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Abstract Current work presents a monolithic method for
the solution of fluid–structure interaction problems involv-
ing flexible structures and free-surface flows. The technique
presented is based upon the utilization of a Lagrangian
description for both the fluid and the structure. A linear dis-
placement–pressure interpolation pair is used for the fluid
whereas the structure utilizes a standard displacement-based
formulation. A slight fluid compressibility is assumed that
allows to relate the mechanical pressure to the local volume
variation. The method described features a global pressure
condensation which in turn enables the definition of a purely
displacement-based linear system of equations. A matrix-
free technique is used for the solution of such linear system,
leading to an efficient implementation. The result is a robust
method which allows dealing with FSI problems involving
arbitrary variations in the shape of the fluid domain. The
method is completely free of spurious added-mass effects.

Keywords Fluid–structure interaction · PFEM ·
Monolithic FSI · Lagrangian fluids · CFD

1 Introduction

The simulation of fluid–structure interaction (FSI) problems
involving large deformations represents a very active area of
research in the field of computational mechanics. Although
many different techniques exist to face this kind of prob-
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lems, we will focus here on the interaction between the
free-surface flows driven by gravity forces (typically in the
low Froude number range) and flexible structures. This area
inherits all the difficulties of the free surface flows simu-
lation, and complements them with the ones related to the
strong FSI coupling.

The solution of the FSI problem involves the simulation
of the fluid and the structural domains and the interaction
between them. This can be performed using either partitioned
or monolithic methods.

In monolithic methods a single, non-linear, discrete
system of equations is written taking into account both
the sub-domains (the fluid and the structure) at once. The
resulting problem is then solved as a whole, dealing with the
non-linearity by some form of Newton iteration. Monolithic
methods are robust as they do not introduce any domain split-
ting error. Their disadvantage is that they lead to large and
generally poorly conditioned systems due to different scaling
of variables entering the multi-field problem (velocity, dis-
placement, pressure). The poor conditioning has particularly
strong impact for the analysis of large scale problems, where
direct solvers cannot be used. As a consequence, the use of
iterative solvers is necessary and the efficiency of a given
monolithic approach often relies on availability of sophisti-
cated preconditioners.

In contrast, partitioned methods rely on the independent
solution of the fluid and the structure. Due to the modu-
larity of the approach, existing separate codes can be used
for the solution of each subsystem which renders them par-
ticularly popular in the FSI community. The coupling is
achieved usually by applying fixed point iterations at the
fluid–structure interface eventually accelerated to improve
their convergence behavior [1]. The fundamental advantage
is that the resulting equations systems are smaller and gener-
ally better conditioned than the unique monolithic system.
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The problem however shifts to assuring the stability and
convergence of the coupling constraint along the interface.
Standard segregated Dirichlet–Neumann couplings are effi-
cient, when interaction with stiff structures is considered.
Nevertheless they often show instability or poor convergence
when applied to the cases where the mass ratio of the sub-
systems involved is close to one or the domain is completely
constrained [2]. This occurs e.g. when modeling the motion
of light-weight structures in water.

Our objective in this work is to develop a monolithic
method to allow the simulation of FSI systems involving
light-weight structures and free surface flows, an area where
many partitioned approaches fail. We are convinced that
monolithic methods define the optimal choice in the area pro-
vided that an efficient strategy for the solution of the resulting
linear system of equations is defined. We strive to enable
re-utilization of existing structural elements formulations
(solids, shells, membranes) within the monolithic algorithm.
Therefore, we assume that a standard displacement-based
formulation is adopted for the solid domain.

With this goal in mind the first step towards the objec-
tive is the choice of the “framework” to be used. Eulerian,
Lagrangian or Arbitrary Lagrangian Eulerian (ALE) descrip-
tions could theoretically be used for any of the two systems,
thus leading to a vast number of alternatives. In the following
we will briefly address the usual choices.

A common choice in treating strongly coupled FSI, espe-
cially in the partitioned context, consists in using the ALE
approach for the fluid and Lagrangian one for the structure.
A large literature on the field exists, see for example [3,4]
or [2,5]. In the ALE approaches the fluid mesh is allowed to
deform matching the deformation of the structural domain.
This greatly facilitates the application of the interface bound-
ary conditions and makes ALE-based approaches very accu-
rate. Similarly, space–time approaches [6–8] provide a
very accurate framework for the solution of complex FSI
problems. References [9] and [10] discuss in detail the time
integration scheme, the implications related to the strong cou-
pling algorithm and the techniques used for mesh-moving.
An interesting work on the application of the ALE approach
for monolithic FSI is presented in [11]. There the formula-
tion is based upon the iso-geometric approach in conjunction
with a generalized alpha time integration scheme. The high
precision of the method renders it specially attractive for the
simulation of complex bio-mechanical problems. Unfortu-
nately, even the most advanced ALE formulations arrive to
their limits when the domain shape deformations are large.
In such situations, re-meshing is inevitable [12]. This is the
case, in particular, for problems involving free-surface grav-
ity flows, which are of interest in the present work. The
option of using an ALE-based fluid equipped with adaptive
re-meshing and alpha-shape technique for detecting the free
surface was explored in [13].

A second option would rely on keeping a standard Eulerian
formulation for the fluid and a Lagrangian one for the struc-
ture allowing an overlap between the different domains. Such
choice allows using standard formulations for each of the sub-
domains and is used, for example, in [14] and [15]. The FS
interface in such setting is found as an intersection between
the Lagrangian and the background Eulerian mesh. Compli-
cations arise in the application of the interface boundary con-
ditions that describe the interaction, and are generally dealt
with via the definition of an additional interface equation,
ensuring kinematic compatibility and absence of flux across
the interface. A number of methods exist for the interface
treatment. These include, among others, penalty, Lagrange
multipliers and augmented Lagrangian methods. In Lagrange
multipliers and augmented Lagrangian methods the interface
equation involves an additional variable (the Lagrange mul-
tiplier λ for the force at the interface), thus leading to fur-
ther deterioration of the monolithic system conditioning. It is
worth mentioning however that in the context of partitioned
approaches, the Lagrange multiplier-based interface equa-
tion is successfully employed in some recent works, see for
example [12].

The use of an Eulerian description for both the sub-
systems represents another possibility. Such an approach has
however a number of drawbacks, in particular related to the
intrinsic impossibility of Eulerian approaches to accurately
track free-surfaces and interfaces without the use of addi-
tional techniques as for example the level-set [16] or volume
of fluid (VOF). Additionally, in an Eulerian context, the con-
stitutive laws assume a cumbersome form (with the possible
exception of simple linear-elastic relations [17]). From the
point of view of the software modularity such an approach
also implies a complete re-writing of the structural module,
which is usually written in the Lagrangian framework.

The approach we propose in this work uses Lagrang-
ian formulations for both the fluid and the structure. Such
an assumption implies the need for frequent re-meshing
and results in a method, called “The particle finite element
method”, which is hybrid between the FEM and a mesh-free
techniques. This class of Lagrangian methods was proposed
in the late 90s [18,19] and developed further in recent works
[20,21]. The validation of the method can be found in [22].
The basic philosophy of the PFEM is adopted in the current
work. In the context of FSI the use of a Lagrangian fluid
together with a Lagrangian structure eliminates the problem
of free surface and interface tracking and leads to symmetric
system matrices due to absence of the convective term in the
momentum equations.

The method we develop in the current work is an exten-
sion of PFEM. It is, however, specifically designed for the
simulation of the interaction of gravity-driven flows with
flexible structures. For such category of problems, Lagrang-
ian methods such as PFEM or Smoothed-Particle
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Hydrodynamics (SPH) have shown once and again their
competitiveness with respect to their Eulerian counterparts.
Our current proposal originated from an idea that is often used
in the SPH community: introducing a certain level of com-
pressibility for the fluid, considerably simplifies the compu-
tations in the SPH. We strive to retain some of the advantages
of such assumptions while allowing the use of more realistic
values for the sound propagation speed. Although classical
incompressible ALE techniques are definitely possible in a
PFEM context (and were actually used by the same authors
in previous works), our aim was to explore here the possibil-
ity of taking advantage of the compressibility in devising a
strongly coupled monolithic approach.

A first proposal of compressible monolithic FSI based
upon the Lagrangian approach for both the fluid and the
structure was presented in [21]. The paper assumed a dis-
continuous pressure thus resulting in an FSI system, written
exclusively in terms displacements. The method was proved
to be robust and efficient and was successfully used for the
simulation of the fluid-membrane interaction in [23]. How-
ever, due to the use of discontinuous pressures it is plagued
by severe locking problems which hinders its applicability
for high values of the bulk modulus.

In this work we propose a development of this concept,
adopting the quasi-incompressibility assumption but switch-
ing to the linear displacement–pressure interpolation pair.
The assumption of slight compressibility permits the def-
inition of a constitutive relation between pressure and the
fluid displacement (or velocity field). The use of linear–linear
displacement–pressure pair cures to a great extent the lock-
ing problem, but precludes elemental pressure condensation.
To preserve the computational efficiency we propose to per-
form the pressure condensation at the global level in order
to obtain an equivalent linear system written exclusively in
terms of displacements. The way such pressure condensation
is actually carried out has a strong impact on the computa-
tional efficiency and is therefore addressed in detail in this
work.

The use of equal-order simplicial elements implies on the
other hand a loss of pressure stability as the incompress-
ible limit is approached. A simple pressure stabilization tech-
nique, based upon the difference of the consistent and lumped
mass matrices is introduced. It is shown that this technique
is similar to the Laplacian-type stabilization.

The paper is organized as follows: an updated Lagrang-
ian quasi-incompressible fluid formulation is derived first.
A global pressure condensation strategy is then described.
Evidence is provided that such approach provides a consid-
erable advantage in comparison to the solution of the origi-
nal displacement-pressure fluid, even for a single field fluid
problem. An efficient implementation, based on the use of
a matrix-free iterative solver is described providing an esti-
mate of the savings in terms of floating point operations. The

procedure is finally generalized to include the interaction
with the structure, which is introduced in the monolithic sys-
tem by a completely standard FE assembly process.

In our work the variables of interest in the continuum are
denoted by lower-case letters; vector quantities are indicated
in bold. The corresponding discrete vectors, containing the
nodal values which correspond to the finite element imple-
mentation, are indicated by adding an over-bar to the corre-
sponding symbols. Bold capital letters are used for matrices.

As an example, the symbol p represents the pressure at a
given point of the continuum, while p̄ indicates the vector of
pressures of all the nodes of the FE mesh.

Time step index is located in bottom-right position. Non
linear iteration counter is located in apex position. For
example

p̄i−1
n+1,J (1)

denotes the pressure at node J for the time step n + 1 and
non-linear iteration i − 1.

A complete list of symbols is presented in Table 1. The
notation for discrete operators is given in Table 2.

2 Updated Lagrangian formulation for the solving
the quasi-incompressible Navier–Stokes equations

The approach proposed here inherits the Particle Finite Ele-
ment Method (PFEM) framework and can be viewed as an
extension of the method into the field of quasi-incompressible
fluids. A detailed overview of the PFEM lies outside of
the papers’ scope and can be found in [18,19,24]. A brief
description of the method’s key points is nevertheless pre-
sented next:

2.1 The particle finite element method concept

The PFEM adopts a Lagrangian framework for the descrip-
tion of the fluid, where the mesh nodes are treated as particles
that can freely move and even separate from the main fluid
domain. The fundamental idea of the PFEM is that the vari-
ables of interest are stored at the nodes instead of the Gauss
points. A finite element mesh is created at every time step of
the dynamic problem and the solution is then stored at the
nodes. The nodes move according to their velocity obtaining
their new position and then a new mesh is created. The gener-
ation of the finite element (FE) mesh is done using a Delaunay
tessellation [25]. PFEM utilizes linear triangular/tetrahedral
meshes. It is important to keep in mind that the convective
terms of the momentum equation disappear in the Lagrang-
ian description. Therefore ellipticity and symmetry of the
system remains unaltered. Also the stability problems faced
in Eulerian methods due to presence of the convective term
are not faced here.
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Table 1 List of symbols

Symbol Variable

ρ Density (kg/m3)

μ Dynamic viscosity (Pa s)

κ Bulk modulus (Pa)

E Young’s modulus (Pa)

ν Poisson’s ratio (–)

c Speed of sound (m/s)

t Time (s)

δt Time step (s)

τ Stabilization parameter (s)

x Position (m)

x̄ Discrete counterpart of x (m)

x0 Initial position (m)

x̄0 Discrete counterpart of x0 (m)

u = x − x0 Displacement (m)

ū = x̄ − x̄0 Discrete counterpart of u (m)

δx = x − xn Incremental displacement (m)

δx̄ = x̄ − x̄n Discrete counterpart of δx (m)

v Velocity (m/s)

v̄ Discrete counterpart of v (m/s)

a Acceleration (m/s2)

ā Discrete counterpart of a (m/s2)

f Body force (m/s2)

F Discrete counterpart of f (m/s2)

V Volume (m3)

V̄ Discrete counterpart of V (m3)

p Pressure (Pa)

p̄ Discrete counterpart of p (Pa)

r Dynamic residual (N)

w Displacement test function (–)

q Pressure test function (–)

N Number of nodes

δkl Kronecker delta

k, l Indices referring to the spatial components of a vector

i Iteration index

I, J Nodal indices

n Time step index

In treating problems involving free surface flows the
boundary is determined at every time step using the so-called
‘alpha-shape’ technique [18,26]. This can be seen as a geo-
metric criterion that enables one to decide whether or not a
face of an element belongs to the free surface.

2.2 Assumptions and continuous problem

Before proceeding further, the terminology utilized shall
be clarified. In this work we concentrate on the simulation
of “quasi-incompressible” fluids where the term “quasi-

Table 2 Relevant matrices and operators

Symbol Discrete operator

B Strain–displacement matrix

K Stiffness matrix

M Lumped displacement mass matrix

Mp Lumped pressure mass matrix

Mc
p Consistent pressure mass matrix

D Divergence operator

G Gradient operator

L Laplacian operator

H Dynamic tangent matrix

CK Volumetric elasticity tensor

incompressibility” implies that thermal influences are negli-
gible and thus the energy equation remains uncoupled from
the continuity equation. We accept on the other hand that
the fluid is not anymore considered incompressible, mean-
ing that the constraint (∇ · v = 0) is not satisfied exactly but
rather substituted (as we will see later) by a relation between
the pressure and the local volume variation.

At this point we introduce the governing equations for a
quasi-incompressible Newtonian fluid written in Lagrangian
reference frame. The momentum equation is

ρ
∂v
∂t

− μ∇ · ∇Sv + ∇ p = ρf (2)

in 	 for t ∈ (0, T ), where v is the velocity field, μ the
dynamic viscosity, f—the body force vector, p is the pressure
and ∇S the symmetric gradient operator. Next, we neglect
the μ∇(∇ · v) term, assuming that both the product of fluid
viscosity with velocity divergence is small. As shown in [27]
this simplification is only justified for low values of the vis-
cosity. Indeed preserving the exact form does not imply any
modification to the theory we will present. In the following
we will therefore proceed using the Laplacian form without
loss of generality and exclusively for simplifying the nota-
tion. Taking into account this observation and introducing
the variable u = x − x0 we obtain

ρ
∂2u
∂t2 − μ


∂u
∂t

+ ∇ p = ρf (3)

where ∇ and 
 stand for gradient and Laplacian opera-
tors respectively. The continuity equation in the Lagrangian
framework reads

∂ρ

∂t
+ ρ∇ · v = 0 (4)

For isothermal flows

∂ρ

∂t
= 1

c2

∂p

∂t
(5)

where c is the velocity of sound propagation in the medium.
Using Eq. (5) and substituting velocity by the derivative of
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the displacement, we obtain the constitutive equation for the
pressure as

∂p

∂t
= −ρc2∇ · ∂u

∂t
(6)

The term ρc2 reflects the fluid compressibility and is called
“the bulk modulus”, often denoted by κ . Equation (6) can be
written as

∂p

∂t
= −κ∇ · ∂u

∂t
(7)

An alternative is to relate directly the bulk modulus to the
variation of a given control volume V .

κ ≡ − ∂p

∂V
V (8)

The use of such equation is not really appealing at the contin-
uum level, as the definition of “control volume” is somewhat
arbitrary. As we will see later however its discrete counter-
part will present some important advantages, which will be
exploited in the strategy we propose.

The equations that define the fluid motion are Eqs. (2),
(6) and (8). At the continuous level Eqs. (7) and (8) are
equivalent. Equation (7) relates the temporal derivative of
pressure with the gradient of the velocity field, whereas
Eq. (8) expresses the pressure in terms of a volume change
without knowing the temporal dependence but knowing the
current configuration. Both equations will be used in the cur-
rent work: Eq. (7) for relating pressure and displacement, and
Eq. (8) for pressure recovery once the new configuration is
found.

2.3 Discretization

The weak form of Eqs. (2) and (7) using a linear
displacement–pressure interpolation reads
(

ρ
∂2u
∂t2 , w

)
+ μ

(
∇ ∂u

∂t
,∇w

)
+ (∇ p, w) = ρ〈f, w〉

(9)(
q,

∂p

∂t

)
= −κ

(
q,∇ · ∂u

∂t

)
(10)

where w and q are the displacement and pressure test func-
tions. In the equations above (·, w) and 〈·, w〉 are the standard
bilinear and linear forms in w and (·, q) is the bilinear form in
q. Choosing an updated Lagrangian description means that
the current configuration serves as the reference and thus all
the spatial integrals are evaluated in 	(t). The semi-discrete
equations then read

ρM
∂2ū
∂t2 − μL

∂ū
∂t

+ G p̄ = F (11)

Mp
∂ p̄

∂t
= −κD

∂ū
∂t

(12)

where M is the mass matrix, Mp—the pressure mass matrix
both used in the lumped format (note that if in the mass matrix
super-index “c” is omitted, we assume that it is taken in the
lumped format), L the Laplacian operator, G the gradient
operator and D the divergence operator. These are assem-
bled from elemental contributions defined as

MI Jlk =
∫
	e

δkl (NI , NJ ) d	 (13)

Mp,I J =
∫
	e

(NI , NJ )d	 (14)

LI J =
∫
	e

(
∂ NI

∂xk
,
∂ NJ

∂xk

)
d	 (15)

GI Jk =
∫
	e

(
∂ NI

∂xk
, NJ

)
d	 (16)

D = GT (17)

FI k =
∫
	e

(NI , fk) d	 (18)

Equations (11) and (12) are still continuous in time. The
relation between the displacement and its derivatives will be
thus provided once a time integration scheme is chosen as it
is usually done for the solids.

For the pressure on the other hand the choice of the time
integration scheme is not so straightforward. Two choices
exist indeed to relate the pressure and the variation of the
displacement field.

A first possibility is to integrate in time the pressure con-
stitutive equation (Eq. (12)) to give

Mpδ p̄ = −κ

tn+1∫
tn

D(t)v̄dt (19)

The difficulty is here that both the velocity and the discrete
divergence operator vary in time, making the exact com-
putation difficult to achieve. In the practice some further
approximations are typically taken, leading for example to
the approximation

Mpδ p̄= −κ

tn+1∫
tn

D(t)v̄dt ≈ −κD

tn+1∫
tn

v̄dt ≈ −κDn+1δx̄n+1

(20)

This approach is indeed possible, nevertheless it introduces
an additional error due to the assumption of the time inde-
pendence of the divergence operator D, an error that becomes
especially considerable for large time steps.

The second option, which we argue to be sensibly better,
consists in using Eq. (8), which permits the computation of
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the pressure directly from a given discrete volume change. As
commented before Eq. (8) is fully specified only once a def-
inition of the “control volume” is provided. In the following
we will associate to each node of the FE mesh a nodal vol-
ume defined in such a way that it coincides with the diagonal
entry of the pressure lumped mass matrix.

V̄I := Mp,I I (21)

The interesting point is now that, under the hypothesis of
constant bulk modulus κ , the nodal pressure increment can be
exactly related to the nodal volume variation by the formula

p̄i+1
n+1,J = p̄n,J − κ

V̄ i+1
n+1,J − V̄n,J

V̄n,J
(22)

In this sense Eq. (22) is thus clearly superior to Eq. (20) as it
does not involve any additional approximation.

From the point of view of the practical application on the
other hand, we can observe that the nodal volume can be eas-
ily computed by nodal integration of the unit function over
the volume.

Remark It is interesting to observe that using Eq. (22) can
be interpreted as imposing the mass conservation on a num-
ber of integration points (the nodes of the FE mesh) which
is sensibly smaller than the number of Gauss points used in
the traditional element based approach. Such reduction of the
total number of volumetric constraints provides an heuristic
justification of the fact that the proposed method does not
suffer locking. This argument was used for example in [28]
to justify the F-bar method for low order elements.

Next we perform the time discretization and express the
momentum and mass conservation equations in residual form
in order to perform next the linearization. For the sake of clar-
ity we shall illustrate the method using the simplest implicit
time integration scheme, namely the Backward Euler and
only afterwards present the discrete equation in conjunction
with Newmark–Bossak scheme. The latter is used for the
examples presented at the end of the paper. The momentum
residual integrated in time thus gives

r̄m := Fn+1 − Gpn+1 + μL
δx̄n+1

δt
− ρM

δx̄n+1 − δx̄n

δt2

(23)

where δx̄n+1 = ūn+1 − ūn the incremental displacement.
The pressure equation residual reads

r̄p := p̄n,J − p̄i+1
n+1,J − κ

V̄ i+1
n+1,J − V̄n,J

V̄ i+1
n+1,J

(24)

which can be written equivalently

r̄p := Mp,J J p̄n,J − Mp,J J p̄i+1
n+1,J − κ

(
V̄ i+1

n+1,J − V̄n,J

)
(25)

For convenience, we finally introduce the symbol

r̄ :=
(

r̄m

r̄p

)
(26)

to denote the overall residual.

2.4 Linearization

Equation (26) defines a non-linear system as all the opera-
tors are written at the unknown configuration tn+1. In order
to solve this system Newton method is applied for the linear-
ization. For this the residual r̄ and tangent stiffnesses H need
to be established.

By definition the tangent stiffness is the derivative of the
residual with respect to the primary variables

H = −∂ r̄
(
x̄i , p̄i

)
∂ x̄, p̄

(27)

The Newton method can be summarized as follows:

1. solve H
(

dx̄
d p̄

)
= r̄

(
x̄i , p̄i

)
for dx̄ and d p̄

2. update x̄i+1 = x̄i + dx̄i and p̄i+1 = p̄i + d p̄i

3. Goto 1 until convergence in dx̄

where dx̄ and d p̄ are the displacement and pressure incre-
ments, n stands for the time step and i is a non-linear iteration
index.

Our objective is now to derive an expression for the tan-
gent stiffness H. The mass matrix and external force vectors
remain unchanged since they do not contain derivatives of
the shape functions and the nodal connectivities do not alter
within one time step. The non-linearity is contained in the
internal forces, that are the viscous μLv̄n+1 and the volumet-
ric term G p̄n+1. The discrete Laplacian and gradient opera-
tors contain derivatives of the shape functions with respect
to unknown current configuration x̄n+1. We assume that the
discrete operators L and G do not change within a non-linear
iteration, however this does not imply that they do not change
within the time step. At every non-linear iteration L and G
are recomputed in the newly obtained configuration and then
used in the next iteration. So the continuously varying in time
L(t) and G(t) are approximated within a time step by a series
of constant operators (L0, L1 . . . Li ) and (G0, G1 . . . Gi ).

The linearization of the pressure residual (Eq. (25)) gives:

∂ r̄p

∂p
= Mp (28)

and

∂ r̄p

∂δx̄
= κ

∂
(

V̄ i+1
n+1,J − V̄n,J

)
∂δx̄

= κD (29)
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which allows to write the Newton system as(
ρ M

δt2 − μ L
δt G

D 1
κ

Mp

) (
dx̄n+1

dp

)
=

(
r̄m

(
x̄i , p̄i

)
1
κ

r̄p
(
x̄i , p̄i

)
)

(30)

The system described in Eq. (30) is known as a “Monolithic
fluid” system (NB: not to be confused with the “monolithic
FSI” system.). It couples tightly the pressure and displace-
ments in the sense that the solution for both has to be per-
formed simultaneously. Since a compressible formulation is
used a mass matrix (diagonal in our case) appears in the
second line of the system.

The following section will be devoted to the discussion of
the implications of the proposed method as the incompress-
ible limit is approached. Some problems will be identified in
this context, and a modification of the “constitutive” pressure
equation will be introduced to palliate such problems.

2.5 Pressure stability

The use of mixed approaches cures to a great extent the lock-
ing problem and in the compressible regime does not lead
to any complications with respect to pressure stability. How-
ever as the incompressible regime is approached the insta-
ble pressure behavior becomes an issue. One can see that
for a high values of the bulk modulus the tangent matrix in
Eq. (30) obtains the following form(
ρ M

δt2 − μ L
δt G

D 0

)
(31)

which is identical to the one for a purely incompressible case.
For pressure–velocity pairs that do not pass the inf–sup

condition [29], such matrix is known to become more and
more ill-conditioned (eventually indefinite for purely incom-
pressible problems). This in turn implies, by definition of
ill-conditioned matrix, that small perturbations in the resid-
uals will lead to arbitrarily large variations in the solution,
thus implying that small perturbations in the residuals may
eventually grow and destroy the pressure solution.

In order to introduce and provide an heuristic justification
of our proposed modification, let us consider a static equi-
librium condition under the assumption of zero body force
F = 0, and let’s assume further that the nodes are distributed
in a Cartesian way.

Static solution implies that the variation of displacement
from one time step to the following is zero. On the other
hand at equilibrium pn ≡ pi+1

n+1 and V̄ i+1
n+1 ≡ V̄n . We can

now make the following observations:

• Since the operator Mp acts on both pn+1 and pn , indepen-
dently of the spatial distribution of pressure, a pressure
that does not vary in time will guarantee that the pressure
residual will be identically equal to zero (of course in the
hypothesis that the volume does not change).

• For the Cartesian distribution assumed, different spatial
pressure distributions exist that make zero the residual of
the momentum equation, for example a constant (zero)
pressure and a spurious check-board like mode (see e.g.
[30] or [31]).

These last two observations are enough to prove that multiple
solutions may exist, unless Mp is modified so to introduce
some spatial relation between the pressure on neighboring
nodes. For incompressible fluids the pressure is commonly
stabilized by the introduction of a “pressure Laplacian”. Even
if this is optimal in the context of monolithic techniques, we
do not follow this approach in current work, since we like
the pressure term to be diagonal.

Our proposal to palliate the problem is to modify
Eq. (25) as

r̄p = Mc
p p̄n − Mp p̄i

n+1 − κ
(

V̄ i+1
n+1 − V̄n

)
(32)

where p̄n is weighted by a consistent pressure mass matrix
rather that by the lumped version. The key point here is that,
at steady state Eq. (32) simplifies to
(

Mp − Mc
p

)
p̄ (33)

where p̄ = p̄i+1
n+1 = p̄n is the steady state pressure. The

introduced modification does not introduce any inconsis-
tency as for h → 0, the consistent and lumped mass matrices
coincide.

The important issue from the point of view of the pressure
stability is that the modified form introduces an additional
requirement on the spatial distribution of the pressure, that
is now called to guarantee that (Mp − Mc

p) p̄ = 0.
Since the operator Mc

p − Mp approximate the Laplacian
[32] (in 1D it can be shown to be exactly equivalent), the
proposed stabilization can be thus viewed (at steady state) as
a simple Laplacian-type stabilization, ensuring some degree
of pressure stability.

Remark The stabilization effect achieved is still weak for
very high values of the bulk modulus. This can be easily
seen by considering that the “stabilization term” is weighted
by 1

κ
which implies that κ → ∞ the instable equation is

recovered. We argue nevertheless that the modification pro-
posed in very effective in the practice, for a large range of
the bulk modulus values.

2.6 Global pressure condensation

Up to this moment we have to defined a monolithic system
of equations which “tightly” relates the displacements of the
nodes with the pressure. By “tight” relation we mean that
the system is fully coupled, namely none of the entries of the
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tangent stiffness is zero, thus requiring simultaneous solu-
tion for the velocity and pressure. Such system can be easily
constructed and allows in principle the use of any stabil-
ization technique. However the monolithic system defined
by Eq. (30) does not provide any significant advantage in
comparison with the standard incompressible one. The poor
conditioning even for the single field problems would require
utilization of direct solvers.

In order to deal with large problems we take advantage of
the introduced compressibility and symbolically condense
the pressure from the global system in order to obtain a dis-
placement-only system that is equivalent to the original linear
system. As we shall see later, this is possible if pressure is
stabilized using the method described above, while it would
be impossible if a Laplacian type stabilization was used.

The symbolic condensation of the system in Eq. (30) gives(
ρ

M
δt2 − μ

L
δt

+ κGM−1
p D

)
dx̄n+1

= r̄m

(
x̄i , p̄i

)
+ GM−1

p r̄p

(
x̄i , p̄i

)
(34)

This is practically implemented as the equivalent multi-step
procedure:

1. Given the pressure p̄n and x̄i
n+1 (and consequently the

nodal volume V̄ i ), compute the pressure p̄i+1
n+1 such that

r̄p

(
x̄i

n+1, p̄i+1
n+1

)
= 0

(note that the position of the nodes is kept fixed)
2. Given p̄i+1

n+1 as obtained in the first step, compute

r̄m(x̄i
n+1, p̄i+1

n+1) and solve the system

(
ρ

M
δt2 − μ

L
δt

+ κGM−1
p D

)
dx̄n+1 = r̄m

(
x̄i , p̄i

n+1

)

3. Update the nodal position as

x̄i+1
n+1 = x̄i

n+1 + dx̄n+1

4. If not converged go back to step 1

The only system of equation to be solved is thus found
in the second step. Introducing the notation H f = ρ M

δt2 −
μ L

δt + GM−1
p D to denote the tangent stiffness of the fluid

corresponding to the momentum equation we can write

H f dx̄ = r̄m (35)

which is written exclusively in terms of displacements.

Remark Note that pressure condensation did not require
solution of any system of equations due to the lumped format
of the pressure mass matrix In the case a classical pressure

stabilization matrix was added to the monolithic system, such
global condensation would have been impossible due to the
enormous effort of symbolically inverting a non-diagonal
sparse matrix.

2.7 Coupling with the structure

In the following “monolithic FSI” means a discrete equation
system that includes the equations of both the sub-domains.
It should not be confused with the term “monolithic single-
field” that was used when describing the fluid formulation,
where it referred to simultaneous solution for the primary
variables (velocity/pressure).

Here we shall present the coupling strategy with the struc-
ture and establish the monolithic FSI system. The illustration
will be performed without specifying any particular type of
structure. It can be a solid, membrane, rotation-free shell
or any other FE structure. The only prerequisite is that the
discrete equations are written in terms of displacements. We
note, that the time integration scheme must be consistent with
the one used for the fluid. The discrete momentum equations
for the solid in the absence of damping, using backward Euler
time integration can be written as

ρMān+1 + Kūn+1 = Fn+1 (36)

where M is the mass matrix, K is the stiffness matrix, F is
the external force vector, ān+1 = ūn+1−δx̄n

δt2 the acceleration
and ūn+1 = x̄n+1 − x̄0 is the total displacement at time step
n + 1. For applying Newton method we define the dynamic
residual and tangent stiffness

r̄s = F − M
δx̄n+1

i − δx̄n

δt2 − K
(
δx̄n+1

i + x̄n − x̄0

)
(37)

Hs = ∂ r̄s

∂δx̄
(38)

where subscript s stands for “structure”. The tangent matrix
and the residual for the fluid given by Eqs. (35) and (23) will
be distinguished by subscript f . We shall split the dynamic
tangent stiffness of the fluid into two parts for reasons that
will become clear later.

H f = Ha
f + Hb

f (39)

where

Ha
f = M − μL (40)

and

Hb
f = −κGM−1

p D (41)

The linearized monolithic FSI equations system is
obtained then in two steps: first a standard FE assembly
procedure is carried out by looping over all the elements
(fluid and structure). Structure elements contribute r̄s and Hs
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whereas fluid elements contribute r̄ f and Ha
f to the unique

FSI dynamic residual and tangent stiffness r̄F SI and HF SI ,
respectively.

Then GM−1
p D needs to be added. The monolithic FSI lin-

earized system can then be written as
(

HF SI − κGM−1
p D

)
dx̄ = r̄F SI (42)

Note that the GM−1
p D is a global matrix defined for the fluid

only. Its entries corresponding to the degrees of freedom of
the structure nodes are zero.

2.8 Computational efficiency

The addition of the GM−1
p D term is a computationally expen-

sive procedure. The costs associated with construction and
storage of this matrix at each Newton–Raphson would make
the method unfeasible for practical applications. The is easy
understandable as the resulting matrix is densely populated
and its computation involves sparse matrix–matrix products.
We propose to treat the problem defined by Eq. (42) by iter-
ative technique. The choice of using Krylov-type methods
implies that a matrix-free approach can be used, thus
removing the need of constructing and storing of the
computationally expensive GM−1

p D term.
We shall illustrate the methodology using diagonally

preconditioned Conjugate Gradient method (which we will
use in our applications).

The main idea of matrix-free approaches is that only the
product GM−1

p Ddx̄ needs to be known, that is, we need to

be able of computing the product of the matrix GM−1
p D by

a given vector y.
This can be easily obtained by a sequence of matrix-vector

products in the form

1. e1 = Ddx̄
2. e2 = Ge1 = DT e1

3. e3 = M−1
p e2

Taking advantage that G = DT we thus need only to
construct and store the discrete divergence operator D. Ulti-
mately instead of computing three matrix–matrix products
we end up computing two matrix vector products (assum-
ing Mp being a lumped matrix). Apart from the memory
efficiency of this approach, it also turns out that, due to the
structure of the D operator, the application of this technique
requires less operations than the application of the assembled
matrix. The speed up obtained by doing this in comparison
with direct computation of GM−1

p D results to be of ∼ 3 in
2D and ∼7 in 3D. This speed up refers to the solution of line-
arized system performed at each non-linear iteration. Details
of the speed up calculation are given in Appendix 1.

Table 3 Implementation procedure for the solution of the monolithic
FSI involving quasi-incompressible updated Lagrangian fluid

1. Start the non-linear loop

• update the pressures of the fluid elements using Eq. (22)
• assemble the dynamic residual r̄F SI in standard FE manner

if solid element use Eq. (37)
if fluid element use Eq. (23)

• assemble the dynamic tangent stiffness HF SI in standard FE
manner

if solid element use Eq. (38)
if fluid element use Eq. (40)

• solve linear system
(

HF SI + GM−1
p D

)
dx̄ = r̄F SI

• update displacements δx̄i+1
n+1 = δx̄i

n+1 + dx̄

2. repeat until convergence in displacements is achieved
3. re-mesh

In Eq. (30) the displacements of the interface nodes (i.e.
the ones that belong both to the fluid and the solid) are
automatically multiplied by the sum of the respective con-
tributions of the fluid and solid dynamic tangent stiffnesses.
The system is then treated exactly in the same way as a single
field one, i.e. the solver does not “see” the difference between
the fluid and the solid and no interface equation needs to be
specified. The entire solution procedure is summarized in
Table 3.

We see, that the two conditions that need to be satisfied in
the FSI solution, namely

• equilibrium of forces along the interface boundary
• continuity of displacements along the interface boundary

are satisfied automatically. The computational cost intro-
duced by iterations for satisfaction of these two conditions in
a partitioned approach is shifted to the quality of convergence
in a monolithic approach.

Remark The computational cost associated with the solution
of each time step will depend on two factors:

• Number of non-linear iterations
• Time spent per one non-linear iteration or, equivalently

number of the linear solver iterations

These two criteria will be considered in the assessment of the
method presented in the next section of the paper.

3 Examples

This section shows functionality of the formulation. The
formulation was implemented in the Kratos Multi-Physics
System, a C++ object oriented FE framework [33].
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Fig. 1 Dam break problems:
a fluid only, b FSI

(a) (b)

3.1 Dam break example

3.1.1 Practical applicability

The quality of a monolithic method is strongly related to
the convergence characteristics it provides. The proposed
formulation does not suffer from volumetric locking in
comparison with the quasi-incompressible formulations or
penalty methods that use discontinuous pressure. Therefore
the bounds that can provide us the practically admissible val-
ues of bulk modulus are related to the convergence speed that
will be discussed here. Two types of convergence are con-
sidered. First is the convergence of Newton method, which
reflects the quality of the proposed linearization of the cou-
pled system. Second issue is the convergence of the iterative
solver.

The latter is expected to be affected by the value of bulk
modulus to a great extent. Generally when penalty methods
are used, the conditioning of the system deteriorates with
increasing of the penalty constant. It is important to estimate
how much the value of bulk modulus affects the convergence
speed of the CG linear solver. The convergence results pre-
sented next do not pretend to be exhaustive or to provide a
clear limit for the value of bulk modulus one can use. Rather
they show the tendency and give a qualitative outlook of the
convergence behavior. We shall get an insight of the con-
vergence speed by trying both strict and mild convergence
requirements.

The example chosen deals with the callapse of a water
column. The case including an elastic obstacle as proposed
in [34] as well as the case without an obstacle are analyzed.
The model geometries are depicted in Fig. 1. The properties
of the elastic obstacle are as follows:

• width w = 0.012 m
• height h = 0.08 m
• density ρ = 2,500 kg/m3

• Young’s modulus E = 106 Pa
• Poisson’s ratio ν = 0

Dimensions of the water column are: w = 0.146 m and
height H = 0.292 m. The distance between the walls is
b = 0.584 m.

Table 4 Convergence characteristics: δt = 0.001 s, 1,000 elements

κ c N-R (fluid) CG (fluid) N-R (FSI) CG (FSI)

10E05 10 3.96 25 4.12 63

10E06 33 4.24 68 4.2 115

10E07 100 4.59 200 4.89 323

10E08 333 4.91 460 4.93 816

Table 5 Convergence characteristics: δt = 0.001 s, 30,000 elements

κ (Pa) c (m/s) N-R (fluid) CG (fluid) N-R (FSI) CG (FSI)

10E05 10 4.1 160 4.3 550

10E06 33 4.42 345 4.51 1,027

10E07 100 4.7 1,010 4.92 2,015

10E08 333 4.92 2,220 4.95 5,200

This example serves us for judging to which extent the
coupling with the structure slows down the computation in
comparison with the case containing fluid only. Four different
values of bulk modulus were used. Two meshes were con-
sidered, one containing ≈1,000 linear triangles and the other
≈30,000 linear triangles. First, we examine the convergence
using a strict criterion: ||d x̄||

||δx̄n+1|| <10E-06 for the non-linear

loop and ||r̄−Hdδx̄�||
||r̄−Hdδx̄0|| <10E-08 for the Conjugate Gradient

linear solver. Iterations number (averaged over the simula-
tion time span 0–1 s) for both the non-linear loop and linear
solver are given for both purely fluid problem and FSI prob-
lem in the Table 4 (rough mesh) and Table 5 (fine mesh). The
notation is as follows: c is the sound speed corresponding to
the bulk modulus κ , “N-R” and “CG” are the number of non-
linear (Newton–Raphson) and linear solver (CG) iterations
respectively. “Fluid” refers to the purely fluid problem, “FSI”
refers to water column against elastic obstacle problem.

These results prove that the convergence of the non-linear
(Newton–Raphson) loop does not deteriorate much as the
value of the bulk modulus increases. Basically two “ingredi-
ents” of the dynamic tangent are competing - the inertia term
(inversely proportional to the time squared) and the volumet-
ric term. We assume that the influence of the viscous term
upon the non-linear convergence behavior is negligible for
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Table 6 Convergence characteristics for a linear solver tolerance of
10−4, δt = 0.001 s, 1,000 elements

κ (Pa) c (m/s) N-R (fluid) CG (fluid) N-R (FSI) CG (FSI)

10E05 10 2 7 2 32

10E06 33 2 18 2 73

10E07 100 2 40 2 250

10E08 333 2 102 2 626

Table 7 Convergence characteristics for a linear solver tolerance of
10−4, δt = 0.001 s, 30,000 elements

κ (Pa) c (m/s) N-R (fluid) CG (fluid) N-R (FSI) CG (FSI)

10E05 10 2 22 2 180

10E06 33 2 50 2 435

10E07 100 2 180 2 642

10E08 333 2 250 2 1,250

low values of viscosity such as that of water. Small time
steps lead to domination of the inertia term 1

δt2 M in the tan-
gent stiffness, whereas high values of bulk modulus increase
the impact of the volumetric term κGM−1

p D. As mentioned

in Sect. 2.4, the inertia term is linearized exactly as the mass
matrix does not change within one time step.

Note that the linearization that lead to the definition of
the monolithic system in Eq. (30) is not entirely exact as
the exact linearization would imply (for example) the der-
ivation of the G operator with respect to the displacement
of the nodes. Nevertheless the optimal convergence rates of
Newton–Raphson method are assured if the time step is suf-
ficiently small.

Results reported in Tables 2, 4 and 5, confirm that the opti-
mal convergence speed for the non-linear problem is retained
both for the case of fluid only and considering complete FSI
problems. This indicates that the linearization of the mono-
lithic system is done correctly, and in particular the presence
of the structure and thus the interaction does not deteriorate
the convergence of the non-linear procedure. For both coarse
and fine discretization convergence is achieved in average
within ∼3–4 non-linear iterations.

Results also show how the number of iterations of the lin-
ear solver grows as κ increases, which is associated with the
impoverishing conditioning of the linear system to be solved.
The results provided here indicate that a preconditioner bet-
ter than the one utilized here (diagonal preconditioner) could
improve the convergence rates of the linear solver.

Fig. 2 Dam break against an
elastic obstacle: a 0.0 s, b 0.15 s,
c 0.25 s, d 0.45 s, e 1.0 s, f 2.5 s

(a) (b)

(c) (d)

(e) (f)
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Fig. 3 Dam break against an elastic obstacle: dx comparison of the
current approach with the results of [21]

Fig. 4 Dam break against an elastic obstacle: dx comparison of the
proposed approach with the results of [35]

It is also important to observe that the number of iterations
needed for the convergence of the CG differs in FSI problem
(where elastic obstacle is included) by a factor of ∼2 − 2.5
from that of the fluid-only problem on both the meshes. This
is justified by a difference in stiffness between the structural
part and the fluid domain.

For practical FSI applications, the strict convergence
requirements chosen in the above-mentioned tests are unnec-
essary. In Tables 6 and 7 we present the convergence data
under the following criterion: 10−4 for both the non-linear
and the iterative solvers. Again, two meshes were considered:
the coarse one (1,000 elements) and the fine one (30,000 ele-
ments). One can see, that the non-linear solver requires two
iterations for any examined value of the bulk modulus. It is
important to note that under the milder convergence criterion
the non-linear solver convergence did not deteriorate.

Remark As mentioned above it is possible to set-up and
solve directly a monolithic fluid displacement-pressure sys-
tem according to Eq. (30). The implementation of this for-
mulation has shown that the Conjugate Gradient solver with
diagonal preconditioner fails to resolve the problem already
for the bulk modulus value of ≈100,000 Pa with the mesh

Fig. 5 Dam break against an elastic obstacle: dx comparison of the
results obtained for different values of bulk modulus

Fig. 6 Deformation of an elastic plate subjected to water pressure

and time step size equivalent to the one used above. Only
the application of a direct solver (Super LU in this case)
circumvents the problem for practically any value of the
bulk modulus. Unfortunately this cannot be applied for the
real-life problems involving hundreds of thousands or more
degrees of freedom. This fact shows the advantage achieved
when pressure condensation is applied. The implementation
of the monolithic system also allowed verifying that the result
obtained by the monolithic approach are identical to the ones
achieved by our pressure condensation algorithm.

3.1.2 Validation and comparison with other methods

Here we shall compare the results obtained using the present
formulation with the published results obtained by different
methods. The comparison is made considering the temporal
evolution of the horizontal displacement dx of the upper left
corner of the elastic obstacle.

Figure 2 presents snapshots of the simulation using the
proposed method, taken at various time instances.

Solutions of this problem obtained in [21] and the one
obtained with the approach proposed here are presented in
Fig. 3. Bulk modulus for modeling quasi-incompressibility
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Fig. 7 Deformation of an
elastic plate subjected to water
pressure: comparison with
experiment

behavior was set to κ = 105 Pa for unified formulation [21]
and κ = 107 Pa in case of the formulation proposed here.
Figure 3 depicts the temporal evolution of the horizontal dis-
placement component of the upper right corner of the obsta-
cle. The total time considered in the simulation was 2.5 s.
Good agreement is obtained with results of [21].

Another comparison is made with the space–time mono-
lithic approach with level-set method for the free surface
identification published in [35]. There water is modeled as

incompressible and the obstacle as a hyper-elastic material.
The comparison is depicted in Fig. 4.

Finally, the effect of the bulk modulus upon the
solution of the problem has been studied. In Fig. 5 the dis-
placement evolution of the upper right corner of the elastic
obstacle obtained using different values of the bulk modulus
is shown. One can see good agreement between the graphs.
In particular, this ensures that the method is fairly insensi-
tive to the value of the bulk modulus in the sense of repre-
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Fig. 8 Deformation of a
membrane filled with water:
a initial shape, b maximum
deformation, c equilibrium state,
d 3D view of max deformation

(a) (b)

(d)(c)

senting the quasi-incompressibility. This means that as long
as the bulk modulus is high enough to prevent a large vol-
ume variation and ensures that the associated finite sound
wave propagation speed is sensibly higher than the char-
acteristic velocity of the problem, the approximation made
can be accepted. Note that to obtain maximal performance,
one must consider on one side that the bulk modulus must
be high enough for the correct representation of the phys-
ics, but on the other hand it should be kept as small as
possible to ensure the fast convergence of the iterative
solvers.

3.2 Deformation of an elastic plate subjected to water
pressure

Next example presents the deformation of an elastic plate
subjected to water pressure. A water container of width A =
0.1 m with water level L = 0.14 m is closed by an elastic
cover of height H = 0.079 m and width s = 0.005 m, which
is fixed at the top (see Fig. 6) . The cover is released and
exposed to the water pressure, which induces deformation.
The elastic cover is modeled with the following properties

• density ρ = 1,100 kg/m3

• Young modulus E = 0.014 GPa
• Poisson ratio ν = 0.4

Results obtained with quasi-incompressible Updated
Lagrangian fluid formulation are compared with the exper-
imental ones reported in [36]. The comparison is shown in
Fig. 7. Water was modeled with κ = 107 Pa. Snap shots are
taken at time instances t = 0.04, 0.08, 0.12, 0.16 s.

3.3 Deformation of an elastic membrane balloon filled
with water

Next, the results of a 3D simulation are presented. A trun-
cated spherical shape membrane filled with water is fixed at
its bottom and then is exposed to the water weight. The mem-
brane of 0.1 m radius has a truncation base radius of 0.05 and
1.5 mm thickness. The material properties are summarized
next:

• density ρ = 1,100 kg/m3

• Young modulus E = 0.8 MPa
• Poisson ratio ν = 0.2
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Fig. 9 Comparison of the vertical displacement dy for the membrane
filled with water obtained with three different meshes

Results are presented for the water bulk modulus κ = 106 Pa.
Figure 8 depicts the membrane at three time instances: at ini-
tial undeformed stage, maximum deformation and the final
state.

Figure 9 presents the evolution of the vertical displace-
ment dy of the upper-most point of the membrane obtained
with three different meshes containing

1. 3,500 fluid linear tetrahedra and 1,200 membrane
triangles

2. 8,000 fluid linear tetrahedra and 2,300 membrane
triangles

3. 20,000 fluid linear tetrahedra and 4,000 membrane
triangles

The rationale behind the choice of this example, is to
assess the capability of the method to model a deform-
ing object, while preserving the internal volume constraint.
The motion of the membrane and its contact with the fluid
is tracked automatically when the proposed approach is
applied. This example does not require one to use very high
values of the bulk modulus, as the velocities encountered are
low. Since no free-surface is present, the volume variation is
not influenced to any extent by the use of alpha-shape. As
a consequence, the example shows the deviation of the pro-
posed quasi-incompressible FE formulation from the ideally
incompressible behavior, that theoretically should result in
zero mass changes.

Table 8 shows maximal mass changes occurring for dif-
ferent values of bulk modulus. The relative volume varia-
tion is computed as following (density is assumed constant):

amax =
∑

el V n
el

V0
, where V0 = ∑

el Vel(t = 0) is the volume of
the fluid in the initial state, and V n

el is the volume the current
step. The greatest volume loss and the volume loss at the
equilibrium state are displayed.

Table 8 Maximal and average volume variation: Example 3.3

κ amax (%) aend (%)

10E05 2.43 1.6

10E06 0.26 0.14

10E07 0.015 0.01

One can see that already for the bulk modulus of
K = 1 MPa the resulting mass loss is less than 0.5 percent.
This clearly shows that the introduced slight compressibility
does not bring in any considerable error as long as the volume
conservation is concerned.

4 Summary and conclusions

The aim of this paper was to show that strongly coupled FSI
problems can be efficiently solved by a monolithic method. A
natural monolithic system was obtained by condensing pres-
sure at the global level. The solution procedure was based on
Newtons method, and the linearization procedure was pre-
sented. It was shown that the linearized pressure equation
needs to be used only in the computation of the dynamic
tangent stiffness. An “exact” pressure update equation was
introduced. Pressure stabilization based upon the difference
between consistent and lumped mass matrices assures pres-
sure
stability.

A matrix-free method for solving the linear system leads to
a feasible method as it does not require explicit computation
of the matrix resulting from the linearization of the gradient
of pressure term.

It was shown that the value of the bulk modulus does not
considerably affect the convergence rates of the non-linear
procedure. Utilization of more sophisticated preconditioners
can improve the efficiency of the method with respect to the
convergence of an iterative solver. However already with the
diagonally preconditioned CG the method is competitive for
solution of the presented example problems for the range
of bulk modulus up to ≈10E7 Pa. This value is far above
the one that can be used in conjunction with classical penalty
methods that use elemental pressure condensation and is suf-
ficiently large for a correct representation of a wide range of
physical phenomena. It is important to keep in mind that this
limiting value of bulk modulus gives an indication rather than
an actual limit.
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Table 9 Number of non-zero entries and respective matrix sizes

Parameter GM−1
p D D

nnon−zero per node in 2D 18 6

nnon−zero per node in 3D 124 26

Size in 2D 2N · 2N N · 2N

Size in 3D 3N · 3N N · 3N

nnon−zero total in 2D 18·2N · 2N 6·2N · N

nnon−zero total in 3D 124·3N · 3N 6·3N · N

Table 10 Comparison of the number of the floating point operations

parameter GMpD Matrix free speed-up

nFLOPs in 2D 72·N 2 24·N 2 + N 3

nFLOPs in 3D 1116·N 2 156·N 2 + N 7.2

Appendix 1

Here the estimation is presented whose results were men-
tioned in Sect. 2.8. We shall compare the number of floating
point operations, resulting when constructing the GM−1

p D
matrix and when using the matrix-free method that involves
only subsequent matrix-vector multiplications. Note that in
both cases Mp is taken in the lumped format.

Table 9 summarizes the data necessary for the FLOPs
estimation in both cases under the assumption of structured
mesh. The number of non-zero entries nnon−zero is estimated
taking into account the structure of GM−1

p D and D matrices.
In the former one each node contributes to the number of
non-zero entries equal to the number of the neighbors of the
neighbors of the node (“second neighbors”) multiplied with
the matrix size (3N ∗ 3N in 3D and 2N ∗ 2N in 2D). In the
latter one, it is equal to the number of the nodal neighbors
only, multiplied by the matrix size (3N ∗ N in 3D and 2N ∗ N
in 2D). In the estimation of the total number of the non-zero
entries, we do not consider the effect of the boundary nodes,
which will slightly decrease the total number of non-zero
entries. The total number of non-zero entries is therefore the
product between the non zero contributions of a node and the
matrix size, N is the number of nodes in the discretization.
Finally, Table 10 presents the cumulative FLOPS for either
case. Note, that in the matrix free method we need to perform
3 steps of 2.8, where step 1 and step 3 lead to an equal num-
ber of FLOPS since G = DT and step 2 leads to N FLOPS,
as M−1

p is a lumped matrix of size N.
The matrix-free procedure leads to a speed-up of ≈3 in 2D

and of ≈7.2 in 3D in comparison with the direct construction
of the GM−1

p D matrix.

Appendix 2

Time integration and linearization were presented in con-
junction with the Backward Euler algorithm for the sake of
clarity. However in the implementation of the present work
a Newmark–Bossak scheme was used. The Newmark algo-
rithm defines a second-order accurate unconditionally stable
implicit time integration scheme. Bossak modification pro-
vides the improvement for highly geometrically non-linear
problems, where classical Newmark method exhibits lack of
stability. Bossak scheme introduces numerical dissipation,
thus damping the high frequencies. We propose to use a
Newmark–Bossak scheme for the time integration of fluid
equations aiming at the monolithic coupling with structures.
Newmark–Bossak scheme is widely used in the structural
codes and we “adapt” the fluid formulation to fit the former
one.

The Newmark–Bossak formulae for the acceleration and
velocity read

v̄n+1 = ūn+1 − ūn

δt
−

(
γ

β
− 1

)
v̄n − δt

2

(
γ

β
− 2

)
ān

(43)

ān+1 = ūn+1 − ūn

βδt2 − 1

βδt
v̄n −

(
1 − 2β

2β

)
ān (44)

where γ = 1
2 −αB and β = (1−αB )2

4 with αB > 0. If αB = 0
we obtain the standard Newmark scheme at its optimal, with-
out any numerical dissipation. Numerical dissipation control
is obtained by varying the coefficient αB [30]. Substituting
Eq. (43) into Eq. (23) and subsequent linearization leads to
the following tangent stiffness HB and residual r̄B .

HB = ρ(1 − αB)M
1

βδt2 − μL
γ

βδt
− ρc2GM−1

p D

(45)

r̄B = Fn+1 + G p̄n+1 − ρM
(

(1 − αB)ūn+1 + αB ūn

βδt2

− v̄n

βδt
−

(
1 − 2β

2β

)
ān

)

+μL
(

ūn+1 − ūn

δt
−

(
γ

β
− 1

)
v̄n

)
(46)
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