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An absorbing boundary condition for the ship wave resistance problem is pre-
sented. In contrast to the Dawson-like methods, it avoids the use of numerical vis-
cosities in the discretization, so that a centered scheme can be used for the free surface
operator. The absorbing boundary condition is “completely absorbing,” in the sense
that the solution is independent of the position of the downstream boundary and is de-
rived from straightforward analysis of the resulting constant-coefficients difference
equations, assuming thatthe mesh is 1D-structured (in the longitudinal direction) and
requires the eigen-decomposition of a matrix one dimension lower than the system
matrix. The use of a centered scheme for the free surface operator allows a full finite
element discretization. The drag is computed by a momentum flux balance. This
method is more accurate and guarantees positive resistange®s Academic Press

1. INTRODUCTION

When a body moves near the free surface of a fluid a pattern of trailing gravity wave
formed. The energy spent in building this pattern comes from the work done by the b
against thavave resistanceNumerical modeling of this problem is a matter of high interes
for ship design and marine engineering [1-12]. As afirst approximation, the wave resist
can be computed with a potential model, whereas for the viscous drag it can be assume
the position of the surface is held fixed at the reference hydrostatic position, i.e. a plane.
is, basically, thé&roude hypothesedVith this assumption, we are neglecting the interactio
produced by the boundary layer, which tends to produce a larger body, whose wave pa
in turn, tends to modify the potential flow which is the input to the boundary layer proce
Even if a potential model is assumed for the liquid, the problem is nonlinear due to the
surface boundary condition.
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We concentrate in this paper in the computation of the flow field and wave resiste
for a body in steady motion, by means of a potential model for the fluid and a lineari
free surface boundary condition. This is the basis for most ship design codes in indu
The governing equations are the Laplace equation with slip boundary conditions or
hull and channel walls, inlet/outlet conditions at the corresponding planes and the
surface boundary condition. The free surface boundary condition amounts to a Neur
boundary condition with a source term proportional to the streamlined second derivativ
the potential. However, the problem as stated so far is ill posed, in the sense thatiitis inve
under longitudinal coordinate inversion{> —x), and itis clear then, that it cannot capture
the characteristic trailing waves propagating downstream. To do this, we can either ¢
dissipative numerical mechanism orimpose some kin@bgbrbing boundary condition.”

It can be shown that the addition of a third-order derivative to the free surface bount
conditions, adds a dissipative mechanism and captures the correct sense of propa
for the wave pattern. This is equivalent to use a noncentered discretization scheme fc
second-order operator and falls among the well-knoupwind-technique$The amount
of viscosity added is related to the length of the mesh downstream of the body. If
viscosity parameter is too low, the trailing waves arrive at the downstream boundary
reflected in the upstream direction, and pollute the solution. If it is too high, the traili
waves are damped and incorrect values of the drag are obtained. Extending the mesh
downstream direction allows the use of a lower viscosity parameter, since the wave:
damped in alarger distance, but increases the computational cost (core memory). Num
experiences show that this third-order streamline viscosity term is too dissipative anc
meshes should be extended downstream too much. Dawson [1] proposed a method,
the fifth-order derivative is used instead, with a very particular finite difference discreti
tion. It is astonishing that standard discretization of the same operator does not work
neither do higher order operators (say seventh order). As a result, most codes today al
using some kind of variant of the Dawson scheme. However, this very particular viscc
term is hard to extend to general boundary fitted meshes, not to mention unstructured
putational methods like finite elements. It is by this cause that most codes are based
highly structured panel formulation.

Another possibility that is investigated in this work is to use an absorbing bound
condition in the downstream boundary. If such a numerical device could be found, t
there is no need to add a numerical viscosity term, since the trailing waves are not refle
upstream, and a usual centered scheme can be used for the free surface boundary tert
bonus, if such a centered scheme could be used, then the trailing waves would not da
and the drag could be computed in terms of the momentum flow through a plane arbitr
located downstream of the body. Absorbing boundary conditions are well studied for o
wave phenomena [13-19] like the Helmholtz equation in acoustics but are harder to fir
the context of the free surface flows studied in this paper. Broeze and Romate [2] devel
an absorbing boundary condition for potential flow with a panel method but in the con
of following a temporal evolution of the free surface problem and Lenoir and Tounsi [
treated the “sea-keeping” problem, which is closer to the Helmholtz-like equation than
“wave-resistance” problem.

The absorbing boundary condition we develop here is based on straightforward stu
the solutions of ODEs with constant coefficients on unbounded domains and follows clo
the general case described in [15]. Once we solve for the roots of the characteristic equ
the unbounded domain solution downstream or upstream corresponds to retaining i
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general solution, those terms that decay in that direction. For those roots with a null real
a perturbation technique determines the sense of propagation. It can be shown that 1
equivalent to determining the sign of the group velocity for the corresponding mode. O
the general unbounded domain solution is found, the absorbing boundary condition is
tained by differentiating this form and results in a full matrix coupling all the degrees of fre
dom on the outlet plane. This behavior is similar to the well-known DtN absorbing bound
condition proposed by Givoli and Keller in the context of the Helmholtz equation [13,1+

2. GOVERNING EQUATIONS

Consider the flow around a ship moving at constant speed and with fixed orientatio
space (i.e. no pitching, yawing, or rolling are allowed) with respect to water at rest i
channel of constant section which, for simplicity, is assumed to be a rectangle oftdept
and widthL y as shown in Fig. 1. We describe the flow in a system of coordinates attache
the ship, so that the ship is at rest and the flow and elevation pattern arrive at a steady p.
after an initial transient. The fluid to be modeled occupies regiamhich is bounded by
the channel walls and botto®, the inlet/outlet boundariesin out, the wetted surface of
the shipXghip, and the free surfacEqee. The governing equations are

ADd =0 inQ, (1.a)
Cp,n =0 at z:free‘|‘ 2:ch + Eship, (1b)
1 1

SIVOP+gn=SUL atTiee (1.c)
® = UyX at Zin, (1.d)
radiation b.c.'s abiout. (1.e)

The Laplace equation (1.a) comes from the assumption that the flow is irrotational
incompressible. The usual slip condition (1.b) is imposed at the channel walls, bottom,
free surface. Alternatively, we will consider also the case of imposing Dirichlet bound
conditions at the bottom® =U_,x. This is discussed both at the beginning of Section
and in Appendix 1. Equation (1.c) is the “dynamic free surfdo@undary condition. It
comes from the Bernoulli equation (including a hydrostatic tgam; stands for the surface
elevation) and itis usually linearized under certain assumptions as, for instance, that the
is thin, slender, slow, or deeply submerged. Thedfation boundary conditiorisshould

FIG.1. Geometrical description.
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allow, roughly speaking, the flow of energy in the form of radiating waves to propag
downstream and exit cleanly 8t,. In contrast, no waves are allowed to propagate upstre:
to X, so that we simply impose that the potential should approach the undisturbed
there. Note that, the different treatmentii, and X, is the only element that can break
the symmetryx — —x and ensure a physically correct wave pattern. Another means
doing this is the addition of some “upwihdr “numerical dissipation” mechanism.
In slow ship theory, the flow is decomposed in a base flgwalso called “double body

flow,” and a Wave perturbation” flowp [3,6,7] defined by

O = Pg+ ¢. (2)

The great simplification comes from the fact that the governing equations for both fl
are restricted to the domaiflg, where the free surfacEqee has been replaced by the
undisturbed position of the free surfaEgee o, Which in this case is simply the plaze=0.
The double body flow satisfies

Ady =0 in Qo,
Ppn =0 atXch + Xship + Zfree o 3

(bO,n = Uoo <A at 2:in/out-

The wave perturbation componeptsatisfies a similar system, but with a linearized fre
surface boundary condition. This linear boundary condition is obtained by performing a f
order perturbation expansion of both the kinematic (1.b) and dynamic (1.c) free sur
conditions and eliminating the surface elevatiprirhis results is a combined Neumann-
like boundary condition involving the normal and streamlined second-order derivative
the free surface. Several versions of the free surface boundary condition have been pro
(see[1-12], especially [7-9]), which depend on the particular assumptisidixeshipthin
ship, ordeeply submerged shifor instance). We will make use here of a rather standa
slow ship expansion, but the process of developing the absorbing boundary conditic
rather independent of the specific linearized free boundary condition used. The govel
equations for the wave perturbation potential are

A¢p =0, in Qo,
(b,n =0, at Xeh + 2:shipv
¢ = Os at Ein»

; (4)
dn+ W(UOi Ugj¢,j) =r.hs., atZgee,
i

radiation b.c.’s at Xout.

HereUg = ®p; and r.h.s. is a right-hand side term involving the residual of the Bernot
equation at the reference free surfaeceO for the base flow. This instance of the boundar
condition has the advantage that it can be easily treated in a finite element context,
the conservative form of the streamlined second-order derivative can be integrated by |
However, it will be clear from the development through the paper that the proposed boun
condition can be easily coupled to any version of the linearized free surface boun
conditions. It will also be explained for a finite element (FEM) discretization, but it
automatically extended to any other kind @f YYolume” methods: finite volumes (FVM),



574 STORTI, D’ELIA AND IDELSOHN

finite differences (FDM) or the youngenfesh-less methods” [20,21]. The extension t
boundaryintegral methods as the “panel”botindary element” onesis stillin development
We will describe the method in a more restricted context, by replacing the ship b
pressure distribution, i.e. nonuniform atmospheric pressure. Physically, this problem
responds to hovercrafts, and the nonlinear free surface boundary condition is

P(x) + %/)IVCDI2 + p9n = Pam + %pro, (5)
whereP,mis the atmospheric pressure far from the disturbancdarylis a given function.
It is clear that once the absorbing boundary condition is obtained, it can be applied tc
more general ship case, defined by (4), since the absorbing properties are independent
generating mechanism. The 3D examples below correspond to the general case of Eq
Assuming that the disturbance is small, [B.— Pym| < %onzo, we can takebg = U, X as
the base flow and we obtain the following linear problem for the wave perturbation poten

A¢p =0, in Qo, (6.a)
¢on=0, at Xcp, (6.b)
¢ =0, at %y, (6.c)
dn+ K71‘1’,xx = —(Us/p9) APy, atZfee, (6.d)
and radiation b.c.s at Xout. (6.e)

HereK = g/UZ is thecharacteristic wave numbegrelated to the Froude number Fr by

Uo 1
B vV gl—ship B AV K I-ship’

whereL ghip is a characteristic length of the ship. This problem is far more simple than:
previous one since the involved operator plus boundary conditions are invariant unc
translation in thex direction. In addition, we will assume that the pressure perturbation f
compact support, i.e., that

Fr ©)

AP =0 for|x|>Lap. (8)

3. PARTIAL DISCRETIZATION

To apply the method, we have first to discretize the problem in order to obtain a sys
of ODEs. LetX,, be the typical section of the channel (see Fig. 2); then we will discreti
the problem in two steps by doing, first, a partial discretizatioXjp and, then, a one-
dimensional discretization in thecoordinate. We will show how the partial discretizatior
by finite elements is performed; the case of finite differences is straightforward. Havir
two-dimensional finite element mesh in the typical section we approximate the potentic

Nsiab

P, Y. 2 ~ (X, ¥, 2 =D _ $(x) Ni(Y, 2), ©)

k=1

whereNgjqp IS the number of “freénodes in the typical section; i.e., they do not include
the bottom nodes if Dirichlet boundary conditions are imposed in that part of the bound



ALGEBRAIC DNL ABSORBING BOUNDARY 575

y/l\ -="7 Channel typical section

FIG. 2. Discretization of the problem as the composition of a 2D discretizatigiz end a 1D discretization
in X. FEM unstructured mesh on the typical channel section.

Nk(y, 2) are two-dimensional interpolation functions. Replacing this in the Laplace eq
tion (6.a) and integrating by parts yrz, we obtain

M6~ Ko+ [ Nygndy=o (10)
free0

whereg (x) is the vector of nodal potentials aMiandK are the typical FEM matrices for
the identity (mass matrix) and Laplace operators, defined by

$100)
so0=| 2%
P00
'V'jk=/E N;j(y, 2) Nk(y, 2) dy dz (11)

yz

Kjk=/ VyaNi (v, 2) - VyaNi(y, 2) dy dz
>

yz
Replacingp , from the free surface boundary condition (6.d), we arrive at
M ¢ xx — K ¢ = G(x), (12)

which is a system of ODEs. The modified mass maltisncludes the “free surface mass
matrix” Mee, andG(X) is a right-hand side contribution coming from the pressure pertt
bation on the free surface, defined by

|\7| =M - K_lereea (13)
where

Miee.jk = / N; (v, 0) Ni(y, 0) dy (14)
J Liree0
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and

Gk(X) = (Uso/pQ) NcAPx dy. (15)

Ziree0

M andM gee are positive definite and semi-definite mass matrices, respecivisdyositive
semi-definite if Neumann boundary conditions are imposed at the bottom, and positive
nite if Dirichlet boundary conditions are imposed at the bottom. All of them are symmet
Due to the negative sign in (18) does not have a definite sign.

4. MODAL DECOMPOSITION

The general solution to (12) can be found by means of a modal decompositid.A et
be the solution to the eigenvalue decomposition problem,

KS = MSA4, (16)

with S nonsingular andl diagonal. For a Dirichlet boundary condition at the bottom, thi
decomposition is assured by the fact that bttandK are symmetric and real, angl

is positive definite. For a Neumann boundary condition at the bokois only positive
semi-definite, but the null eigenvector of the matixcan be treated separately and th
problem is reduced again t positive definite (for details, refer to Appendix 1). We car
assume also th& and A are real. We make the change of variahles SU, and system
(12) becomes, after premultiplying lﬁyll\7l ~1, a set of uncoupled equations of the form

Uixx — AUk = F, (17)
where
F(x) = STM1G(x). (18)

For small Froude numbers (larg): (i) the free surface term can be neglected in (13
so that the problem is equivalent to the Laplace equation with some prescribed flux or
free surface; and (ii) the matrM =M is positive definite and all the eigenvalugs} are
positive, corresponding to the purely viscous case. But, for the Froude numbers of inte
(typically Fr= (Az/3Lshnip)*/?, whereAz is the typical vertical size of the elements nea
the surface; see Appendix 2)i,, eigenvalues become negative, and we may assume t

Ak <0 forl<k < Np,
(19)
Ak >0 for Nipy + 1 < K < Ngjap

Each negative.x gives two complex conjugate inviscjd eigenvalues of the form =
+i /T[] (see Fig. 3).

The key part of the method relies on the solution of each of the 1D equations (:
Physically, a radiation boundary condition is such that when it is imposed on a bounda
gives the same solution as if the boundary wereshed to infinity, i.e. the “unbounded
domain solution.” We will see that for the positikg's, this process of pushing the boundary
to infinity has a well-defined limit, whereas for the negatiyés, a perturbation analysis
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@

inviscid pure viscous

pure viscous
right-going inviscid

FIG. 3. Eigenvalue distribution for the inviscid free surface problem.

will be required. The treatment given here resembles the one given by Hagstrom and K
[15], but here we consider in detail the case of these negative eigenvalues (i.e., not exhil
a natural exponential decay or growth).

4.1. The “Purely Viscous” Case

Letus start withthey > 0 case, whichis equivalent to a 1D heat equation with Newtoni:
cooling in|x| < L and homogeneous Dirichlet conditionscat +L . For the sake of clarity
we will drop thek subindex and, as we are interested in the limitlfer co, we label the
corresponding solution a$, , which satisfies

Uxx—AUL =FX) in|x| <L, (20.a)
u =0 atx = £L, (20.b)

with A > 0. Due to the compact support afP assumed in (8)F has the same compact
support, i.e.

F(xX) =0 for|x| > Lap. (21)
The solution to this is of the form
U . =ULnn+ULn, (22)
whereU ny is @ nonhomogeneous solution satisfying (20.a) but not necessarily the bol
ary conditions, and,_ y is the generalhomogeneous solution, found by looking for solutio
of the forme** and solving the characteristic polynomial which in this case leadstot-k
with k = +/A (see Fig. 4). Then, the general homogeneous solution is

ULp(x) =ad*+be (23)

But, due to the assumption of compact support for the pressure perturbatibrig®ull for
|X| > Lap and, then, an expression of the form (23) holdddpry in the regionx > L ap
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®

(right-going) (left-going)
- +A
X > >

FIG. 4. Pure viscous case (heat equation with Newtonian cooling) uréigenvalues are on the real axis.

andx < —L op. However, the coefficients are different for both regions,

asy, €% 4+ b, ek forx > +Lap,

24
any € + by e forx < —Lap. (24)

UL NH(X) = {

The constanta andb are determined from the boundary conditions and result in

_ —ayy € + agy €% + by — by

a e2kL _ e—2kL
(25)
b —by €C + by €72 + by — by
- e2kL _ e—2kL ’
and, lettingL — oo, we obtain
LIim a=—ajy, lim b= —by,. (26)
— 00 L—o0

This defines the “unbounded domain solution” lim,, U, for the problem. Itis clear that it
is unique from the unicity of the bounded solution. It can also be shown that itis indepen
of the kind of boundary condition imposed at the artificial boundatiestL. Moreover,

it satisfies

lim U, =

| { (b — bry) €7 for x > +Lap, 27)

(ayy — aty) €7 for x < —Lap.

So that the “unbounded domain solution” is such that it has only decaying compon
for x — +o0 in x > Lap and vice versa for the left boundary. If we classify a decayin
component-oo, such a® ¥, as ‘right-going,” ande®* as “left going,” then we recover the
well-known rule for imposing boundary conditions in the context of hyperbolic systen
impose the incoming components to zero and let free the outgoing compdimémssiggests

the following modification of (20), including “absorbing” boundary conditions based ¢
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differentiation of the forms in (27) as

Uxx—AU =FX) in|x| <L; (28.a)
Ux+kU=0 atx =L > Lap; (28.b)
Ux—kU=0 atX = —L < —Lap. (28.c)

It can be shown that the solution to this system agrees with lignU, , independently of L
aslong ad > L Ap, of course. Equations (28.b), (28.c) are then referred teaspletely
absorbing boundary conditions.”

4.2. The Inviscid Case

Now consider (20) in thex < 0 case, which is a 1D Helmholtz equation. The characte
istic equation leads now te = +ik (see Fig. 5) wittk = /]A| and the general solution to
the homogeneous equation is now of the faef* 4 be %, After imposing the boundary
conditions, we obtain

a=

—agy & +agy e + by — by

e2kL _ g-2kL (29)

Clearly, this expression does not have a definite valud_fer co, and the denominator
even diverges fokL =ns /2. The same is true fdr. This result seems to disagree with the
physical intuition. If some acoustical experiment is made inside a tube, and the leng
the tube is increased, we expect that for a tube long enough the effects of the positi
type (rigid wall, membrane, or anything else) of the other end will be negligible.

The solution to this paradox is that in the real world there exists always some amoul
physical dissipation. Roughly speaking, we propose to add a dissipation term, classif
modes as right- or left-going and then let the dissipation parameter go to zero. Howeve
resulting absorbing boundary conditions will depend on the particular dissipation oper
chosen, and then the conclusion is that the dissipation operator has to be chosen as
to the physics of the problem at hand as possible, such that the sense of propagation

®

X +A|A|

K —AA

N

FIG. 5. Inviscid case (Helmholtz equation). Tleeigenvalues are on the imaginary axis.



580 STORTI, D’ELIA AND IDELSOHN

undamped waves is preserved. As an example, we will first derive the absorbing boun
conditions for the Helmholtz equation, as coming from the wave equation in the freque
domain. Later, we will derive the absorbing boundary conditions for the inviscid mod
Ak < 0. Even if it is equivalent to a Helmholtz equation, it will be shown that the physic
dissipation appropriated for the wave-resistance problem leads to an absorbing boul
condition that is essentially different from the wave equation in the frequency domain.

4.2.1. The 1D Helmholtz equationConsider the 1D Helmholtz equation with homo-
geneous Dirichlet boundary conditionsxat +-L,

UsL xx + (K2 +i8)us. = F in|x| <L, (30.a)
usL. =0 atx = +L, (30.b)

whereus, is the amplitude of the perturbation,= cx is the dispersion law, witlv the
frequency and the speed of sound. Dissipation has been introduced by adding asierm
with § > 0,8 — 0. The characteristic eigenvalues are- +iks (see Fig. 6), wherk; is the
complex solution of

k2 =«k24i8, (31)

with Re{k} > 0. Ask?+i§ is in the first quadrank; will be there also, i.e. Iifks} > 0,
and then

ik, oo forx — Foo,
e = {O for x — oo, (32)

so thaik; is right-going and-iks is left-going. The general expression for the homogeneo
solution is of the form

uy = ae X 4 pdkX, (33)

iks X (right-going)

(left-going) P<-ik

FIG. 6. The inviscid eigenvalues are “perturbed” with a small dissipative term.
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Forming the general solution and solving for the constants,

—ap € 2t + agy €0 + by — by

a= e 2k _ g2iksL J
. . (34)
b— —byy &2 4 by €1 + b, — by
= e 2kl _ gaiksL ’
and again,
LIim a=—ajy, lim b=—by,. (35)
) L—>oo

As in (27), only the decaying components are retained in the far-field expansion, so tt

. etikx for x > +Lap,
U {eik&x forx < —Lap, (36)
This is the far-field expansion for thgiScous unbounded domasolution for the problem,
and it can be shown that it does not depend on the particular boundary condition imp
atx = L. The “inviscid unbounded domdiis obtained by lettingg — 0 and is simply

00 = fm im0} @)

This is the solution we want. A key point is that the order in taking the lichitss matter.
As ks — k for 8§ — 0 it results thati oc €% for x > L Ap, and then

Ux —iku=0 atx=+4L > Lap (38)
is the appropriate right boundary condition, whereas
Ux+iku=0 atx=—L < —Lap (39)

is the appropriate left one. Again, the solution to the Helmholtz 1D equation with thi
boundaries is the same as the limit solution (3@}lependently of > Lp. It can be
shown that the definition of right- and left-going are physically correct. Indeed, com
back to the time domain, it results that right-going waves do have a positivgroup
velocity, whereas the left-going ones have a negatiggroup velocity.

4.2.2. The wave-resistance problen©ther numerical algorithms, notably those base
on the work of Dawson, do not use radiation boundary conditions, but instead they a
numerical viscosityerm proportional td¢ xxxxx Wheres is a “numerical viscosity para-
meter” or, also, aRayleigh viscosity coefficiehtA term proportional to—38¢ xxx is also
dissipative, but the damping of the waves is too strong to be admissible for numel
calculations. Since after determination of the sense of propagation we take thiatindit
precision does not matter here, and we choose by simplicity the low ¢rdedissipative
term. The perturbed free surface boundary condition is

dn+ Kil((lb,xx =8¢ xxx) = —(Uo/p9)APx. (40)
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Repeating the semi-discretization process we arrive at the perturbed system of ODEs
Mg xx — K Miree(d xx — 86xxx) — Kop = G(x), (41)
and the characteristic equation is obtained by replagiagpse’** and results in
(13N + 8K ufMiree — K)) ¢5 = 0. (42)

To find the sense of propagation it is not necessary to determine the whole depenc
of i on§ but only a first-order expansion abaut= 0. Accordingly, we assume a regular
perturbation expansion far; andg¢s of the form

ms = w+ A+ 0(8%), (43.2)
ds = ¢o+ Ap + O(8?), (43.b)

whereu? andgg are the eigenvalues and eigenvectors of the unperturbed system (16)
the diagonal elements of and column vectors d, respectively. Replacing Egs. (43) in
(42) and retaining only those terms up@qs), we obtain

(1M = K) +2uMAL + PK ™ Myeed] (do + Ag) = O. (44)

Premultiplying byg{, we obtain

1 T Moo -
Ap = —2op2K 120 Miee o (45)
2 $o - M - o
It follows from (16) that
$o - K - do = 11°¢5 - M - o, (46)
so that
T
 Miran -
Ap = —1/28;L4K‘1w. (47)
$o K- o
But, from (13) and (16), we have that for the inviscid modes
MK " g Mireapo = ¢pg Kepo + [AIg Mo > O (48)

and, sinceu is pure imaginary for the inviscid moded > 0, thenAu is negative, so that
all the inviscid eigenvalues are right-going (see Fig. 7).

It can be shown in a more general context that the “sense of propagation” as def
here has a correct physical sense, since “right going” modes correspond to positive ¢
velocities for the time-dependent problem. Indeed, it can be shown that

od

Ap = (49)

9
UGx

wherevgy is thex-component of the group velocity, ands a real positive constant.
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4

Ap @
inviscid g pure viscous
right-going X lef-going

HHHHH———HHRHKHH——
—

pure viscous >><< inviscid
right-going X right-going

FIG. 7. Distributions ofu eigenvalues for the free surface problem with a small dissipative term.

As for eachik < 0 both eigenvalues = +i /|| are right-going, the unbounded domair
solution is

a etivilx 4 by @ IVIAdX for x > Lap,
U = 50
k {0 forx < —Lap, (50)

for 1 <k < Nijpy, Wherex > L »p is far downstream and < L o p is far upstream. The cor-
responding radiation boundary conditions are

Uc=Ukx =0 atx=—-L <—Lap,
’ 51
none atx = L > Lap. (1)

4.3. Summary of Cases
In brief, the method can be described as follows:

o Look for solutions with a dependencye** in the x direction
e Solve the characteristic equation for the eigenvajugsThey are classified according
to:
> Viscous if R€u} # 0; inviscid otherwise.
> Theviscous modes are classifiedight-going, if Rg 1} < 0; left-goingif Re{u} > 0.
> To classify the inviscid modes, add a small dissipation and classify them as in
previous point.
o Retain only the right-going modes (viscous or inviscid) in the general expression.
e The radiation boundary condition is found by differentiation of this general form.

Of course, this corresponds to a boundary which is located at the right end of the don
For a boundary at the left end, the left-going modes should be retained.

5. THE RADIATION BOUNDARY CONDITION

The absorbing boundary conditions for the viscous modes downstream (28.b) (see F
can be written as

Myiswy (Ux + AZU) =0, (52)
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FIG. 8. Mode amplitude for the pure viscous modes.

where

1 .
Az =diagg 0, ...,0, \/ANpt1s -« s V/ANgws f (53.3)
Niny
HViSCU = I:ONviscXva INviSCXNvisc] . (53b)

I1sq is the projection matrix on the subspace spanned by the viscous modesuUn tt
basis. Coming back to thg basis, we obtain

Hvisc(¢,x + Fab@) =0 atx= ‘|'L, (54)

where
Iisc = Ilisqy Sﬁl, (55.&)
Fabs= SA?S ™, (55.b)

and, similarly, upstream,
Ilisc(px — Fapgp) =0 atx = —L. (56)

Il is the same projection operator Bgisqy but now in theg basis. On the other hand,
for the inviscid modes the conditions are

IIinvfb,x = 11inv¢ =0 atx=-L, (57)
where, analogously to (53.b) and (551&),, is defined as
IIinV = [I NinyXNiny ONianNvisc] S_l’ (58)

and none at = L (Fig. 9). Intotal, we havélgap+ Niny equations upstream am ap— Niny
downstream, making a total of\Rj,, which is correct, since we have a systemNaf,p
second-order ODEs.

The Faps matrix is full, so that the ODEs are fully coupled at the boundaries. This is
characteristic of higher order absorbing boundary conditions, as the DtN [13]. “Nonloc
in the DNL acronym, stands for this fact.
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6. DISCRETE RADIATION BOUNDARY CONDITION

Now we will consider the full discretization of the wave-resistance problem for a press
perturbation on a 1D structured grid. We mean by this a mesh which is composed of ider
layers of nodes on planes at positiofjs= JAX. The generating mesh in the channel sectio
can be nonstructured and completely general. Afterwards, we will see that the exter
to the general case, with a ship, or any other kind of obstacle, and a nonstructured |
around it is very simple, provided that the mesh is 1D-structured far downstream anc
upstream {f| > L) for a certainL.

The obvious way is to proceed to a 1D discretization of (12) by finite elements :
a second-order approximation to Eqgs. (54), (56), (57). This is straightforward, is bri
described in the next section, and will be called in the following thartially discreté
approach. Another possibility is to discretize the interior governing equation (12) and t
to design an absorbing boundary condition for the resulting system of difference equat
This is explained in Section 6.2, where it is explained in the context of the Helmhc
equation and the extension to potential flow with free surface is summarized. We term
approach the “fully discretene. It turns out to be that 1D discretization and the design
the absorbing boundary condition “do not commute” and the resulting discrete absor
boundary conditions are different (see Fig. 11). We will show that the partially discr
alternative gives some amount of reflection due to the numerical error introduced in
wave number, and then, the fully discrete alternative is strongly recommended.

6.1. Partially Discrete Approach

Finite element 1D discretization of (12) gives
Ap 't — 2Bg’ + Agl 7t = AX?GY, (59)

where

B=M + ZAX?K, (60)
< 1
G’ = (G771 +4G7 + G,

The boundary conditions (54), (56), can be discretized with a second-order approxim:
to the first derivative by means of a fictitious layer (see Fig. 10).NLéde the last node



586 STORTI, D’ELIA AND IDELSOHN

N-1 N N+1
b
—_— ..?
-
_
—_— ..g:?
I .-0

FIG. 10. Second-order approximation to the artificial boundary condition.

layer of the mesh (so thagy = L) and letN + 1 be the fictitious layer; then the discrete
version of the boundary condition is

N+1 _ sN-1
Hvisc(% + Fab@N> = O,

(61)
ApNTt —2BgN + ApN Tt =0,

where we added the “interior” governing equationJdoe N in order to balance the number
of equations and unknowns. Note that we assu@a= 0 due to (8). Similarly, at the left

end we have
—N4+1 _ 4—N-1
Hvisc(% - Fabsﬁb_N> = O,

A¢_N+l _ ZB¢_N +A¢_N_l — O,

s o (62)
—N+1 —N-1
HMV(‘W;‘?) _o.
2AX

Do not confuse the order of approximation to the semi-discrete boundary conditions (
(56) with the order of the boundary condition itself. Usually, absorbing boundary conditit
are classified as first order, second order, etc., depending on the order of expansior
respect to the angle of incidence of a plane wave with respect to the normal to the boun
In this respect, this boundary condition is exact like the DtN in the sense that it is f
absorbent under mesh refinement.

6.2. Fully Discrete Approach

Now consider again the discrete Helmholtz equation as described in Section 4.2, w
absorbing boundary condition is (38). Discretization by FEM on a mesh of constant nr
stepAXx gives

PItL —2¢] 4 pi-t
AX?

- (—13,\(¢i+1+4¢j +¢i™H =0. (63)
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Second-order discretization of the absorbing boundary condition akouwith a fictitious
nodeN + 1 leads to
¢N+1 _ ¢N—1
2AX
¢N+l _ 2¢N + ¢N—l
AX?

—ikgN =0, (64.a)

—1/6x(N + 4N + 9N "h =0, (64.b)

whereN + 1 corresponds to the fictitious node. The interior equation (64.b) for the Mode
equation is added in order to balance the number of equations and unknowns. Elimin.
the potential at the fictitious node,

oN = fpppN T, (65)
where
— 1nAx2 -
fop=| — 3" _jkAX . 66
PD <1+ %)\sz > ( )

The “fully discreté alternative shown in Fig. 11 is to find the general solution to th
difference equation (63) in the form

o = a/LL +bul, (67)

whereu. are solutions of the characteristic equation

Au?—2Bu+ A=0, (68)
with
1 2 2 1 2 2

Both . are complex conjugate and of unit modulus; see Fig. 13. The perturbation ana
shows thajt, movesinsidethe unit circle for a small dissipative term, whergasmoves
outside, so that we retain the” component in (67) and satisfy the boundary condition

N = frpp"N 1, (70)
Interior equation (12)| —COMNUOUS, [ oo nrinuous absorbing boundary
analysis condition (54,56,57)
® ®
8 3
B S
Q S
v | Partially Discrete a.b.c. (62) |
Discrete interior discrete [ -
equation (59,60) analysis | _Fully Discrete a.b.c. (73,74) |

FIG. 11. Schematic description of the “partially” and “fully” discrete versions of the boundary condition.
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FIG. 12. Discrete coefficient of reflection for the 1D Helmholtz equation.
where

fFD = MJr. (71)

Now, in order to compute the reflection coefficient for a given boundary condition
insert the general solution (67) in the boundary condition in the form (65) or (70) and ob
a linear relationship between the amplitude of the incoming kdedhe outgoing wava:

_ ’1— fut
1 fut

b

a

T Vo

R: =
uN1— fput

. (72)

It is clear now from this and (71) that the fully discrete boundary condition gives a n
reflection coefficient, whereas the partially discrete one (65), (66) suffers from some am
of reflection which is computed from (72), (66) and plotted in Fig. 12. This reflection
purely numericaR oc (kAx)? for smallkAx, and for the critical wave number, where the
wave becomes evanescent, it reaches the maximum value of 100% reflection. The *

FIG. 13. Roots of the characteristic discrete equation.
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discrete” approach is then adopted. The term “discrete” in the name of the method st
for this particular way of obtaining the absorbing boundary condition by the straightforw
solution of the system of discrete equations.

In conclusion, the “fully discrete” version of the absorbing boundary condition for tl
potential flow problem with a free-surface is given by

Iisc(¢™ — Frop™ ™) =0,
Iisc(¢~N — Fepp™ V1) =0, (73)
g™ = Mg N =0,

where

_adi + + —1
Frp=3Sdiagq 0, ...,0, Uy 11s s BNy ¢ S >
Nin\/

Nyisc

and

w =& —VE -1
b= 1+ 2AX% fork = Niw + 1, ..., Nejap. (74)
T 1 1A

7. IMPLEMENTATION DETAILS

7.1. Nonstructured Meshes and Nonconstant Base-Flow Velocity Vector

The method was described for structured grid and constant base-flowxrditection,
but it only needs these restrictions to apply several layers near the upstream and downs
boundaries (see Fig. 14), allowing a nonstructured mesh and nonconstant flow in a ce
region near the ship. Once those layers are available, the maArmedB can be evaluated
andFgp and I,sc are computed in order to impose conditions (73), (74).

7.2. Numerical Computation of the Eigen-Decomposition (16)

In practice, we found it preferable to compute the absorption matrix directly by eig
decomposition oA 1B (rather than witiM —1K). A standard FEM code (with standard
boundary conditions, say Neumann, at the inlet/outlet planes) computes the matrix sy
with the free surface term. As no numerical dissipation term is added, the free surface
can be easily castin aweak form. (This pointis important for the finite element formulatic
MatricesA andB are extracted, and~'B and its eigen-decomposition is computed as
full matrix. This works rather as a black box on matriéesindB. The term ‘algebraic
for the method stands for this. We used the standard LAPACK routines DGECO, DGE
and DGEEVX to perform inversions and eigen-decompositions. As the size of the matr
is one dimension lower, this part of the computations is not relevant regarding CPU t
and RAM requirements.

7.3. FEM System Solution; Effects of Shifting the Boundary Conditions

Regarding the additional cost when solving the global FEM system matrix by a typi
direct skyline solver, note that the resulting absorbing matrix is full, i.e. connecting all
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FIG. 14. Unstructured mesh with structured layers upstream and downstream.

degrees of freedom on the two first structured layers (markedeand—N + 1in Fig. 14),
and also on the last two (marked ls— 1 andN). This represents some local increase i
the bandwidth but the overall increase in RAM requirement is negligible.

However, there is a practical problem related to the shifting of the boundary conditi
from the downstream boundary to the upstream one (see Fig. 15). Considering a mes
thatin Fig. 14, the degrees of freedom are numbered from left to right. Atthe leftin Fig. 15
see the symmetric structure of the matrix for the problem with standard Neumann boun
conditions at the left and right boundaries. Then the proposed boundary conditions ir
the deletion of some rows corresponding to the inviscid modes downstream and ac

I
Ninv equations
added upstream

N

o
2
Ninv equations deleted downstream <jl—

FIG. 15. Effect of shifting boundary conditions from downstream to upstream.
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the same number of rows upstream. There are two possibilities, replacing the deleted
by the new equations and leaving the ordering of the equations unaltered, or putting
new equations on top. This last possibility is shown in the figure. Note that this caus
shift of the main diagonal of the system matrix and it is likely that some elements in
new diagonal could be null, which in turns suggests that some null pivots could be fo
during elimination. The first possibility has the same drawback. Another alternative i
solve the original system which, in addition, is symmetric, taking into account the fact t
Ninv €equations have been modified by adding an unknown right-hand side. The syste
solved forN;p, right-hand sides with each one having unity in the corresponding modifi
equation and zero in the others. The solution is then found as a linear combination of t
solutions and imposing the relaxed equations on this combination. This leagto@N;n,
system of linear equations that determines the coefficients in the expansion. We cal
method “superposition” and has the advantage that the cost and structure of the sol
for each of theN;,, right-hand sides is the same as a standard finite elements prob
with standard boundary conditions, like the Laplace operator, for instance. Moreover.
proposed boundary conditions can be put in such way that the resulting matrix is symme
with a significant reduction in the RAM requirement. However, the system to be solve
singular for a certain discrete set of Froude numbers. In practice, one computes the dr
wave pattern for a certain set of Froude numbers, and it is unlikely that one of these w
coincide with one of the singular Froude numbers. Details of this are described in [5].
also the numerical example for the submerged cylinder [Section 8.1.3].

7.4. Wave Resistance Calculation

The energy spent by the ship against the wave-resistance is emitted in the form of gr
waves that form the wave pattern. This means that we can compute the drag by integt
the momentum flux density on a plane section downstream and this is the form in whicl
wave resistance is separated from the total resistance in experiments (see [7]). After
manipulation, it can be shown [4-6] that the expression is

1 1 +Ly
I:X - _710/ (d),zx - ¢,2y - ¢’ZZ) dS+ 7109\/ U(Xout, Y» 0)2 dy, (75)
2 Zout 2 y=-Ly
and the discrete version is
1 Ninv
2 T
Fx = QP;bj (7K)), (76)

whereg; is the jth eigenvector of system (16), i.e. thth column of matrixS, andb; is
the “amplitude” for thejth inviscid mode, defined by

Uj = by sinG/Ixj[x + ¥j), (r7)

wherey; are arbitrary phases. It is obvious from this expression that it is independer
the position of the boundary and that a positive drag is always assured. This is a (
advantage over Dawson-like methods based on numerical viscosities, which comput
wave-resistance by straightforward integration of pressure forces over the hull [3].
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8. NUMERICAL EXAMPLES

8.1. Two-Dimensional Examples

8.1.1. Submerged dipole (infinitesimal cylinder].he problem of a submerged cylinder
has an analytical solution in the limit of very small radius, in which case the cylinder ¢
be replaced by a dipole (see Fig. 16). Moreover, the drag calculation has been perfo
by computing the perturbation in pressure produced by the submerged dipole without
surface and applying this extra pressure as an equivalent hovercraft problem. The
pressure is

_ 2 W2 1
AP(X) = —2pU2b Re{i(x_}_if)z}, (78)

where f is the depth of the cylinder antlis its radius (here it enters only through the
intensity of the dipole). The analytical expression for the drag is [6,22]

Cuw = 472(0/ F)3Fr 8 e 2/F" (79)

where Fr is the Froude number based on depth; i.ex Bx,//gf. In the figure we plot

(b/f)3C,, which depends only on Fr. This is an interesting case in the sense that
pressure perturbation does not have compact support; i.e. it extends to infinity. Howe
it decaysoc|x|~2, and we see that the agreement is good. The mesh was structured

7 T T 1 1 T

or FEM, 240x20 |
| 240x f
elements\

st ]

analytic

N
T

W
T

drag coefficient (b/f)% C,,
N

-t
T

ol o ,
0.2 0.4 0.6 0.8 1.0 1.2 1.4

Froude number 2
9f

FIG. 16. Drag curve for the submerged dipole (cylinder with diamétet f). The drag coefficient is nor-
malized tob/f =1.
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FIG. 17. Drag curve for the parabolic pressure distribution.

2 x 240(x) x 20(2) triangular elements covering the rectangle< 6, —3<z<0(f =1).
The mesh was refined near the surface in such a wayMh@tiom/ A Zsurface= 10.

8.1.2. Parabolic pressure distribution.This is another B example, for a prescribed
pressure distribution of the form

_ [1-(x/a)? for x| < a;
AP_{O for |x| > a. (80)
The analytical drag coefficient is [6]
c, = 16(KacosKa—sinKa)2 81)

(Ka)3 '

whereK a = 1/Fr?, and the Fr number is taken basedafsee Fig. 17).

8.1.2.1. Invariance of the discrete solution with boundary positidrhis pressure dis-
tribution has compact support and, then, we can check that the solution is independe
the position of the boundary condition, as was asserted at the end of Section 6. To
ify this, we modeled the problem at &0.8 with two FEM meshes. The first one ha:s
2 x 80 x 10 triangular elements with x = const andA Zyottom/ A Zsurtace= 10, covering the
region—6 < x <2, —3 < z< 0. The second one is identical to this one, but it has been p!
longed downstream to = 6 with 40 additional element layers, keeping the satxe We
can see in Fig. 18 the potential on the free surface vergasboth meshes. Both coincide
to machine precision in the overlapping region.
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FIG. 18. Invariance of the discrete solution with the position of the absorbing boundary condition.

8.1.2.2. Constancy of elevationln 2D problems, the trailing elevation wave is a sinu
soid of constant amplitude far downstream. Numerical viscosity damps this wave, and
constancy of the trailing wave amplitude is a measure of the precision of the methoc
Fig. 19, we can see the trailing wave for the parabolic pressure distributicn=fdr at
Fr=0.5 for a mesh similar to the previous ones, but extended=td.0. No damping is
observed qualitatively. A detailed analysis shows thainodal amplitudes remain constant
to machine precision

8.1.3. Submerged cylinderThis is the case of a cylinder of finite radibsat a depth
f =4btoitsaxisinachannel of depth =2f (see Fig. 20). The meshis atypical “O” mest
around the cylinder, with two additional structured layers at the inlet and outlet planes.
purpose of this numerical example is to show a case where the mesh is not fully structt
The drag coefficient has been normalized with a fadtgf )3, to make it comparable with
the infinitesimal radius (dipole) case. The resulting drag curve is very similar to that
for a dipole. The drag was computed for 500 values of Fr in the rarige Br < 1 and we
show also the condition number of the linear system (see Fig. 21). We see that, as disc
in Section 7.3, the system is singular at a discrete set of Froude numbers. For very ¢
Froude numbers the condition number growths indefinitely. We do not have a satisfac
explanation for this, but we stress the fact that the Froude number range for which we ol
valid results covers the range of practical interest and is wider than those for other mett

8.2. 3D Examples

8.2.1. Wigley hull. The drag curve for the Wigley model 1805 A is shown in Fig. 22
The hull shape for this model is defined lpy= 4(1 — x?/64)(1— 0.6x?/64)(1— z°) for
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FIG. 19. Free surface elevation showing that the amplitude of the trailing wave is not damped.
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FIG. 20. Wave resistance coefficient for a submerged cylinder in a channel of finite depth.
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FIG. 22. Drag curve for the Wigley hull.
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FIG. 23. Drag curve for the rectangular pressure distribution.

|X| < 8,z> —1. The drag coefficient is defined as

250 Fyx
Cw= 792/372, (82)
Shiponc

whereszship:4§—§ is the volume of the ship. The FEM mesh had»0x 13(y) x 13(2) =
8450 elements, and the result is in good agreement with results found in the litere
[1,7]. Note that a whole set of secondary maxima is cleanly captured, extending to Frc
as low as 0.1. In the other extreme, Froude numbers as high as 1.2 are computed w
problems, whereas standard methods like those derived from Dawson suffer from reflect
especially at high Froude numbers.

8.2.2. Rectangular pressure distributiorWe consider a uniform rectangular pressur
distribution of widthB and lengthL, such thatL /B = % for which experimental and an-
alytical results are reported in [7]. This case is interesting, since it is purely 3D and I
oscillations in the drag curve at small Froude numbers are expected, due to the disc
nuity in the pressure distribution. The mesh hadx30{ 15(y) x 10(z) = 4500 elements
(see Fig. 23). Coincidence with results reported in [7] are very good. Whereas only the r
imum around Fe=0.33 is shown in those results, we here capture two additional maxil
at Fr=0.215 and 0.255, approximately.

9. CONCLUSIONS

Adiscrete nonlocal (DNL) absorbing boundary condition for the wave resistance prob
has been presented. It is based on an eigen-decomposition of the system of ODE:
results from partial discretization in the transversal section of the governing equati
By construction, the numerical solution is independent of the position of the absort
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boundary. Even if this is a well-known result for exact boundary conditions on a wide ral
of problems such as Helmholtz equations, elasticity equations in the frequency doma
the sea-keeping problem [17], it has not been reported in the literature for the specific
of the wave-resistance problem. As no numerical viscosity is used, the wave-resistanc
be computed from a momentum flux balance and positive wave resistances are guaral
Drag curves computed with this method exhibit very well-defined secondary maxima,
computations can be carried out for a wide range of Froude numbers.

APPENDIX 1: NEUMANN BOUNDARY CONDITION AT THE BOTTOM

Considering now the case of Neumann boundary condition at the bottom, then it is ¢
to show that the associated matrix for the Laplace operator on a typical section is
semidefinite positive, since the vector

vi=c[l 1 ... 1], (83)
representing a constant potential field

vi(y,2) = > wNj(y, 2 =c, (84)
j

is an eigenvector with null eigenvalue figr i.e.,

Kv,; =0. (85)

In order to have a unit vector we choase: NST;th. This is the only eigenvector with null

eigenvalue oK, so that completing to an orthonormal ba&x’@}}“;‘af
VIV=1, V=[vi V2 ... Vngl (86)
and making the change of variables
¢ =V, (87)
system (12) reads now
My ¥ xx — Kyt = Gy (%), (88)
where theyr subindex stands for matrices and vectors in that basis. Matrices and vec

are block split in the subspace “0” spanned by the null eigenveg¢tand the subspace “+”
spanned by the reg; }}*%, so that

0 leN lab
Ky = VKV = =,
Nslabx 1 KJ’I/;+
) ) —— (89)
My =VviMv=|_V V1|,
Mo Mt
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and
0
G,

G, =V1G=
+
Gx//

The j, kth element oK isv; - K - vy, so that its first column is null by (85). By symmetry,
the first row is also null. Equation (88) in split form reads

M9y S+ MGyt = GY, (90.a)
|\7|+01//O + M++I// K++I//+ G+ (90.b)
v Y oxx v Yox

Assumingl\7|3° # 0 (we will discuss this assumption later), we can eliminafeand arrive
at

M*y i, — KTyt =G, (91)
which is an equation fog+, where
M* =M " — (I\7I°¢°)_1I\7I JOMST is symmetric
K3 is symmetric and positive definite (92)
G = Gj - (V%) G

Due to these properties, an eigenvalue decomposition like (16) applies for thJ;ﬁaM *,
The analysis for this reduced system follows as for the case of the null Dirichlet condi
at the bottom and appropriate absorbing boundary conditions can be found. It remai
determine the appropriate boundary conditions fortAenode. Coming back to (90.a) and
solving fory%, we obtain

M9y Sy = GY — (M%%%y), (93)

whose solution is

Yo = </ / Gl (x")dx"dx — |\7|-]};01/f+) +ax+b. (94)

The b term represents a constant potential and can be droppedaxX tem represents
a potential constant on the channel section and varies linearly along the channel. Tl
equivalent to a change in the uniform base velocity compensated by a uniform rais
surface elevation, and it can also be dropped, so that no particular boundary conditiol
to be imposed for this “mode.”

Now we discuss the implications of the restrictibt® £ 0. It can be seen thal =0
when the channel is at a critical regime, i.e. whep Erl, because

Nslal
= E Mjkvlj Vik,

jk=1
(95)

:/ v2(y,z)dy dz— K’l/ v2(y, 0)dy.
Xyz Zfree0
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But v1(y, z) = const= staléz, so that

M= (Ly/Ngan(H — K™, (96)

and thisis nullwhen ky = U, /(gH)¥? = 1. Usually, we are interested in the rangg Fr1,
and Fgy = (L/H)Y?Fr_, so that it is enough to take a mesh wihseveral times larger
than the ship length., in order to haveM ?/,O;é 0 in the range Rr< 1. Anyway, note that
the analysis breaks down at a single Froude number, which proves the general applica
of the DNL methodology for deriving absorbing boundary conditions for a wide range
physical problems. Moreover, the fact that the decomposition proposed above brea
Fry = 1 does not spoil the DNL methodology itself, since an alternative representatiol
the system may be found, appropriate for the DNL analysis. However, for reasons of s
we will not discuss this point further here.

APPENDIX 2: THE NUMBER OF “INVISCID” AND “VISCOUS” MODES

For simplicity, we will consider the case of Dirichlet conditions at the bottom of tt
channel, so that matri is positive definite. Due to th®ylvester’s inertia theoref23] the
number of positive and negative eigenvalues of system (16) remains the same if the nr
K is replaced by another positive definite symmetric matrix. We then repldneM and
let W andB be a solution for the eigenvalue problem

MfreeW - MWB, (97)
with W real and nonsingular an real and diagonalB =diag{g, . . ., Bng,}- Miree iS
positive semi-definite and has rahkee, WhereNgee is the number of nodes in the slab tha
are on the free surface, so that there ldgg. positive eigenvalues and the rest is null; the

we assume

Bi >0 forl<j < Niee

. (98)
Bj = 0 for Niee < j < Nsap
Then,
|\7|Wj = (M — K_leree)Wj,
=Mw; — K™18;Mw;, (99)

= (1- K '8))Mw;,

so that the eigenvalues o ~'M are of the form 1- K~18;. As stated above, they
are all positive for Fr small enougtK(large). More precisely, they are all positive for
Fr < 1/\/BminLship WhereBmin = min;“ffﬁ,- . The number of negative eigenvalues increase
monotonically with Fr, and for Fr 1/,/BmaxLship there is a constant number dfirce
negative eigenvalues.

We can estimate roughly the valuefi, from a simplified 2D analysis. In the 2D case
the slab contains onli¥iee = 1 nodes at the free surface and Mg, andM matrices are
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of the form (assume constant size elements of le?gth- H / Ngjap)

1 1

11 9

3 6
10 0 121
00 ..0 6 3 6

Mico= | loM=az| o | (o0)
. : .-. . 0 l 2 1.
6 3 6
00 ..0 o 1 1
I 5 3|

The first diagonal element o is %Az— K~! and changes sign &= %Az, so that
Bmin~3/Az, and we may estimate that the eigenvalues change sign somewhere
Fr~ (Az/BLSmp)%. Combining these results with that found in Appendix 1, we determil
a range of Fr where the FEM calculation applies,

1 1
A 2 H \:2
( Z)sFrS( ) (101)
3|-ship I-ship

This range is broad enough for applications. The Froude numbers of interest rarely ex
unity, neither do they go below Ef0.1. As FEM meshes may be be refined exponential
towards the surface, we can g&rz small enough at the surface aitl>> Lgpi, SO that
restrictions (101) are satisfied.
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