechanics problem, induce strong
discontinuities having physical meaning and keeping the boundary value problem well posed 17

- What is the link of the strong discontinuity approach, based on the use of continuum {stress-
strain) models, with the discrete discontinuity approach which considers a non-linear fracture
mechanics environment and uses stress vs, displacement-jump constitutive equations to model
the de-cohesive behaviour of the discontinuous interface [Hillerborg, 1985, Dvorkin et al., 1990,
Lofti and Ching, 1995] 7

- What is the role of the fracture energy concept in this context ?

- What are the connections of the strong discontinuity approach to the discontinuous failure theories
[Runesson and Mroz, 1989, Runesson et al., 1991, Ottosen and Runesson, 1991, Steinmann and Willam, 19
Stein et al., 1995] aiming at the prediction of the bifurcations induced by continuum constitutive
equations ?

Total or partial answers to these questions are given in the next sections. For the sake of simpli-
city two dimensional problems (plane strain and plane stress) are considered although the proposed
methodology can be easily extended to the general 3D cases.

! In the rest of this paper, the option of modelling strong discontinuities via continuum constitutive equations will
be referred to as the strong discontinuity approach.




The remainder of the paper is structured as follows: Section 2 deals with the kinematics of the
discontinuous problem and different options are analyzed. In Section 3 the target family of elastoplastic
constitutive equations is described and the corresponding B.V. problem is presented in Section 4. In
Section 5 the bifurcation analysis of general plasticity models is sketched and some interesting results
are kept to be recovered in subsequent sections. In Section 6 the strong discontinuity analysis is
performed and crucial concepts as the strong discontinuity equation, the strong discontinuity conditions
and the discrete consistent constitutive equation are derived. In Section 7 a variable bandwidth model
1s presented as a possible mechanism to link weak to strong discontinuities and to provide a transition
between them. In Section 8 the expended power concept in the formation of a strong discontinuity
18 examined and the conditions for recovering the fracture energy concept as a material property are
established. Some details regarding the finite element simulation in the previously defined context are
then given in Section 9. Sections 10 and 11 are devoted to present some numerical simulations to
validate the proposed approach. Finally, Section 12 closes the paper with final remarks.

2 Weak and strong discontinuities: kinematics

Let us consider a bidimensional body 2 whose material points are labeled as x, and a material (fixed
along time) line S in £, with normal n (see figure 1.a), which from now on will be called the discon-
tinuity line. Let us also consider an orthogonal system of curvilinear coordinates ¢ and n such that
S corresponds to the coordinate line §=0(S={x(nen: = 0}). Let us denote hy {€¢,8,}
the physical (orthonormal) base associated to that system of coordinates and let re(€,n) and 7, (€, n)
be the corresponding scale factors such that ds¢ = r¢ df and ds, = ry dn, where ds; and ds, are,
respectively, differential arc lengths along the coordinate lines ¢ and n. We shall also consider the
lines S and 8~ which coincide with the coordinate lines £ = ¢+ and £ = £, respectively, enclosing
a discontinuily band, Q" == {x(¢,q) ; ¢ ¢ [€7,€1]}, whose representative width h{n), from now on
named the bandwidth, is taken as h(n) = re(0,m) (¢t — £7). Let us finally define O and = as the
regions of Q\Q" pointed to by n and —n, respectively (see figure 1.a) so that Q == Q+ U~ U Qb

2.1 Kinematic state of weak discontinuity

Let us consider the displacement field u defined, in rate form, in by:
u(x,8) = u(x,1) + Hon(x,t) [a(x, ?) ey

where ¢ stands for the time, and () stands for the time derivative of (-), i(x,t) and [uf(x, t} are
continuous CY displacement fields and Han(x,t), from now on named the unit ramp function, is also
a continuous function in £ defined by:

0 xe )~
Ho = 1 x €0t (2)

E%f—fgf x € Qb

Clearly Hqn exhibits a unit jump, as difference from its values at S+ and 8~ for the same coordinate
line & ([Hou] = Hqu(e1,n) — Haow(67,7m) = 1 ¥5). From the definition of Han in equation (2) the
corresponding gradient can be computed as:

VHg = %Q%gié§+%ig-%éq=pnhﬁ%ég
he(€im) = re(&m) (67 —¢) (3)
he(Om) = re(0,m) (€Y —¢7) = h(p)
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Figure 1: Kinematics: a) Kinematic state of weak discontinuity. b)

Kinematic state of strong discon-
tinuity. ¢) Regularized kinematic state of discontinuity.




where pgn is a collocation function placed on O (g = 1 if x € Q* and Ponr = 0 otherwise). From
equations (1) and (3) the kinematically compatible rate of strain ¢ can be computed as:

€x,t) = Vu = Y+ Hy, Vsl[ﬂ]l+#nh$g([[ﬁ]i®é6)s (4)

[ S— v

€ {continuous) T

[€} (discontinuous)

where superscript (-)* stands for the symmetric part of (1), Equation(4) states that the rate of strain
field € is the sum of a regular (continuous) part, &(x,¢), plus a discontinuous part, [€](x,t), which
exhibits jumps in §~ and §+ (see figure 1.a). Equations (1) and (4) define what will be referred to as
kinematic state of weak discontinuity which can be qualitatively characterized by discontinuous, but
bounded, (rate of) strain fields.

2.2 Kinematic state of strong discontinuity

We can now define the kinematic state of strong discontinuity as the limit case of the one describing
a weak discontinuity when the band QF collapses to the discontinuity line § (see figure 1.b). In
other words, when §* and &— simultaneously tend to S {that is, with some abuse in the notation,
Y =0, ¢ 50, h(n) = 0, and, thus, Q" = S in figure 1.a). In this case the unit ramp function
(2) becomes a step function Hs (Hs{x) = 0Vx € O~ and Hg(x) = 1 ¥x € Q) and the rate of the
displacement field (1) reads:

u(x,t) = u(x,t) + Hs [u](x, t) (5)
the corresponding compatible rate of strain being;:
€(x,8) = V' = Vi + Hg Vo[u] + é5([al ® n)® 6
(x,1) YutHs [u] _S([[]? ) (6)
€ (bounded) [€] (unbounded)

where ds is a line Dirac’s delta-function placed in S. Now the (rate of) strain feld (6) can be decom-
posed into E, exhibiting at most bounded discontinuities, and the unbounded counterpart §s([u] ®n)*,
Thus, by contrast with the weak discontinuity case, the strong discontinuity kinematic state can be
characterized by the appearance of unbounded (rate of) strain fields along the discontinuity line S.

2.3 Regularized kinematic state of discontinuity

Finally, we consider a kinematic state defined by the following rates of displacement and strain fields:

u(x,t) = ii(x,t) + Hs [a](x, ¢) (7)
é(x,1) = z“ﬁ—J-Hs VS[[ﬁ]i—I—Ms;L—"(ln"j"([[ﬁ]] ®n)® (8)

€ (regular) ‘i[:ErIE
where s is a collocation function placed in S ( pus(x)=1vxe § , ths(x) = 0 otherwise).
Comparison of equations (7} and (8) with equations (1) to (6) suggests the following remarks:

REMARK 2.1. The kinematic state defined by equations (7) and (8) can be considered
representative of a kinematic state of weak discontinuity of bandwidth h(n) # 0 (see figure
l.c} in the following sense:

* The velocity field 11 in equation (7) exhibits a jump of value [4] across the discontinuity
line S, whereas in equation (1) the jump appears between both sides (§™ and ST) of
the discontinmity band 2*. If the bandwidth A(n) is small with respect to the typical
size of §2, the former is representative of the later.



* The & counterpart of the rate of strain field (8) differs from the corresponding one
in equation (4) in that a step function Hg is considered in the later instead of the
unit ramp function Hgs in the former. On the other hand the term [€] in equation
(8) coincides with the value of [€] in equation(4) evaluated at the points of § (note
that he(0,7) = h(n), see equation (8)s, and that &(0,7) = n(n), see figure l.a). In
both cases they are representative of the corresponding values in equation (4) if the
bandwidth %(n) is relatively small in comparison to the typical size of .01

REMARK 2.2. When the bandwidth h(n) tends to zero the kinematic state defined by
equations (7) and (8) approaches a kinematic state of strong discontinuity as can be
checked by comparison with equations (5) and (6) and realizing that when h{n) - 0,
then ug/h(n) = 65.00

REMARK 2.3. The rate of the strain field (8) is not kinematically compatible with the
displacement field (7), in the sense that V°u # €, since VHg = §s @ n (rs/h(n) ® n.
Compatibility is only approached when the bandwidth tends to zero as commented above.[d

In the remainder of this paper we will consider equations (7) and (8) as the description of a kinematic
state of weak discontinuity which approaches a kinematic state of strong discontinuity when the band-
width A tends to zero 2, Observe that, now, a kinematic state of weak discontinuity is characterized by
a discontinuous (rate of) displacement field (7), jumping across a material line & and an incompatible,
and discontinuous across &, (rate of) strain field (8) whose amplitude along § is characterized by the
bandwidth k(7) (see figure lc).

3 The elastoplastic constitutive equations

In the rest of this work we will consider the classical elasto-plastic constitutive equations which can he
written as:

o = C: (é-¢)

er = A m*(o)

g = —AH{g) (9)
#o.9) = Ho)+q-o,
m(o) = doplo,q) = “gg

where o, € and € are the stress, total strain and plastic strain tensors, respectively, C is the elastic
constitutive tensor (C = A 1 ® 1 + # 1, 1 and I being, respectively, the rank-two and rank-four
unit tensors and X and # the Lame’s constants), ¢ is the stress-like internal hardening variable, A
Is the plastic multiplier, ¢ is the yield function, oy 18 the yield stress, H is the hardening/softening
parameter, and m* and m are,respectively, the plastic flow tensor and the normal to the yield surface
Eq = {o; ¢la,q) = 0} (m = m* for associative plasticity). The model is supplemented by the
loading-unloading (Kuhn-Tucker) and consistency conditions:

(Kuhn — Tucker) A 20 #oyg) <0 Aglo,g) =0

(Consistency) Adlo,g) =0 if P, q) =0 (10)

*We could have started by defining a kinematic strain of weak discontinuity by means of equations (7) and (8) instead
of equations (1) and (4). However, the introduction made here can help to identify the incompatible kinematic state {7

and (8) as representative of the compatible, and consequently more familiar, kinematic state defined in Section 2.1 and
figure 1.a.
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Figure 2: Boundary value problem.

in such a way that the elastic and plastic behaviors are characterized by:

p<0 = A= =+ 0=C:¢ (Elastic)
<0 = A=0 = 0 =C:¢ (Elastic unloading) (1)
$ =0 =0 — A=0(4=0) = 0 =C:¢ (Neutral loading)
N A>0(¢#0)= 6=C:¢ (Plastic loading)
where the tangent elasto-plastic constitutive tensor, C°7, and the plastic multiplier A can be computed
as:
C:m*®m:C
ep _ 12
¢ € H+m*:C:m (12)
m:C:e
- 13
A H+m*:C:m (13)

4 The boundary value problem

Let us now consider the boundary of the body 89 (see figure 2) with outward normal v and let Ty € a9
and T’y C 8Q (I, UT,, = 90, TuNI'y = #) be parts of the boundary subjected to the usual essential and
natural conditions, respectively. With the previously stated concepts in hand we can now formulate
the boundary value problers as follows:

FIND :
a(x,t): 2 x| — Ruim (14)
[ul(x,) : @F x| = Rram
such that u(x,t) = @i(x,t) + Hg [ul(x, ¢)) and
ai\s {x,t) : Q; X || — Rltstrs
Oos(Xt) 10T x| — RPstrs (15)

o5(X,t)  : 8§ x [ - IRMetre

where | is the time interval of interest, ngg, and g, are, respectively, the dimension of the body
and the number of relevant stresses of the problem (ng,, = 2 and Nstrs = 4 for 2D plane-strain cases
and Ngim = 2 and ng,, = 3 for plane-stress cases)

SUCH THAT:




e
V. Tas T f=0
st ok
"Tn\.s' - Cn\s ’
;\s = (L';\S € {(constitutive equation) (17)

s =€ e+ (] oy

(equilibrium equation) (16)

Voo  + fm{)}

Q
>

Q-

where f are the body forces, € stands for the tangent constitutive tensor (I = C or @ = ¢ depending

on the loading conditions (11)), and & = V*ii + Hs V°[4] is the regular (bounded) part of the rate of
strain, subjected to the following:

BOUNDARY CONDITIONS :

u = u*(x,t) xely, (prescribed displacements)
Oos "V = t¥(x,1) xeTl, (prescribed tractions) (18)
ag\ s h=0,_ n=o0,n xXES (traction continuity)

where u* and t* are the prescribed boundary displacements and tractions, respectively.

It is worth noting that equation (18)3 states the continuity of the traction vector across the dis-
continuity line S, in the sense that it takes the same value not only at both sides of S but also at
the discontinuity line itself. As it will be shown in next sections this last condition provides an addi-
tional equation with respect to the regular continuum problem which allows the determination of the
displacement jump fu] .

5 Bifurcation analysis. Onset and propagation of the discontinuity:.

We will now focus on the problem of the bifurcation of the stress-strain fields in the neighborhood of
a given material point P in 8, constrained by the rate form of the traction continuity condition (18)s:

N-Gg s =n-&, (19)

where the material character of S ( = 0) has been considered 3. The problem can be stated as
follows: find under what conditions the stress-strain fields, continuous in a neighborhood of 2 (o5 =
Tsy €qs = €) bifurcate into discontinuous rate of strain flelds, &, , = € and ¢, = ¢ + L{[u] @ n)s,
such that (see equation (17)):
Oans =0y €

o5 =@, Té + (il ®n)|
subjected to condition (19). This problem has been widely analyzed in the context of the failure
analysis of solids (see [Runesson et al., 1991] for a complete analysis) so it will only be sketched here.
Substitution of equations (20) into equation (19) leads, after some algebraic manipulation, to:

(20)

(n-@, -n)-{[ﬁ]]mhn-(ﬂ?n\s -@C,):& (21)
Qn)

where @(n) is the localization tensor [Steinmann and Willam, 1994]. On the light of equation (21) we
can now consider different possibilities for the onset of bifurcation:

*No distinction is made here between d';\ ¢ and d':;\ s+ The reasoning following below is independent of the choice.




a) The stress state (aﬂ\ s = 0g) i3 elastic. In this case Cos =€ = C, according to equations (11),
and equation (21) reads Q°(n)- [u] = 0, where Q° = n-C-n is the elastic acoustic tensor which is
shown to be non singular (det(Q°) # 0) [Runesson et al., 1991]. Therefore, [01] = 0 and bifurca-
tion is precluded since then from equation (8) €qs = €5 = €and Oo s = 0 from equations (20) .

b) The stress state (o*n\s = 0) is plastic. Let us consider only bifurcations implying unloading or
plastic neutral loading at O\S and loading at S 4. Thus, CQ\S = Cand@; = C* from equations
(11). Now both possibilities (elastic unloading or plastic neutral loading in O\S) should be
explored. However, it can be shown [Runesson et al., 1991] that the second possibility is most
critical (it is firstly reached in the context of decreasing values of the hardening parameter).
Therefore, only plastic neutral loading in \S and loading at S will be considered here. For this
case equation (21) can be rewritten as:

n-C%n-[i] =hn (C-C”):é =hn. Guamce (22)

=)\ﬂ\5hn-0:m*

where the structure of O in equation (12) and the value of the plastic multiplier Agys 1N equa-
tion (13) have been considered. Since plastic neutral loading is characterized by a null plastic
multiplier (Aqys = 0) equation (22) finally reads:

Qi = 0 (23)
where @ =n.C° . n is the elasto-plastic localization tensor.

Equation (23) establishes that, for the discontimity to be initiated ([0] # 0), the elasto-plastic local-
ization tensor has to be singular, i.e.:

det [QF(n, H)} =0 (24)

In equation (24) the dependence, for a given stress state, of the elasto-plastic localization tensor on the
normal n and the ha,rdening/softening parameter H is emphasized. Now, we can consider the set of
values of #H for which equation (23) has at least one solution for n:

g={HeR | In e Rndin ol =1 det[Q*(n, H)] =0} (25)

If G is not empty we can consider the maximum value in this set as the critical one defining the
bifurcation (Hers = max [H € G)). The corresponding solutions for n in equation (24) define the
possible directions of propagation of the discontinuity, ng., at point P

Neryg € {n € RMdim + Inj =17 . det{Q@P(n, Hert)] = 0} {26}

For the considered 2D plane strain and plane stress problems explicit solutions can be given as follows.
Let us consider the local orthonormal base {n, t, &} where n and t are the normal and tangent
vectors to S (see figure 1.b) and &5 = n x t is the out-of-plane unit vector and let my; and my;,
(4,7 € {m,t, 3}) be the components of m and m* in this local base. Let us also consider the unit
vectors €; and &, corresponding to the in-plane principal directions of m and m* % and m; and m}

(i € {1,2}, my > my, mi > m}) the in-plane principal values, and ms = myg3 and m3 = mjs the

4 Justification for this assumption will be given in Section 6 (see footnote 8) .

®Itis implicitly assumed that the plastic flow vector m* and the tensor normal to the yield surface m have the same
principal divections. This is clearly true for associative plasticity (m* = m) and also for the most frequently used vield
and potential functions in 213 non associative plasticity [Lubliner, 1990].

10




Plane strain

81120,y (M3 mE)tme (mi—2 mi—v mi,)+v mas (mI—m3)
crit 3 (rmr—mia) (mf—m;)
E
Horit ~ = G5 {mft (Mt + v migs) + miy (mas + v mtt)}
Plane stress
n2e,..; _mg (mi-ma}tms (m}—m3)
st chi 2 (my—ms) (m;‘kmg)
Herit —E my; my

Table 1: Results of the 2D bifurcation analysis for elasto-plastic constitutive models.

corresponding out-of-plane principal values. Let finally € be the inclination angle of n with respect to
first principal direction €1 such that n = cosfl €1 + sind éy. The corresponding values of H,,;; and
Oerit are presented in Table 1, 6

REMARK 5.1 The preceding bifurcation analysis provides the conditions for the onset. and
progression of the discontinuity. Indeed, considering a discontinuity line S propagating
across the body 1, and a given material point P, the first fulfillment at P, for a certain
time of the analysis £p, of the condition H(Pytp) < Heru(P,tp) implies that: a} The
solution of the mechanical problem involves a jump in the rate of the displacement field at
P (since H € G and, thus, [4]» # 0 from the bifurcation analysis) and, therefore, the stress
and strain fields bifurcate. b) The discontinuity line § has reached P at that time tp, and
the normal ng.; = n{fcp4), provides the direction of progression of & from P towards other
points in its neighbourhood. Moreover, since the discontinuity line is assumed a material
(fixed) line, the obtained value for n(P,tp) = gy should be considered frozen beyond tp.
¢) The bifurcation analysis has no sense at P for subsequent times, since the stress and
strain fields will not remain continuous anymore, [

6 Strong discontinuity analysis.

Substitution of equations (9); and (9)2 into equation (8) allows to write the following evolution equation
for the strains:

. 3 HS S _ =1 -
€E=_ & + 5 (en)® = C1:6 +Am (o) (27)
bounded S—————— bounded

unbounded for h—0

Let us examine under what conditions equation (27) is consistent with the appearance of a strong
discontinuity characterized by [u] # 0 and the limit case s — 0.

SFor practical purposes, the values of Table 1 are computed as follows: 1) The angle @ (which is, in turn,
determined from the values 8102004 in the table, can be computed in terms of the principal values of m and m”™, 2)
Then, the vector n and, therefore, the local base {n, t, é3} can be determined. 3) Finally, the explicit values of Herie,
in terms of the components of m and m* in such local base, can be calculated,

11




We observe that the regular part of the strain € is bounded, by definition, and that the rate of
the stress ¢ has also to remain bounded to keep its physical significance. Thus, for [u] not to vanish
when the bandwidth % tends to zero the unbounded term £ (lu] ® n)* has to cancel out with some
other unbounded term in the equation. In other words, the factor "fh—s has to appear in the last term of
equation (27), the simplest choice being 7

A=0 Vxe\§
A=1X Vxes (28)

1-

A= fg "E)\ = {
which states that elastic loading, unloading or plastic neutral loading (A = 0, see equation (11)) occurs
in O\S whereas plastic loading occurs in S 8. We now observe that equation (28), implies a particular
structure of the hardening/softening parameter; substitution into equation {9)3 leads to:

1
H=—Sg=h(-

5 N=hH VYxe§ " (29)

] {yﬂ —

Parameter H in equation (29) will be referred to as the intrinsic or discrete hardening/softening para-
meter and it will be considered a material property.

REMARK 6.1. Equation (28) states the localized character of the plastic flow once the
discontinuity appears, i.e.: once the discontinuity is triggered in a, given point of S, plastic
strain rate is only allowed to develop at this point whereas its neighborhood at O\S ex-
periences elastic loading or unloading (A=0).0

REMARK 6.2, Equation (29) shows that as long as the strong discontinuity regime is
approached (A — 0) the hardening/softening parameter % tends to zero. Thus the strong
discontinuity regime is only consistent with the part of the hardening/softening branch with
null slope.]

We can now rewrite equation (27) restricted to points of S and considering equations (28) and (29),
as:

* 1 . s _ -1 . . . 1 1 . *
€_+r ([Mjen)” = ¢t g ~3 77 4m () Vxe§S (30)
bounded bounded

and we realize that as the strong discontinuity regime is approached (A — 0) the unbounded terms
have to cancel out each other leading to:

(o = - 4m*(,) (31)

6.1 Strong discontinuity condition

Equation (31), that will be referred to as the strong discontinuity equation, establishes the evolution of
the jump in the strong discontinuity regime and can be now specialized for the considered 2D problems:

- Plane strain

Let us now focus on the 2D plane-strain problem considering, at any point of § , the orthonormal
base {n,t,e3} defined in Section 5. In this base the (rate of) the displacement jump can be

"Equation (28} has to be fulfilled strictus sensus only when h — 0, that is, af the strong discontinuity regime.
However, it will be held even in the weak discontinuity regime (h # 0) explored in Section 7.
®This justifies the choice made in Section 5 (see footnote 4).

12




written as [u] = [a,] n + Ji,] t, where [un] and fu;] are the normal and tangential components
of the displacement jump at S ; and equation (31) reads, in terms of components:

ﬂun}] %Eut]] 0 1 Mg Moy O
%"[[”t]] 0 0 = *Tg q | my mi 0 (32)
0 0 0 0 0 mi,

where my,, a,b € {n,t,3} are the components of the plastic flow tensor m* in the chosen base,

Equation (32) can be regarded as a system of four non trivial equations with two unknowns
([en]; [2]) so that two equations involving only the flow tensor components my; can be extracted.
They clearly are:

Mus =0 | miy =0 (33)

- Plane stress

Plane stress cases have to be studied in the projected space obtained by elimination of the out-
of-plane components of the stresses and the strains. In this case equation (31) reads, in terms of

components:
len] 3l | 1. My, mk
[%M zotJ—“*q{ : tJ (34

H Mpe M}
Here the system (34) includes three equations with the two unknowns [4,] and [i;] so that the
following condition emerges:
My s =0 (35)

Equations (33) and (35}, which will be named strong discontinuity conditions, are clearly necessary
conditions for the formation of a strong discontinuity. They are not, in general, fulfilled at the initial
stages of the plastic flow and preclude, in most of cases, the formation of an strong discontinuity just
at the bifurcation stage.

REMARK 6.3. It is illustrating to realize that substitution of conditions (33} and (35)
into the values of Herie in Table 1 gives, both in the plane strain and plane stress cases,
Herit = 0. This result can be justified as follows: a) Equation (21) holds at any stage
of the problem since it comes from equations (19) and (20) which hold for all the stages
of the analysis. b) The strong discontinuity regime is characterized by the limit case
B — 0 which implies that, for [a] # 0 in equation (21) and loading cases (@, = cr),
then det [(n - CF. n)] = det [Q(n,?{)] = 0. ¢} According to equation (29) at the strong
discontinuity regime A — 0 —» ¥ = 0, whereby det [Q(n,?—l)] !Hﬁo = 0. d) Therefore,
H = 0 belongs to the set G (see equation (25)) of solutions for 4 of equation (24), which is
given by the values X < Herie. In other words: the solution [a] of the strong discontinuity
problem lies in the null space of the perfectly plastic (H = 0 ) localization tensor ®. O

REMARK 6.4. In particular H s = 0 is a necessary condition to induce a strong discon-
tinuity. If that condition occurs at the bifurcation stage the bifurcation could take place
under the form of a strong discontinuity. In the general case (Herst # 0) bifurcation will
take place under the form of a weak discontinuity and the strong discontinuity conditions
(33) or (35) must be induced in subsequent stages. In Section 7 a procedure to model the
transition from the weak to the strong discontinuity regimes is proposed. O

® This result was firstly stated in reference [Simo et al., 1993].
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REMARK 6.5. Bifurcation analysis of plastic models shows that, for the associative case
(m = m*) it occurs that Herit(e) < 0. Moreover, for most of the stress states it is strictly
Herir < 0 and, according to previous remarks, bifurcation can not take place in the form
of a strong discontinuity. On the contrary, for non associative plasticity (m s m*) it
often happens that Herit(o) > 0, which could suggest that, since # = 0 belongs to the
set of admissible values G in equation (25), such value of the stresses is compatible with a,
bifurcation in the strong discontinuity fashion. However, the necessary strong discontinuity
conditions (33) or (35) and the subsequent necessary condition Herit(o) = 0 clearly preclude
such possibility. Actually, this only refers to the bifurcation in a strong discontinuity fashion
and not to the possibility of bifurcating under a weak discontinuity form and developing a
strong discontinuity in subsequent stages. O

6.2 Discrete constitutive equation

From equations (9)4 and (9)s and the consistency condition for loading cases (f=m:6+ g = 0) the
strong discontinuity equation (31) can be written:

[len® = = [m(,): i) m'(o,) (36)

which is regarded in conjunction with the traction continuity equation (18);
tons =0 N=05-n (37)

Equations (36) and (37) constitute, for any point of S, a system of nine non trivial algebraic equa-
tions which states, for the general 3D case, the implicit dependence of nine unknowns (the six stress
components o; and the three jump components fu]) on the traction vector tos’

05 = Fltg ®)] (38)
[u] = Z [ty (1] (39)

REMARK 6.6. Equation {39) defines a discrete (traction- vs. jump) constitutive equa-
tion at the interface S. It is worth noting that it emerges naturally (consistently) from
the continuum (stress-vs-strain) elasto-plastic constitutive equation described in Section
3 when the strong discontinuity kinematics is enforced. Thus, it is not strictly necessary
neither to derive nor to make effective use of such discrete constitutive equation for mod-
eling and numerical simulation purposes. In fact, the numerical solution scheme shown in
Section 9 does not include the derivation of such equation and deals only with the standaxrd
elasto-plastic constitutive equation of Section 3 as the source constitutive equation.r)

6.2.1 Example I: J2 (Von Mises) associative plasticity in plane strain
This case is characterized by the following expressions for the yield surface and the plastic flow tensor

Hoq) =o(0)+q-0, (5= /T |8] )
40

where S and & stand for the deviatoric stresses and the effective stress, respectively. Specialization of
equations (32) and (36) for this case leads to-

lin] L} 0 o [ Sun Sw 0

. 13,85:8 o On

] 0 0] = 75 (S_’"E) Sut Sy 0 (41)
0 0 0 TR0 0 S
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From equation (41) it is immediately obtained that S; s = Sz = 0 and then, due to the deviatoric
character of § (Tr{8} = Spn + Sy + 533 = 0), also Sy, = 0. Therefore the only non zero component
of §is Spy (8 = Spe [N@ ]+ Syt [t ®n]) and then (5: 8)/(S: 8) = Snt/S,}t so that {inally we obtain
from equation (41) the additional relationships [i,,] = 0 and [4,] = (3/H) Snt, . Hence, equation {41)
is equivalent to the following system:

Tang = 0 + Snns = O Ontg = Ontg = T (42)
Ous =0+8u, = o 0335 =0+ 833, = o
[[un}j =0
{ f] =3 + 43)

where o (the mean stress) and 7 remain as unknowns. They can be determined by resorting to
the two equations provided by the traction continuity condition {37) which for this 2D case read:
Onng = Onng, s = O and Onts = Ontg g = T

6.2.2 Example IT: 2D Rankine associative plasticity
The yield surface and flow tensor are now:

Qb(ﬂ',l?) == 0'1(0')+q—0'y (44)
m=m*= P ® Py

where ¢ stands for the maximum in-plane principal stress (o1 > 03) and Py is the associated unit

vector in the corresponding principal direction which is inclined the angle & with respect to n (D: =

cosa n + sina t). In the base {n,t,e3} equation (36) now reads:

[en) i[5 © 1 cos*a  sino cosa 0
slel 0 o0 = 5 (61)s | sina cosa  sin®a 0 {45)
0 a 0 0 0 0

where the result m : ¢ = & has been considered. From the component ()92 of equation (45) we obtain
sin®a = 0 50 that a = 0 and n = p;. Thus, n is the first principal direction, then Ont, = 0 and

the discontinuity line S develops perpendicularly to the first principal stress. Since sin a = 0 from

component (-};5 of that equation we obtain [t:] = 0 and, finally, [in] = (1;-2—‘5« from component ().

Therefore, equation (45) can be equivalently rewritten as:

{ i:fj P (46)
[[ﬂnﬂ =4 &
{ i =0 7

where o, the first principal stress, remains as an unknown that can be determined through the traction
continuity condition o, 5 = Onng s = 0.

REMARK 6.7. Equations (43) and (47) with & = Onngs and 7 = Tntgys d¥€ specializa-
tions of the general form (39) for the considered J2 (plane strain) and Rankine plasticity
problems. Observe that the discrete constitutive equation (43) states that only the tan-
gent component of the jump fu;] can develop ([un] = 0) so that with this type of J2
plasticity equations the generated strong discontinuity is a slip line (this result was also
found in [Simo et al., 1993, Oliver, 1996a, Armero and Garikipati, 1996]). On the contrary
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equation (47) states that with Rankine-type plasticity models only Mode I (in terms of Frac-
ture Mechanics) strong discontinuities can be modeled since the tangent component of the
jump [u;] = 0. Obtaining such explicit forms of the discrete constitutive equations is not so
straight-forward for other families of elastoplastic models. This makes specially relevant a
methodelogy to approach strong discontinuities that does not require the explicit statement
of such equations as pointed out in REMARK 6.6.0

7 A variable bandwidth model

The bifurcation and strong discontinuity analyzes performed in Sections 6 and 7 above, provide signi-
ficant information about the mechanism to induce strong discontinuities. This can be summarized as
follows:

- Bifurcation of the stress-strain fields is & necessary condition for the inception of a discontinuity
in the displacement field. In the context of a variable hardening (or softening) law that bifurcation
will take place, for a given material point, when the condition H(o) < Hepgg(o) is fulfilled for the
first time. In general Herit(o) will be non zero (REMARK 6.5).

- Bifurcation will not, in general, produce the strong discontinuity. The necessary condition (to
induce a strong discontinuity} H.i(a) = 0 will not, in general, be fulfilled at the bifurcation stage
(REMARKS 6.4 and 6.5) and bifurcation will take place under the form of a weak discontinuity.

- If the hardening/ softening parameter % is expressed in terms of the intrinsic hardening/softening
parameter H (considered a material property) and the bandwidth h, according to equation (29)
(i.e.: H = h#) then the bandwidth characterizing the weak discontinuity at the bifurcation will
be given by hepir = (%crit/?'!{) #0.

Therefore, if the aim of the model is to capture strong discontinuities an additional ingredient
has to be introduced which provides: a) the transition of the bandwidth from the value Perit # 0,
at the bifurcation, to the value p = 0, in a subsequent time and b) the fulfillment of the strong
discontinuity conditions (33) or (35). In figure 3 what has been termed variable bandwidth model
[Oliver et al., 1998, Oliver et al., 1997, Oliver, 1998] is sketched. It can be described in the following
steps:

1) Bandwidth law: A certain variation of the bandwidth h, in terms of the stress-like variable
g € [0,04], is postulated (see Figure 3a) . The bandwidth varies from h = hg, for a certain
value ¢, of the stress-like variable, which is attained at the bifurcation point B, to drop to h =0
for another value (known and considered a model property) 't g ¢ (¢, 0y, attained at the
strong discontinuity point SD. In fact, for computational purposes the minimum value of 4 is
limited to a very small regularization parameter & instead of zero (see Section 9 for more details).
The value hg is computed when the bifurcation is detected from the value of H,,; in Table 1 as
hp = %crét/ H.

2) Hardening/softening parameters. The model is considered ruled by two distinct hardening/softening
H(q) parameters which relate the stress-like internal variable ¢ and the hardening function
¢ = oy — ¢ to the strain-like internal variable o through:

_9a(e) _ 9¢(e)

B = ol =) (48)

'% In the figure the h — ¢ law has been plotted being linear. However other possibilities for the h(q) curve (parabolic,
exponential etc.) could have heen alternatively considered.

"' More precisely: for softening models what is considered a model property is the relative position of Gsp in the
interval [g,, o], which is characterized by the value 4 € [0, 1] such that 9sp = qg + Boy —q,).
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o Before the bifurcation (g < ¢) the standard continuum hardening/softening law is char-
acterized by the continuum hardening/softening parameter H, '2 which is considered a
material property (see Figure 3a).

o After the bifurcation (¢ € [g,,0,]) the discrete hardening/softening parameter H rules
the cohesive/decohesive behaviour at the discontinuous interface. However, equation (29)
and the previously described bandwidth law provide the evolution of the corresponding
continuum hardening/softening parameter as H(g) = h(q)H. From this and from equation
(48) the corresponding continuum hardening/softening law g — o can be readily obtained
from integration of:

% W) (19)

In Figure 3b the corresponding A(q) — ¢, # — @ and ¢ — « curves are sketched. Observe that,
according to equation (48), the curve H — e supplies the slope of the hardening/softening curve

¢ — .

3) Characteristic points: Continuous and Discontinuous regimes. In Figure 3b also a typical evol-
ution of the values of M4, obtained from Table 1, along the analysis is plotted. For a given
material point yielding begins at point Y of Figure 3b, in which the hardening/softening para-
meter takes the value Hy. While Hepy < H, bifurcation is precluded and the behaviour is
continuous. As soon as Heprie = Hy the bifurcation point B is detected: the corresponding values
of n(fcr4) are computed from Table 1 which, once introduced in the rest of the model, warrant
that bifurcation at point B takes place under the appropriate loading (at S) and unloading (at
O\S) conditions (see Figure 3b). Also at this point the value hp == Heri/H, which states the
initial value of the bandwidth law of Figure 3a, is computed. Since in general hg # 0, point
B corresponds to the onset of a weak discontinuity whose bandwidth is enforced to decrease by
the bandwidth law of Figure 3a beyond this point. As soon as the value ¢ = ¢, is attained
at point 8D and, according to the bandwidth law, h = k ~ 0 the strong discontinunity regime
is reached and the strong discontinuity conditions {33) or (35) are naturally induced. Finally,
beyond point SD the strong discontinuily regime develops keeping the bandwidth A and the
continuum hardening/softening parameter H in a null (k-regularized) value.

REMARK 7.1. Since consistency with the results obtained from the bifurcation and strong
discontinuity analyzes is kept along the process the obtained results warrant that a) Bi-
furcation takes place under the appropriate loading-unloading conditions, thus not leading
to a two materials approach [Oliver et al., 1997] and b) The rate of the stresses remain
bounded along the whole process keeping their physical significance. O

Translation of this variable bandwidth scheme in terms of the status of the material points of the
body is finally sketched in Figure 3¢, where a discontinuity line § that advances across the body 2 is
represented. At a given time of the analysis most of the material points of the body Q are in elastic
state. Material points that are in plastic state define what in Non-linear Fracture Mechanics has been
termed the Fracture Process Zone [Bazant and Oh, 1983]: Those points that lie in the Y — B branch
of the curve in Figure 3b, define a continuous plastic (hardening or softening) zone. Points in the
B — SD branch of the curve define the weak discontinuity part of the discontinuity line S to which a
zone, whose bandwidth is defined by the corresponding bandwidth law h(g), is associated in Figure
3c. Finally, material points remaining in the branch beyond point 8D, in Figure 3b, define the strong
discontinuity part of S. In particular, point O, in Figure 3c, states the end of that segment of S whose
material points have completely released stresses.

2For the sake of simplicity in figure 3 this parameter is considered constant and negative (strain-softening) although
more sophisticated non linear hardening or softening laws could have been considered.
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8 Expended power. Fracture energy.

Let us now deal with the external mechanical power supplied to the body € of figure 2 along the
deformation process. Neglecting the kinetic energy, and taking into account the existence of a displace-
ment jump across the discontinuity line &, the externally supplied mechanical power can be written as
the sum of the contributions in Q% and O~ (Ot U O™ = Q\S):

,Pemt :fn\sf'ﬁdn'i'fruuray'a'ﬁdr

:fQ\Saﬂ\S tedQ + ISH'U;\S- oS dl' — fen- o, cu__dl

S
. e e
“fn\so'n\s cedQY + fsnnos-(un\s n\S) dr (50)
| S
[u]
- &40 + [ ] ®n)* dr
Jns ([l oy ar
PG Py
where the traction vector continuity condition (n - 0;’;\ s=H oL, =n-a ) has been considered. We
observe in equation (50) that Pg\”fs and ’Pmt are volumetric and surface counterparts of the supplied

external power, respectively. Thus, we can understand P;"t as the part of the external power internally
spent in the formation of the jump [u] at the discontinuity intexface &. Therefore, taking into account
equation (30) we can write P;_”‘, after some algebraic manipulation, as:

. . 1
Pit=[hoy: (€6, —9ar- [ = o, m®ar (51)
s )

~0(h)

We now observe that the first integral of the right-hand-side of equation (51) is bounded and tends to
zero with the bandwidth h. Thus, if the bandwidth is small with respect to the representative size of {1
it can be neglected. Let us now specialize the problem to the cases fulfilling the following conditions:

a) The function ¢(a) in equation (9)4 is an homogeneous function (of degree one) of the stresses
13 In this case, in virtue of Euler’s theorem for homogeneous functions, it can be written:

9 ¢: 0= (o) (52)
b) Associative plasticity (m* = m = 85 )
¢) Strain-softening (which implies that g remains in the bounded interval [0,0,])

We also observe that, for loading processes (A # 0), equation (10); implies that ¢ == 0, and, thus,

—g=¢=0g ¢:0=m:o (sce equations (9)4, ()5 and (52)). So that, finally, equation (51) can
be written as: )
P;m = [s0; : {[a] @ n)* d’
z—fs,—}i-q'ras :mdf‘sz‘s%z(j(ay-—q) dl’ =

= Js G557 (v ] 0 = Js Gota) ar (52)
ek A —

(q)

'3 This is a requirement fulfilled by many usual yield functions (Von-Mises, Tresca, Mohr-Coulomb, Drucker Prager,
Rankine, etc. [Khan and Huang, 1995]).
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Let us now compute the energy W, spent at S along eny loading process leading to the formation
of a strong discontinuity. The complete loading process can be characterized by the evolution of the
stress-like variable ¢ ranging from ¢ = 0 at the unloaded initial state (t = 0) to ¢ = o, at the final
state (t = o) wWhere the stresses are completely released:

Ws=f0 P dt:/g [/Sagtp(q)df‘]dt=/8‘[0 a(c;;)dt]Jatr (54)

Gy

The kernel of the last integral of equation (54) can be now identified as the energy spent, per unit of
surface, in the formation of the strong discontinuity which, in the context of the non-linear fracture
mechanics, is referred to as the fracture energy Gy. In view of equations (53) and (54) it can be

written: )
to 9 =0y 1o
Gr= ) 7 / _, 500 da=wloy) —90) = —5 (55)
so that, finally, equation (55) can be solved for the intrinsic hardening/softening parameter, #, in
terms of the material properties o, and Gy as:

o 10‘;’"
H = R (56)

REMARK 8.1. Results (55) and (56) have been obtained for an arbitrary loading process.
The material property character of the resulting fracture energy, lies crucially onto this fact
since the value of G ¢ in (55) is independent of the loading process. This result, in turn,
comes out directly from equation (53), namely: o : (Ju] @ n)? is an exact time differential
(o : (4] ® n)* = Z¢(g)). Notice that this is not a completely general result since it has
been obtained under the conditions a), b) and ¢) above.O

REMARK 8.2. The existence of the fracture energy as a bounded and positive material
property is then restricted to associative plasticity models with strain softening according
to conditions b) and c). In fact, there is no intrinsic restriction for non-associative strain-
hardening constitutive equations to induce strong discontinuities. In that case the intrinsic
hardening/softening parameter H would have to be positive according to the condition
#H = (H/h) > 0. However, this scenario does not ensure neither the existence of the
fracture energy, as a material property independent of the loading process, nor a bounded
value for the energy W, in equation (54) (since in that case ¢ € {0, —0o]). On the other
hand, the positiveness of # would lead to a cohesive (instead of decohesive) character of

the resulting discrete constitutive equation at the interface. O

9 Finite element simulation. Computational aspects

The ingredients of the approach presented above can now be considered for the mimerical simulation of
strong discontinuities, via finite elements. It was pointed out in REMARK 6.6 that the discrete (stress-
jump) constitutive equation (39) obtained from the strong discontinuity analysis is not in fact used for
numerical simulation purposes but, on the contrary, it emerges naturally from the continuum stress-
strain constitutive equation when the strong discontinuity kinematics is enforced. In consequence,
a standard finite element code for 2D elasto-plastic analysis only needs some few modifications to
implement the present model. Essentially these are:
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Figure 4: Finite element with embedded discontinuity. a) Discontinuous shape function. b) Discon-
tinuous strain field and additional sampling point.

Standard C? finite elements have to be modified in order to make them able to capture jumps in
the displacement field. In references [Oliver, 1995b, Oliver, 1996b] details about a family of such
elements, which has proved very efficient, can be found. They are based in an enhancement of
the strain field of the standard underlying element by adding a discontinuous incompatible mode
for the displacements. Also an extra-integration point is considered where the specific kinematic
and constitutive properties of the interface S are modeled (see figure 4).

The standard elasto-plastic constitutive model has to be slightly modified to include the harden-
ing/softening law (29).

Computation of the bifurcation condition H < Hepit and the corresponding direction of propaga-
tion of the discontinuity has to be included. For 2D cases results in Table 1 can be used. Also
the bifurcation bandwidth of equation (48) and the bandwidth evolution of equation {49) have to
be computed according to the values H.p4; in Table 1.

In a strain driven algorithm, equation (8) has to be numerically integrated to obtain the strain
field at any given time of the analysis. In fact the rate of the strain field at S:

. 1
€, = €+ —([u] ® n)® 57
s =t (lilon) 57)
can not be analytically integrated due to the appearance of h{g(¢, [u]]}} which is given in equation
(49). In the examples shown below the following mid-point rule (second order accuracy) has been
used:

hypae = 3 [il(ét%At1[[u]]t+At) + h(e, Euﬂtl]

hepar he

=€, + AE+ hf.:%z (A [u] ® n)* (58)

ESH-At

where subscripts (-)i1a¢ and (-); refer to evaluation at the end of two consecutive time steps and
A() = (-)t+at — (-)¢ are the corresponding increments.

In order to avoid ill-conditioning in equation (57) when k& — 0, the evolution of A given by
equations (49) is limited to A € [heps, k] where & > 0 is a very small regularization para-
meter. Typically, & is taken about 1072-1072 times the size of the finite element. In references
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Figure 5: Uniaxial tension test and J2 plasticity (plane strain}.

{Oliver, 1995a, Oliver, 1995b, Oliver, 1996b] the objectivity (independence) of the results with
respect to such regularization parameter is shown, provided it is small with respect to the typical
finite element size.

10 A first illustrative example: uniaxial tension test.

A very simple, but illustrative, example is now examined in order to assess the capacity of the approach
to induce strong discontinuities and to reproduce the theoretical predictions of the strong discontinuity
analysis (essentially, the discrete constitutive equation at the interface). A J2 (Von-Mises) model of
associative plasticity is taken as target constitutive equation and the results are checked via an uniaxial
tension test under plane strain conditions. In figure 5.a the loading and geometrical features of the
problem are presented. A linear bandwith law with 8 = 0.15 has been taken. Since the stress field is
uniform, the discontinuity must be seeded somewhere; therefore, the lower left corner element of the
unstructured finite element mesh of quadrilateral elements of figure 5.a is chosen for this purpose. In
figure 5.b the deformed shape at the final stage of the analysis is shown. It can be checked there that
the deformation corresponds to an almost rigid body motion of the upper part of the specimen slipping
along a straight slip-line, which starts at the aforementioned element and crosses the band of elements
highlighted in figure 5.c. In this figure the contours of the total displacements group in the patch of
elements that capture the discontinuity ' stating the sharp resolution of the jump. In figure 5.d the
slip-line deformation mode is emphasized by displaying the displacement vectors of the nodes of the
finite element mesh.

In figure 6 the evolution of different variables of the problem is shown in a non-dimensional fashion.

“Por post-processing purposes only displacements of the regular underlying elements are displayed. Displacements
corresponding to the elemental discontinuous incompatible modes referred to in Section 9 are not displayed.
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Figuares 6.a, 6.b, 6.c 6.d and 6.e are obtained using & Poisson ratio v = () whereas figure 6.f corresponds
to different values of v (v = 0 and v = 0.5).

Figure 6.a shows the bandwidth evolution, A, at a certain element of the discontinuity path, in
terms of the total displacement § of figure 5.a. The relevant part of the curve is the one going from
h = hp, at the bifurcation point B, to h = k = 1073 [ at the inception of the strong discontinuity, the
strong discontinuity point SD.

Figure 6.b shows the evolution of the vertical component of the stress at the interface, Oyy oo and
outside the interface Tyyans: Notice that they differ beyond the bifurcation point B. Also the evolution
of the out of plane deviatoric stress S33, and the normal deviatoric stress Sy, is shown in that figure.
It is worth noting that the strong discontinuity conditions S33 = 0 and Sy, = 0 coming out from the
analysis in section 6.2.1, are not fulfilled at B but, however, they are naturally induced at the onset
of the strong discontinuity regime SD.

Components of the vertical strain €yy, and €yygs 2 plotted in figure 6.c. Observe that whereas

the strain at the interface €yy, BLOWS continuously as corresponds to a plastic loading process, the
contrary occurs in the rest of the body 2\, and the regular strain €, = &, decreases elastically,
ms

beyond the bifurcation point B, The remaining strain Yo s at the end of the analysis corresponds to

the plastic strain generated at the continuous plastic-softening regime {between points Y and B in the
figure).

In figure 6.d evolutions of the normal, [u,], and tangential, [}, components of the jump are
plotted. Observe that there is a slight initial evolution of the normal jump ( [e,]} # 0) during the
weak discontinuity regime, path B — SD in the figure, but beyond point SD the evolution stops as it
is predicted by the strong discontinuity analysis (see equation (43)1), stating the slip-line character of
the induced strong discontinuity.

Figure 6.e shows the evolution of the computed critical softening parameter H..4, in accordance to
‘lable 1, and the one of the continuum softening parameter H emerging from the the values of H, and
the imposed bandwidth law. Both curves intersect at the bifurcation point B where the bifurcation
condition H < Herit is accomplished. Beyond this point the evolution of h determines the evolution of
the continuum softening parameter H according to H = h#H. Both curves eventually tend to zero at
point 8D as it is predicted by the theoretical analysis.

Finally, in figure 6.f the load-displacement curves, F' — §, are presented for the two limit values of
the Poisson-ratio (v = 0 and » = 0.5). Observe that the curves are different from each other, since
for the very particular case v = 0.5 yielding, bifurcation and the onset of the strong discontinuity take
place simultaneously (points Y, B and SD coincide), and the curve has a straight descending branch.
On the contrary, for v = 0, the paths Y-B and B-SD, corresponding to the continuous plastic softening
and the weak discontinuity regimes, respectively, are curved and only beyond point SD the descending
branch is straight. This agrees with the linear character of the discrete constitutive equation (43), that
rules the jump at the interface beyond this point.

Now we consider the same specimen but using a Rankine-type plasticity model as it was described
in Section 6.2.2. Since the principal stress o1 is vertical, the expected strong discontinuity is an
horizontal line for any values of the material properties as it is indicated in figure 7.a. This expected
result comes out also from the numerical simulation: in figure 7.b the deformed finite element mesh
corresponds to a typical mode I split of the body through an horizontal line passing across the element
that was initially seeded. The set of elements that capture the discontinuity is shown in figure 7.c
by the contours of equal total displacement which dark the path crossed by the discontinuity line. In
figure 7.d the mode I discontinuity-type is emphasized by the nodal displacement vectors.

Figure 8.a shows the normal stress vs. normal displacement-jump at the discontinuity line, namely,
the discrete constitutive equation (47);. In accordance with the theoretical predictions it is a straight
line whose slope is characterized by the inverse of the discrete softening parameter 7. Notice that the
yielding point Y, the bifurcation point B, and the strong discontinuity point SD are the same since, for
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Figure 7: Uniaxial tension test and Rankine plasticity.
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Figure 8: Uniaxial tension test and Rankine plasticity. Evolution of some variables
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this type of plasticity model, the strong discontinuity conditions {33) or (35) are automatically fulfilled
at any point of the softening branch as can be checked in Section 6.2.2, equation (44)s. Therefore,
from Table 1, Hepe = 0 and hp = max{{Herit/H), b} = k 19 and the three characteristic points Y,
B and SD coincide with each other. In figure 8.b the evolution of both components of the jump in
terms of the imposed displacement § is presented. Observe that the tangential component of the jump
{x] = 0 according with equation (47),.

11 Additional numerical simulations.

The numerical simulations presented in this Section correspond to the classical geomechanical problem
of an undrained soil layer subjected to central or eccentric loading exerted by a rigid and rough
surface footing. The same problem was considered in reference [Zienckiewicz et al., 1995], where it
was analyzed using an adaptive remeshing strategy to capture the formation of slip lines under perfect
plasticity conditions. Here the problem is solved under plane strain conditions and using a J2 plasticity
model in the context of the strong discontinuity approach. The bandwidth law is taken linear and such
that 8 = 0.5. Geometry and results for the two cases analyzed are shown in Figures 9 and 10. The finite
element used in the discretizations is a 6-noded quadratic triangle supplemented with the incompatible
displacement referenced to in Section 9. Figure 9 corresponds to the central loading case. Figure
9.2 shows the deformed shape of the finite element mesh at the final stage. In Figure 9.3 the total
displacement contours show the existence of two slips lines that initiate at the bottom corners of the
footing and cross each other at a certain point of the symmetry axis. Figure 9.4 shows the displacement
vector field. From these it is clear that a triangular wedge of soil beneath the footing moves solidarily
with this, vertically downward. This induces the upward movement of two lateral wedges that slide with
respect the rest of the soil layer, which remains almost undeformed. The attained solution resembles
very closely the classical result obtained using Slip Line Theory [Chen, 1975].

Figure 10 corresponds to the eccentric loading case, the rest of the geometry and properties being
the same as previously. Figures 10.2, 10.3 and 10.4 show the deformed shape of the finite element mesh,
the total displacement contours and the displacement vector field, respectively, at the final stage. The
difference with the previous case is obvious. Now, only one strong discontinuity line develops, with
a wedge of soil moving side and upward attached to the footing, and sliding with respect to the rest
of the layer. The peak load corresponding to the eccentric case is around 25% lower than the one
obtained for the symmetric one.

12 Concluding remarks.

Throughout this paper the here called strong discontinuity epproach to displacement discontinuities
induced by continuum stress-strain elastoplastic constitutive equations has been presented. The main
features of the approach may be summarized as follows:

- A kinematic state of strong discontinuity, characterized by a discontinuous displacement field
across a material discontinuity line, and the corresponding (compatible} unbounded strain field,
is considered as the limit case of a regularized kinematic state of weak discontinuity charac-
terized by discontinuous, but bounded, strains. These strains intensify across the discontinu-
ity line proportionally to the inverse of the so called bandwidth of the weak discontinuity, in
such a way that when the bandwidth tends to zero the strong discontinuity kinematic state
is recovered. In turn, such a regularized kinematic state of a weak discontinuity can be con-
sidered representative of a compatible kinematic state of weak discontinuity with continuous

15 The value of parameter 3 in Figure 3a does not play here any role, since the bandwidth law is constant (h=kVg>
q8)
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displacements and discontinuous strains that intensify (or localize) at a band of the same band-
width. This provides a first link to the strain localization-type approaches [Ortiz et al., 1987,
Needleman, 1988, de Borst et al., 1993, Zienckiewicz et al., 1995] which essentially deal with this
type of kinematics. When the bandwidth of the localization band tends to zero the strain-
localization state turns to be a strong discontinuity.

The inception of the discontinuity is characterized through the bifurcation analysis which provides
the conditions for the initiation and propagation of such discontinuity. Since the bifurcation
analysis lies on the singularity of the localization tensor it provides a second link to the failure
analysis methods aiming at characterizing the material instabilities in terms of such localization
tensor [Runesson et al., 1991, Stein et al., 1995]. It is shown that, in general, such a bifurcation
can only appear under the form of a weak discontinuity (non-zero bandwidth) and, if strong
discontinuities are to be modeled, an additional ingredient is required.

The variable bandwidth model is then a mechanism devised to induce the strong discontinuity
regime from the weak discontinuity one. A bandwidth evolution law, ranging from an initial
non-zero value to zero (k-regularized), is postulated as a model property in terms of some
stress related variable (here the stress-like variable). Beyond the bifurcation, the continuum
hardening/softening parameter is determined as the product of the discrete hardening/softening
parameter times that bandwidth, in such a way that a smooth and consistent transition from the
weak discontinuity regime to the final strong discontinuity one is cbtained.

The strong discontinuity analysis also provides a very important additional insight on the prob-
lem: it is shown that the strong discontinuity kinematics induces from any standard stress-strain
constitutive equation a discrete (traction-vector vs. displacement-jump) constitutive equation at
the interface which is fulfilled once the strong discontinuity regime is reached. This provides an
additional link of the approach to the classical non-linear fracture mechanics and the discrete con-
stitutive equation can be then regarded as one of the typical stress-jump constitutive equations
used in fracture mechanics to rule the decohesive behaviour at the interface [Hillerborg, 1985).
The discrete hardening/softening parameter is shown to play an important role in this equations
and it can be readily related, in certain cases, to the fracture energy concept.

A key point of the approach, as it has been presented here, is that the aforementioned discrete
constitutive equations are neither derived nor used for practical purposes, but they emerge
naturally and consistently from the continuum constitutive equation and the entire simulation
can be kept in a standard continuum environment. Therefore, the same continuum constitutive
equation rules the continuous and discontinuous regimes of the problem. Although some of such
discrete constitutive equations have been derived in the paper as a matter of example, this does
not seem in general an easy task for any continuum constitutive equation. Since the proposed
approach does not need such derivation it is not restricted at all by that fact. Some representative
numerical simulations presented in the paper show that the predicted discrete constitutive laws
at the interface are in fact reproduced by the continuum approach.

The point of stability and uniqueness of the approach has not been addressed here. As far as
uniqueness is concerned, in references [Oliver et al., 1998, Oliver, 1998] and for a simple 1D case,
the benefits of using the strong discontinuity approach in front of the classical strain localization
one were shown and the uniqueness of the solution supplied by the former was proved.
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