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Abstract. Fluid-Structure Interaction (FSI) is a phenomenon that appears in a wide range of 

scientific research and engineering applications at different spatial and temporal scales. There 

are many in-house/commercial solvers capable of modelling FSI, but high numerical robustness 

and high scalability codes are still in demand. In this study, a numerical framework for FSI 

simulations has been developed using a partitioned approach aimed at both high numerical 

robustness and good computational scalability. Open-source software is used for each 

component of the coupled solution, with OpenFOAM and FEniCS adopted to simulate the 

computational fluid dynamics and computational structural mechanics, respectively. A 

coupling interface between the fluid and structural computational domains is realised using the 

open-source Multiscale Universal Interface (MUI) scientific code coupling library. To achieve 

a tight and stable coupling, various FSI coupling algorithms have been implemented in the 

MUI. The behaviour of this framework has been assessed for simulations of a blunt trailing 

edge hydrofoil at different working conditions with vortex-shedding induced vibration. 
 

1 INTRODUCTION 

Fluid-Structure Interaction (FSI) is the two-way coupling between fluid flow and structural 

response. This phenomenon occurs in a wide range of scientific research and engineering 

applications at different spatial and temporal scales. Examples include the hydroelasticity of a 

hydrofoil, the aeroelasticity of turbine blades and the flow of blood in an artery [1, 2]. To 

accurately and efficiently tackle large-scale FSI problems involving billions of degrees of 

freedom, such a tool needs to show good scalability. Robustness and stability are also required 

for a strong FSI coupling.   

The numerical procedures for solving FSI problems can be categorised into two approaches: 

the monolithic approach and the partitioned approach. A monolithic approach considers the 

fluid dynamics and structural mechanics in the same mathematical framework to form a single 

system for the entire problem, in which the fluid and structural domains are solved 

simultaneously by a unified algorithm. The interfacial conditions between these two domains 

are implicit in the solution procedure [3]. This approach can achieve stable and accelerated 

convergence for strongly coupled systems (where the structural response is highly dependent 

upon the fluid forces, and vice-versa), but it can be increasingly difficult to cope with FSI 
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applications not originally considered, such as involving additional physical domain and phase 

of fluid. On the other hand, the partitioned approach treats the fluid and the structure as two 

computational domains which can be solved separately with their respective discretisations and 

numerical algorithms. The interfacial conditions are explicit, with information being 

communicated between domains. A partitioned approach for multi-physics coupling has some 

advantages over a monolithic one since it is possible to adopt existing codes with different 

discretisation types and algorithmic implementations. One of key challenges in a partitioned 

approach is to develop an efficient interface between domains, which is robust, highly scalable 

and with low overhead, in parallel computing.  

In this study, we developed an effective and robust methodology for FSI simulations that 

aims for good scalability using the partitioned approach to allow flexibility and methodological 

extensibility. The developed approach has been validated in a series of cases, such as 1-D heat 

transfer, 2-D flow over an elastic plate behind a rigid cylinder, 3-D channel flow over elastic 

beams of different elasticity. This paper presents the more complex and practical case of the 

simulation of the combined fluid dynamics and structural mechanics of an elastic hydrofoil 

under different flow regimes. 

This paper is organised as follows: The solvers and governing equations are presented in 

Section 2, details of validations and a preliminary scalability test of the FSI framework in 

Section 3 then simulation details and results of the test case of vortex-shedding induced 

vibration of a hydrofoil with blunt trailing edge in Section 4. Finally, conclusions are drawn 

and future directions are discussed in Section 5. 

2 SOLVERS AND GOVERNING EQUATIONS 

OpenFOAM [4] and FEniCS [5] are adopted to simulate Computational Fluid Dynamics 

(CFD) and Computational Structural Mechanics (CSM), respectively. The interface between 

fluid and structural domains is built up via the Multiscale Universal Interface (MUI) scientific 

code coupling library [6]. This library has been demonstrated to provide good scalability [7] 

and allows an arbitrary number of codes to communicate using the Message Passing Interface 

(MPI) standard, via a cloud of points. Two FSI coupling algorithms (Fixed Relaxation and 

Aitken's 𝛿2) have been developed to achieve a tight and stable coupling. 

2.1 Fluid solver 

In the present framework, a new CFD solver pimpleFSIFoam is developed based on the 

standard OpenFOAM solver pimpleFoam for the fluid domain using the finite volume method. 

The solver inherits the same key algorithms from pimpleFoam to solve steady and/or unsteady 

incompressible fluid simulation. The Reynolds Averaged Navier-Stokes (RANS) equations for 

incompressible transient Newtonian fluid with Arbitrary Lagrange–Euler (ALE) formulation to 

tackle moving boundary conditions are listed below. 

 𝛻 ∙ (𝑼 − 𝑼𝒔) = 0, (1) 

 
𝜕𝑼

𝜕𝑡
+ 𝛻 ∙ [(𝑼 − 𝑼𝒔)𝑼] +

1

𝜌𝑓

𝛻𝑝 − 𝛻 ∙ (𝜈𝑓𝛻𝑼) − 𝑔 = 0, (2) 

where 𝑼 is the fluid velocity, 𝑼𝒔 is the grid velocity, 𝑡 is the time, 𝜌𝑓 is the fluid density, 𝑝 is 

the fluid pressure, 𝑔 is the gravational acceleration, 𝜈𝑓 is the effective kinematic viscosity of 

the fluid that is the combination of laminar kinematic viscosity and turbulent kinematic 

viscosity. The pressure-momentum coupling algorithm, PIMPLE, which is the merge of 
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Pressure Implicit Split Operator (PISO) and Semi-Implicit Method of Pressure Linked 

Equations (SIMPLE), is used for pressure-velocity coupling [8]. Grid velocities of the control 

volume at the fluid-structure interface are determined at runtime according to the results of the 

structure solver. The other grid velocities of the fluid domain are determined by solving a 

Laplace equation [9]. Additional functions have been added to the solver to: a) calculate the 

fluid forces on each computational grid that is located in the interface between the domains and 

send the forces to the structural solver; b) receive the displacement of each computational grid 

point handled by the interface and apply the mesh movement accordingly; c) conduct sub-

iterations for fluid-structure interaction at each time step of fluid simulation. Section 2.3 will 

discuss these additional functions in detail. 

2.2 Structural solver 

The in-house CSM solver is developed based on the FEniCS library using the finite element 

method. The elastodynamics formulation with the force balance of linear momentum is written 

as 

 𝜌𝑠

𝜕2𝒅

𝜕𝑡2
= ∇ ∙ (𝐽𝜎𝑠𝑭−𝑇) + 𝜌𝑠𝒇𝒔, (3) 

where 𝜌𝑠  is the density of the structure, the vector 𝒅 is the structural displacement and 𝒇𝒔 

expresses the exterior body forces being exerted on the structure. The gradient of the 

deformation 𝑭 is calculated with the identity matrix 𝑰 as 

 𝑭 = 𝑰 + ∇𝒅 (4) 

and 𝐽 is the determinant of 𝑭. The stress tensor 𝜎𝑠  is calculated with two different methods 

suitable for different materials. The first form of the stress tensor is expressed by elastic model 

of Hooke's law as 

 𝜎𝑠 =
1

𝐽
𝑭(𝜆𝑠𝑇𝑟(𝜖)𝑰 + 2𝜇𝑠𝜖)𝑭𝑇 , (5) 

where 𝑇𝑟(⋅) is the trace operator. The Lamé coefficients 𝜆𝑠  and 𝜇𝑠  are determined by the 

Poisson’s ratio 𝜐𝑠 and Young’s modulus 𝐸 of the structure as 

 𝜆𝑠 =
𝜐𝑠𝐸

(1 + 𝜐𝑠)(1 − 2𝜐𝑠)
, (6) 

 𝜇𝑠 =
𝐸

2(1 + 𝜐𝑠)
, (7) 

The strain tensor 𝜖 is expressed as 

 𝜖 =
1

2
(∇𝒅 + (∇𝒅)𝑇). (8) 

The second form of the stress tensor is expressed by the hyper-elastic St. Vernant-Kirchhoff 

model as 

 𝜎𝑠 =
1

𝐽
𝑭(𝜆𝑠𝑇𝑟(𝑮)𝑰 + 2𝜇𝑠𝑮)𝑭𝑇 , (9) 

where 𝑮 is the Green Lagrangian strain tensor that is determined by 

 𝑮 =
1

2
(𝑪 − 𝑰). (10) 

The right Cauchy-Green strain tensor 𝑪 is calculated as 

 𝑪 = 𝑭𝑭𝑇 . (11) 
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Hooke's law is limited to small deformations of the structure, while the St. Vernant-Kirchhoff 

model is able to handle large deformations but remains valid for small strains [10, 11]. The one-

step 𝛩 scheme is implemented for time-stepping of both Hooke's law and the St. Vernant-

Kirchhoff model. This enables a clean switch between the second-order Crank-Nicholson 

scheme, the first-order backward-Euler scheme or the first-order forward-Euler scheme by 

setting the value of 𝛩 between 0 and 1. 

In addition to the aforementioned CSM solver, we have also implemented an alternative 

solver as follows. The elastodynamics formulation can alternatively be expressed in the form 

of a generalized 𝑛-degree of freedom (DOF) harmonic oscillator equation as 

 𝑴
𝜕2𝒅

𝜕𝑡2
+ 𝑪𝒔

𝜕𝒅

𝜕𝑡
+ 𝑲𝒅 = 𝑭(𝑡), (12) 

where 𝑴 is the mass matrix, 𝑲 is the stiffness matrix and 𝑭 is the external load, 𝑪𝒔  is the 

damping matrix. In the present in-house structural solver, the damping matrix is modelled based 

on Rayleigh damping as 

 𝑪𝒔 = 𝛼𝑚𝑴 + 𝛼𝑘𝑲, (13) 

where 𝛼𝑚  and 𝛼𝑘  are Rayleigh damping parameters and are determined on a case-by-case 

basis. Combining Eq (12) and (13) gives 

 𝑴
𝜕2𝒅

𝜕𝑡2
+ (𝛼𝑚𝑴 + 𝛼𝑘𝑲)

𝜕𝒅

𝜕𝑡
+ 𝑲𝒅 = 𝑭(𝑡). (14) 

For time stepping, the generalised-𝛼 method, which is an extension of the Newmark-𝛽 method 

is used to achieve a second-order temporal accuracy [12, 13]. The generalized 𝑛-DOF harmonic 

oscillator equation is also suitable for small deformation of the solid structure. Our validation 

cases show that with the same DOF of the structure domain, the calculation using the 

generalized 𝑛-DOF harmonic oscillator equation is about four times faster than that of the 

Hooke's law using the present simulation framework. 

2.3 Fluid-structure interaction 

The fluid and the structural domains of our partitioned FSI approach are coupled by 

kinematic and dynamic conditions at the interface between them. The displacement of the fluid-

structure interface must be consistent from one domain to another  

 𝒅𝒔 = 𝒅𝒇, (15) 

where 𝒅𝒔 and 𝒅𝒇 represent the displacement at the fluid-structure interface in the structure and 

fluid domains, respectively.  When the displacement of the structure domain at the interface has 

been determined by the structural solver, it is applied to the fluid domain as a moving Dirichlet 

boundary condition for the Arbitrary Lagrangian–Eulerian method for Navier–Stokes 

equations. The fluid forces, or tractions, acting on the structural domain via the interface 

according to the elastodynamics formulations have to follow the dynamic condition:  

 𝜎𝑠 ∙ 𝒏𝒔 = 𝒕𝒇, (16) 

where 𝒏𝒔 is the outward surface normal unit vector of a solid cell and 𝒕𝒇 is the traction at the 

fluid-structure interface, which is calculated as 

 𝒕𝒇 = 𝜎𝑓 ∙ 𝒏𝒇. (17) 

where 𝒏𝒇 is the outward surface normal unit vector of a fluid control volume. The stress tensor 

at the interface 𝜎𝑓, which is calculated from the fluid domain with an incompressible Newtonian 
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fluid is expressed as 

 𝜎𝑓 = −𝑝𝑰 + 𝜏, (18) 

where 𝑝  is the pressure force and 𝜏  is the viscous component of the stress tensor that is 

calculated as 

 𝜏 = 𝜇𝑓(∇𝑼 + ∇𝑼𝑇). (19) 

This dynamic condition dictates that the forces acting on the fluid-structure interface have to be 

consistent between the two domains. When the generalized n-DOF harmonic oscillator equation 

is used, the forces at the interface are applied to the structural domain in the form of a Dirichlet 

boundary condition as the right-hand term of Eq (14). 

It can be readily shown that for a partitioned approach, a loose coupling between fluid and 

solid domains has the potential to be unconditionally unstable irrespective of the time-step size 

for certain classes of FSI problems (such as those where the density ratio between the solid and 

fluid domains is small) [14]. There are several coupling methods to stabilise the numerical 

simulation, such as the fixed relaxation and Aitken’s 𝛿2 methods, both of which have been 

implemented in the developed solver through the MUI library. Both implemented methods are 

achieved through the fixed-point Gauss-Seidel iterative approach. The displacement of the 

structure at the (𝑘 + 1)th iteration, 𝒅𝑘+1, under the fixed-point Gauss-Seidel iteration approach 

can be expressed as 

 𝒅𝑘+1 = 𝒅𝑘 + 𝜔𝑘𝑹𝒌, (20) 

where 𝜔𝑘 is the under-relaxation factor at the 𝑘th iteration and the residual of the FSI coupling 

at the 𝑘th iteration, 𝑹𝒌, is determined as 

 𝑹𝒌 = 𝑭𝑠 ∘ 𝑭𝑓(𝒅𝑘) − 𝒅𝑘 , (21) 

where 𝑭𝑠 and 𝑭𝑓 are the interface operators for structure and fluid, respectively, 𝑎 ∘ 𝑏 denotes 

a composite function of 𝑎 composed with 𝑏, i.e. 𝑎(𝑏(𝑥)). For a fixed relaxation fixed-point 

Gauss-Seidel iteration method, the under-relaxation factor can be expressed as 

 𝜔𝑘 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. (22) 

For the Aitken's 𝛿2 fixed-point Gauss-Seidel iteration method, the under-relaxation factor is 

calculated as 

 𝜔𝑘 = −𝜔𝑘−1

(𝑹𝒌−𝟏)𝑇(𝑹𝒌 − 𝑹𝒌−𝟏)

‖𝑹𝒌 − 𝑹𝒌−𝟏‖2
. (23) 

A constraint is applied to the Aitken's 𝛿2 relaxation factor for stability as 

 𝜔𝑘 = 𝑠𝑔𝑛(𝜔𝑘)𝑚𝑖𝑛(|𝜔𝑘|, 𝜔𝑚𝑎𝑥), (24) 

where 𝜔𝑚𝑎𝑥 is the maximum value of the under relaxation factors between the 1st and the 𝑘th 

iterations. The fixed relaxation method is easier to implement, but has a slower convergence 

rate. The Aitken's 𝛿2 method requires slightly more computational resources per sub-iteration 

than the fixed relaxation method, but has a quicker convergence rate.  
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Figure 1: Flow chart of the developed FSI simulation framework 

 Figure 1 shows the flow chart of the presented framework. The left-hand side shows the 

CFD solver while the right shows the CSM solver. At time step 𝑛 and sub-iteration 𝑖, the CFD 

solver computes the flow field and provides fluid forces at each cell of the fluid structure 

interface to the structural domain through the MUI library. The displacements required by the 

CFD solver at each cell of the interface are determined based on the value fetched using MUI 

from the structural domain. The calculated displacements of each cell at the interface are then 

applied to the CFD solver as a Dirichlet boundary condition. The CSM solver fetches fluid 

forces via MUI and applies them as a boundary condition in the structural simulation. The CSM 

solver further calculates the deformation of the structure and pushes it back to the fluid solver. 

The stress of the structure is then updated and the both fluid and structural domains are 

advanced to the next sub-iteration. Sub-iterations are conducted within each time step until 

convergence is reached, i.e., the 𝑹𝒌 is small enough to be below the given criteria. The Radial 

Basis Function (RBF) spatial interpolation method [14] in the MUI library is used to ensure the 

global conservation of forces at the interface can be achieved between the two domains.  

The FSI framework is able to model FSI cases with both small and large structural 

deformation, but is valid for small strains only. However, in practice, large structural 

deformations typically implies low mesh quality as the mesh position is updated by the ALE 

method. 

3 VERIFICATION AND SCALABILITY TESTS 

Simulations have been carried out and compared with published results for the developed 

FSI framework. Note that verification for each part of the FSI framework, i.e. MUI with FSI 

coupling algorithms, pimpleFSIFoam and the in-house structure solver using FEniCS, can be 
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found in Liu et al. [15]. 

3.1 2-D flow over an elastic plate behind a rigid cylinder 

The first benchmark case is a 2-D flow over a rigid circular cylinder with an elastic plate. 

The geometry and fluid and boundary conditions can be found in Turek and Hron [16]. In the 

present study, the specific plate considered has a density of 1 × 103 𝑘𝑔/𝑚3,  a Poisson's ratio 

of 0.4 and a Young's modulus of 5.6 × 106 𝑃𝑎. The Reynolds number based on the maximum 

velocity and the cylinder diameter is 200. A total of 25,478 hexahedral cells on fluid domain 

and 10,143 DOFs on structure domain are employed after a study of grid independence tests. 

 
Figure 2: Displacement over time (left) and velocity magnitude contour (right) of flow over elastic plate with 

rigid cylinder. 
Figure 2 shows the tip displacement of the plate, the velocity contour of the fluid domain 

and the stress distribution in the structural domain. The simulation results show that the tip 

displacements of the plate agree well with published results [16]. The velocity contour is also 

qualitatively comparable with Figure 3.9 of Slyngstad [10].  

3.2 3-D parabolic flow over an elastic beam 

Our FSI framework has also been tested using a 3-D benchmark case. The test comprises a 

channel flow with a parabolic velocity inlet profile passing over an elastic beam with its root 

fixed to the lower channel wall. Simulation parameters can be found in [17]. The incoming peak 

velocity is 0.2 𝑚/𝑠 and the flexible beam has a Young's modulus (𝐸) of 1.4 × 106𝑃𝑎. The 

Reynolds number based on the beam height is 40 (i.e. this case is in laminar regime). A total of 

933,888 hexahedral cells on fluid domain and 12,152 DOFs on structure domain are employed 

after a study of grid independence tests. The x-axis and y-axis displacements (𝐷𝑥 and 𝐷𝑦) are 

taken at a selected monitoring point, as detailed in Tukovic et al. [17] and listed in Table 1, 

where they are compared with results from Richter [18] and Tukovic et al. [17]. The present 

simulation has effectively the same x-axis displacement as that of Richter [18] while the 

difference between those in Tukovic et al. [17] are less than 2%. 

 
Table 1: Displacement of the elastic beam compared with published results 

 
𝐸 = 1.4 × 106𝑃𝑎 

 

𝐸 = 1 × 104𝑃𝑎 

 

 𝐷𝑥 [m] 𝐷𝑦  [m] 𝐷𝑥 [m] 𝐷𝑦  [m] 

Present Simulation 5.95 × 10−5 2.36 × 10−5 1.52 × 10−2 4.77 × 10−3 

Tukovic et al.[17] 5.93 × 10−5 2.40 × 10−5 1.46 × 10−2 5.00 × 10−3 

Richter [18] 5.95 × 10−5 - - - 

Difference fromTukovic 

et al. [17] 
+0.34% −1.67% +4.11% −4.60% 
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To demonstrate the ability of the present FSI framework with a particularly challenging FSI 

case, the simulation of a softer beam is conducted with a peak flow velocity of 0.3 𝑚/𝑠 and 

with the Young's Modulus of the beam equal to 1 × 104𝑃𝑎, while all other conditions are kept 

the same. The x-axis and y-axis displacements at the selected monitoring point are listed in 

Table 1 and compared with Tukovic et al. [17]. The difference between the present simulation 

and that of Tukovic et al. [17] is less than 5%, which suggests the developed FSI framework 

behaves as expected while simulating challenging (highly flexible) problems in 3-D. 

3.3 Scalability testing of the FSI framework 

The fully coupled 3-D FSI case discussed in Section 3.2 is chosen here. Tests were achieved 

by varying the number of CPU cores of the fluid and structural solvers. More specifically, for 

the first test a fixed value of 100 MPI tasks has been employed for the structural domain while 

the number for the fluid domain was varied up to 1000 MPI tasks. For our subsequent test, a 

fixed number of 500 MPI ranks for the fluid domain was employed while up to 1000 were used 

for the structural domain to test the scaling performance of the FEniCS based in-house structural 

solver. In order to test the scalability of the framework up to 1000 CPU cores, we employed 

much larger hexahedral cells (83 million) and DOFs (2.5 million) than required by this case in 

fluid and structure domains, respectively. 

As shown in Figure 3, the in-house CFD solver, pimpleFSIFoam, shows good scalability, 

with parallel efficiency at approximately 68% for 1000 MPI ranks. However, the parallel 

efficiency of the in-house structural solver is around 40% for the same number of MPI ranks. 

Given the underlying framework used, FEniCS, is noted for its good parallel ability, and the 

most likely reason for the performance of the structural solver is that the number of DOF was 

not large enough to scale in the considered case, causing communications between MPI ranks 

to occupy a significant proportion of the computational resources and simulation time. Future 

work will be carried out to identify the bottleneck of the overall framework and optimise the 

implementation to enhance scalability. 

 
Figure 3: Solvers performance in scalability 

4 VORTEX-SHEDDING INDUCED VIBRATION OF A HYDROFOIL WITH 

BLUNT TRAILING EDGE 

4.1 Simulation setup 

Three-dimensional vortex-induced vibration of the trailing edge of a hydrofoil was 

simulated, following the experimental setup of Ausoni [19]. The NACA0009 hydrofoil is 

subject to a uniform incoming flow. The hydrofoil mounting can be assumed to embody a 

perfect embedding on one side and a pivot embedding on the other (see Figure 4). The hydrofoil 
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is set to make, zero Angle of Attack (AoA) with the incoming flow. The velocity of the 

incoming flow is 𝐶𝑟𝑒𝑓 along x-axis direction. The density of the fluid is 998 𝑘𝑔/𝑚3 and kinetic 

viscosity is 1 × 10−6𝑚2/𝑠 . The density of the hydrofoil structure is 7800 𝑘𝑔/𝑚3 . The 

Young’s modulus and Poisson’s ratio of the hydrofoil are 2.1 × 1011𝑃𝑎 and 0.3, respectively. 

The chord length, L, is 1m. The span length, B, is 0.15 m. The height of the tripped trailing 

edge, h, is 0.00322 m. The Reynolds's number based on the trailing edge height, 𝑅𝑒ℎ is defined 

as 

 𝑅𝑒ℎ =
𝜌ℎ𝐶𝑟𝑒𝑓

𝜇
. (25) 

 
Figure 4: Schematic plot of the hydrofoil case 

Following the experimental setup, the fluid domain extends 0.5𝐿 away from the leading edge 

of the hydrofoil towards the upstream, 7𝐿 away from the leading edge towards the downstream 

and 0.7𝐿 towards both the maximum and minimum y-axis domain boundaries. Both 2-D (i.e. 

one cell along the spanwise direction in the fluid domain) and 3-D (i.e. 100 cells along the 

spanwise direction in the fluid domain) fluid meshes were used for the fully coupled FSI 

simulations. The total number of the fluid cells employed is 0.145𝑀 for 2-D mesh and 100 

cells were uniformly distributed along the span to capture flow dynamics and solid deformation 

properly. A tetrahedral mesh is employed for the structural domain. A grid sensitivity test for 

the structure was carried out, which showed the difference between the results calculated with 

the fine grid (22767 DOFs) and that with the medium grid (6699 DOFs) is negligible. Therefore, 

the medium grid with 6699 DOFs is employed. The topology of the fluid and structural grids 

employed are presented in Figure 5. Boundary conditions of non-slip wall are set for the 

hydrofoil, top and bottom boundaries. The inlet boundary has a uniform fixed value of velocity 

and zero gradient of pressure. The outlet boundary is pressure outlet boundary condition. The 

𝑘 − 𝜔 turbulence model [20] is used to tackle the turbulence effect.  

  
Figure 5: Mesh for both the fluid and structure domains of the hydrofoil case with a zoom-out view of the 

domain (left) and zoom-in view at the trailing edge of the hydrofoil (right). 

The experiments showed that the lock-in regime for the hydrofoil with tripped trailing edge 

is in the region of 4.80 × 104 ≤ 𝑅𝑒ℎ ≤ 5.35 × 104 . Accordingly, four cases have been 

simulated using the 2-D fluid mesh, which are 𝑅𝑒ℎ = 3.86 × 104 (before the lock-in regime), 
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4.83 × 104 (the beginning of the lock-in regime), 5.31 × 104 (the end of the lock-in regime) 

and 7.08 × 104 (the lock-off regime). Three cases have been simulated using the 3-D fluid 

mesh, i.e., 𝑅𝑒ℎ = 3.86 × 104, 4.83 × 104 and 6.44 × 104. 

4.2 Results of vortex-shedding induced vibration of a hydrofoil  

 
Figure 6: Frequency ratio (left) and standard deviation of vibration amplitude (right) over 𝑅𝑒ℎ of the hydrofoil 

case compared with Ausoni [19]. 

 
Figure 7: Instantaneous velocity magnitude (top) and spectra (bottom) of the hydrofoil for the 2-D simulations 

with three Reh. 
The frequency ratio is defined as the vortex shedding frequency 𝑓𝑠, to the natural frequency 

of the hydrofoil (𝑓𝑛), which is calculated by model analysis [12]. Figure 6 shows the frequency 

ratio and standard deviation of displacement amplitude at the hydrofoil surface at 80% chord 

length for different 𝑅𝑒ℎ. Our results are compared against the experimental data of Ausoni [19]. 

Generally, the simulated both 2-D and 3-D frequency ratios agree well with the experimental 

results. When 𝑅𝑒ℎ = 3.86 × 104 , both 2-D and 3-D simulations give similar results. 

Differences between 2-D and 3-D simulations occur at the lock-in regime, in which a 

discontinuity also occur in the experimental data.  

The structure’s velocity magnitude at the hydrofoil surface at 80% chord length for three 

𝑅𝑒ℎ are shown in Figure 7. The instantaneous hydrofoil’s velocity at lock-in (𝑅𝑒ℎ = 5.31 ×
104) has significant features that distinguish it from other regimes: large amplitude with a single 
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dominant frequency. These features are also shown in the velocity spectra plot of Figure 7. The 

lock-in regime velocity has one dominant frequency with a large power spectral density, while 

the velocity in other regimes has two or more dominant frequencies with relatively small power 

spectral densities.  

The pressure and velocity contours of the fluid domain at the time that the hydrofoil reaches 

its maximum displacement under the lock-in regime are shown in the top of Figure 8. It can be 

seen that vortex shedding in the wake is captured. The stress distribution and amplified 

displacement at the time that it reaches its maximum displacement under the lock-in regime is 

shown in the bottom of Figure 8. 

  
Figure 8: Pressure (top left), velocity (top right), stress (bottom left) and displacement contours with 

magnification 1,000 (bottom right) of the hydrofoil at its maximum displacement under the lock-in regime. 

5 CONCLUSIONS AND FUTURE WORK 

We have developed a framework for fluid-structure interaction simulations using a 

partitioned approach. Solvers are developed based on the open-source OpenFOAM and FEniCS 

frameworks are adopted as the CFD and CSM solvers, respectively. The open-source Multiscale 

Universal Interface (MUI) coupling library is employed as the interface between fluid and 

structural domains. Two FSI coupling algorithms, the Fixed Relaxation approach and the 

Aitken's 𝛿2 approach, have been implemented within the MUI library to achieve a tight and 

stable coupling. Three validation cases are presented and compared with published results. 

These show the implementation to provide expected results. The vortex-shedding induced 

vibration of a hydrofoil is also presented. A comparison between the numerical simulation and 

the experimental data shows the capability of the present simulation framework to undertake 

challenging FSI simulations with a significant added mass effect. Current parallel scalability of 

the framework is also briefly discussed. This is currently under active development with a view 

towards an exascale capability. There is also an intention to include additional capability into 

the framework to satisfy different simulation needs, for example the inclusion of a meshless 

CFD approach. 
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