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SUMMARY

Masonry has been a broadly used material since the beginning of human life. Despite its popularity, the
analysis of masonry structures is a complex task due to the heterogeneity and the non-linear material
behaviour. The need for reliable analysis procedures capable of predicting damage evolution and failure in
historical structures in order to design e$cient repair and maintenance has motivated the work of many
structural analysts in this "eld. Here the "nite element method has emerged as one of the most powerful
procedures for linear and non-linear analysis of masonry structures. The main problem pending is the
development of accurate and e$cient constitutive models capable of predicting the behaviour of masonry in
the non-linear range and this has been the motivation of this work.

The constitutive model presented is based on the homogenized anisotropic elastoplasticity previously
developed by the authors. The e!ect of anisotropy is introduced by means of "ctitious isotropic stress and
strain spaces. The material properties in the "ctitious isotropic spaces are mapped into the actual anisot-
ropic space by means of a consistent fourth-order tensor. The advantage of the model is that the classical
theory of plasticity can be used to model the non-linear behaviour in the isotropic spaces.

Details of the model for masonry structures and its implementation in a general non-linear "nite element
code are given. Examples of application to the analysis of some masonry structures are presented, showing
the e$ciency of the model. Copyright ( 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Masonry is regarded as a precursor of engineering structures, and its design and analysis are often
based on simpli"ed methods that do not adequately re#ect all the complex structural mechanisms
or are over-conservative. However, there are advanced analytical techniques based on the "nite
element method, such as those developed from the theories of micromodelling, macromodelling
and the theory of composites [1}4].

The present work deals with a homogenized constitutive model for the analysis of masonry
previously developed by the authors [4, 6, 9, 10}12] and followed within the Civil Engineering



Diploma Thesis of LoH pez [5]. This technique allows mesh generation in a simple manner without
the high computational cost for discretizing the bricks and joints. The model uses homogeneous
elements that intrinsically include the mechanical and geometrical properties of the di!erent
components. Given the anisotropic nature of the material, the Space Transformation Theory,
described by Oller et al. [6], has been implemented with the objective of working with "ctitious
isotropic spaces and adapting usual techniques to elasto-plastic analysis.

2. MASONRY

Masonry can be regarded as a combination of two material phases constituted by blocks, natural
or manufactured, such as bricks, and a series of mortar joints arranged irregularly (as in stone
masonry) or regularly (as in brickwork). In the latter, the joints follow the boundaries of the bricks
forming two main groups: horizontal and vertical. The present work will focus on masonry
composed of regular geometrical bricks without considering irregular blocks.

As a material, masonry has di!erent properties depending on the direction in which the mortar
joints are oriented since they constitute its weak planes. Failure of these structures is generally
preceded by a development of large-scale cracking in the joints [13], which therefore limits their
ultimate load-carrying capacities.

The material properties are determined individually from experimental tests for each compon-
ent of the masonry.

3. BACKGROUND

Since the properties of masonry depend on the direction, numerical approximations can generally
be based on micromodels, which discretize the bricks and joints separately in a detailed manner.
On the other hand, masonry can be treated as a composite macromodel. Depending on the
desired scale, it is possible to use the following forms of modelling.

Detailed micromodelling: bricks and mortar are represented by continuous elements, while the
behaviour of the mortar}brick interface is represented by discontinuous elements.

Simpli"ed micromodelling: the materials are represented by a continuous element where the
behaviour of the mortar joints and the interfaces are separated by discontinuities.

Macromodelling: the bricks, mortar and interfaces are globally represented by the same
element.

The model has been developed for brick walls subjected to in-plane loading [7], which is a most
common case in masonry. In the past, most of the analyses considered masonry as an assembly
of blocks and mortar with similar properties. Assuming isotropic and elastic behaviour for
components as well as the entire masonry was performed the analysis in order to simplify the
problem.

Another model worth mentioning is that developed by Pietruszcak [3] which considers that
a masonry panel, in the macromodelling level, could be taken as a two-phase composite
consisting of brick units crossed by two orthogonal groups of mortar joints.

Other important macromodel are that of Luccioni [2] based on the application of the
composite theory, and those of Anthoine [1] and Lourenio [8].
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Plate 1. Panel with gravitational and vertical uniform loads. σ1– principal stress



Figure 1. Notation used in the dimensions of the component elements in the basic cell

4. THE PROPOSED MODEL

The model that will be presented here is based on a study of the compatibility and equilibrium of
a &basic cell' of masonry under di!erent conditions of loading (see Figure 1). The main assump-
tions are:

(1) The height and depth of the structural element are large compared to its thickness, which
permits the assumption of plane stress since the loading is in-plane.

(2) Given the arrangement of the bricks and mortar joints the composite can be treated as
orthotropic.

The constitutive model is based on the formulation, for each of the deformation modes of the
basic cell (Figure 1), of the equilibrium and compatibility equations (Figure 2). These are
introduced in the constitutive equations of each material component, obtaining expressions for
the stress}strain behaviour of the composite, as well as the homogenized mechanical parameters.

4.1. Mode 1 equations

Mode 1 is de"ned as corresponding to a tension-compression stress in the x-direction.

4.1.1. Equilibrium conditions
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height of the &i' material component.
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Figure 2. Representation of the deformation modes

4.1.2. Compatibility condition
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represents the homogeneous strain in the &i1 direction of material with &j' component, l

i
repres-

ents the length of &i' material component.

4.1.3. Constitutive equation (for each material component)
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In equation (3) we can see that the Young's modulus depends on the damage parameter u due to
the fact that the elastic modulus changes its value when the elastic limit is exceeded. In materials
with softening (geomaterials for example), the value of E decreases.
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4.1.4. Stress determination for each material component. Substituting (1) in (3) and then in (2),
one obtains

x
p
M2
"

x
p

h
G

h
M2

!
x
p
L

h
L

h
M2

N
x
pR
M2
"

x
pR

h
G

h
M2

!
x
pR
L

h
L

h
M2

x
eR
M2
" x

p

x
E
M2

h
G

h
M2

! x
pR
L

x
E

M2

h
L

h
M2

#
x
eR 1
M2

The global deformation results from equation (2):
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From expressions (4) and (5) results the rate of the stress in the brick material
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From (1) there results the temporal variation of stress in mortar 2:
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4.1.5. Determination of global constitutive law for each material component. From (5) one
obtains
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4.2. Mode 2 equations

Mode 2 is de"ned as corresponding to a tension-compression stress in the y-direction.
Developing the constitutive equations for this mode and working as in the development of

mode 1.

4.2.1. Equilibrium conditions
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where
i
p
j
represents a homogeneous &i'-stress state of the &j' material component, l

i
represents the

length of the &i' material component.

4.2.2. Compatibility condition
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4.2.3. Constitutive equation (for each material component)
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As with the previous mode, the Young's modulus is assumed dependent of the damage
parameter u.

4.2.4. Stress determination for each material component. In the same way as for mode 1, we
obtain the brick stress as
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Following the same way, the mortar stress results
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For equilibrium conditions their results:
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4.2.5. Determination of global constitutive law for each material component
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4.3. Mode 3 equations

The third mode corresponds to shear deformation in the X> plane. While in fact brick and
mortar have di!erent deformations due to their di!erent geometrical and mechanical properties,
the present formulation requires them to have the same deformation governed by the straight line
that homogenizes this behaviour (see the "gure for Mode 3 in Figure 2).

As in the two previous modes, there results:

4.3.1. Equilibrium conditions
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where q
i
represents the shear stress in the X> plane in the &i' material component.

4.3.2. Compatibility condition. Assuming that
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4.3.3. Constitutive equation (for each material component). Substituting (14) in (13a) results in
the temporal variation of stress in the brick

qR"qR
L

l
L
l
G

#qR
L

xy
G

M1

xy
G

L

l
M1

l
G

#
xy

G
M1

l
M1

l
G

(
xy

cR 1
L
!

xy
cR 1
M1

),qR
M2

qR"qR
LA

l
L
l
G

#xy
G

M1

xy
G

L

l
M1

l
G
B#xy

G
M1

l
M1

l
G

(
xy

cR 1
L
!

xy
cR 1
M1

)

qR
L
"

A
qR!

xy
G

M1

l
M1

l
G

(
xy

cR 1
L
!

xy
cR 1
M1

)

B A
xy

G
L

xy
G

L
l
L
#

xy
GM

1
lM

1
B

hgggigggj hgggiggggj
BQ
L

A
L

qR
L
"qR A

L
!BQ

L
A

L
(15)

From (13a) one obtains
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The last expression represents the rate of the stress in mortar 1.

4.3.4. Constitutive law
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4.3.5. Global compatibility equation for each element
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Introducing the constitutive equation one obtains
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4.4. Equations of mode 4

The fourth deformation mode is the one which corresponds to the deformation "eld out of the
plane of loading (plane X>). Since in the model we accept the plane stress hypothesis, the
deformations in the plane XZ should be limited to deformations produced by the Poisson e!ect.
Also, due to the fact that there are no external tangential actions associated with the planes XZ
and >Z (plane stress hypothesis), the resultants of the shear stresses q
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and q

yz
integrated for all

the elements vanish. The associated distortions will be assumed to vanish.
From the "gure for Mode 4 in Figure 2 it can be observed that the deformation experienced by

brick and mortar describes a curve whose slope is discontinuous at the juncture between the two
materials, due to the restriction imposed by the contact between two materials with di!erent
properties. In the homogenized model the envelope of the deformation curves has been adopted
as representing the deformation.

In contrast to the procedure followed for the previous modes, in this case we will work
implicitly with the equations in homogeneous variable terms, taking as starting point the
expression of the Secant Constitutive Matrix in the case of orthotropy.
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Figure 3. Geometrical three-dimensional representation of a masonry element

It must be pointed out that
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are obtained from the developments
for the previous modes.
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z
p
G

of the vector r
G
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By separating the elastic and plastic components in this expression we obtain the elastic and
plastic global strains in the Z direction:
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4.5. Calculation of the homogeneous mechanical parameters

From the development of the constitutive model the values of the homogeneous mechanical
parameters of the masonry have been obtained. From the results presented their sensitivity to the
dimensions of the component elements (bricks and joints of mortar) can be observed.

In order to be consistent in the notation, the di!erent geometric parameters of the model that
are used are presented in Figure 3.
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Below we go on to "nd the expressions of the mechanical parameters in explicit form from the
constitutive model.

From expression (8) the longitudinal elastic modulus in the global X direction is obtained
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From expression (12) the longitudinal elastic modulus in the global > direction is obtained
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In the case of
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, since the behaviour is just as in the case of mode 1, the longitudinal elastic
modulus in the global Z direction is obtained
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From expression (17) the shear modulus in the global X> plane is obtained
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Working in the same way for the remaining directions, we obtain the shear modulus in the global
>X plane

yx
G

G
"

1

(yxA
L
l
L
)/ (

yx
G

L
l
G

)#l
M2

/(
yx

G
M2

l
G

)
(24)

where

yxA
L
" xy

G
L
h
G

xy
G

L
h
L
#

xy
G

M1
h
M2

Shear modulus in the global XZ plane

xz
G

G
"

1

(xzA
L
c
L
)/(

xz
G

L
c
G

)#c
M3

/(
xz

G
M3

c
G

)
(25)

where

xzA
L
" xz

G
L
l
G

xz
G

L
l
L
#

xz
G

M1
l
M1

Shear modulus in the global ZX plane

zx
G

G
"

1

(zxA
L
l
L
)/(

zx
G

L
l
G

)#l
M1

/(
zx

G
M1

l
G

)
(26)

where

zxA
L
" zx

G
L
c
G

zx
G

L
c
L
#

xz
GM

3
cM

3

Shear modulus in the global Z> plane

zy
G

G
"

1

(zyA
L
h
L
)/ (

zy
G

L
h
G

)#h
M2

/(
zy

G
M2

h
G

)
(27)

where

zyA
L
" zy

G
L
c
G

zy
G

L
c
L
#

xy
G

M3
c
M3

Shear modulus in the global >Z plane

yz
G

G
"

1

(yzA
L
c
L
)/(

yz
G

L
c
G

)#c
M3

/(
zx

G
M3

c
G

)
(28)

where

yzA
L
" yz

G
L
h
G

yz
G

L
h
L
#

yz
G

M2
c
M2

A HOMOGENEOUS CONSTITUTIVE MODEL FOR MASONRY 1663

Copyright ( 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 46, 1651}1671 (1999)



Since the elements are directed along the principal stresses, it is required that
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where for the case of geomaterials in the elastic range one has [2]
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We therefore obtain for the di!erent directions the corresponding Poisson's ratios

xy
l
G
"

2
xy

G
G

J
x
E
Gy

E
G

!1 ,
yx

l
G
"

2
yx

G
G

J
y
E

Gx
E

G

!1

xz
l
G
"

2
xz

G
G

J
x
E
G z

E
G

!1 ,
zx

l
G
"

2
zx

G
G

J
z
E
G x

E
G

!1

yz
l
G
"

2
yz

G
G

J
y
E

G z
E
G

!1 ,
zy

l
G
"

2
zy
G

G
J

z
E

G y
E
G

!1

where
ij
l
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represents the homogeneous Poisson's ratio in the ij plane.

4.6. Homogeneous plastic -ow

Beyond the elastic limit, which is de"ned by the modi"ed Mohr}Coulomb criterion, the
material exhibits plastic deformations. Here the stress state is represented by a point on the
de"ned yield surface.

The masonry presents a marked anisotropic character (in the case of the proposed model the
hypothesis of orthotropy has been assumed), while the yield criterion is de"ned for an isotropic
space. For this reason, and in order to use a yield criterion de"ned in an isotropic space, the
Theory of the Mapped Spaces is used to transform the anisotropic space into a "ctitious isotropic
space in which the evolution of the yield surface when the load increases can be followed.

As the associated plasticity hypothesis is assumed, the function f (q) describing the Mohr}
Coulomb yield surface and the plastic potential g(q) coincide in the "ctitious isotropic space.
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The plastic yield function is expressed in the following form:

f (q)!c
G

(i1)'0 (30)

where f (q) is the yield function of the modi"ed Mohr}Coulomb law, c
G
(i1) is the cohesion of the

homogeneous material, function of the damage parameter i1 [9], and q the stress tensor in the
"ctitious isotropic space [6].

The value of the homogenized cohesion is obtained from expression (13a) developed for mode
3 of deformation of the constitutive model. It can also be obtained from equation (9) developed
for mode 2
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The value of the damage parameter i1 is assumed to be a direct sum of the plastic damage
parameters of each one of the components [9]
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In the case of homogenization techniques, unlike micromodels, the cracks are not assumed to be
localized in any particular place, in the joints or in the bricks, since the composite material is
treated as homogeneous.

When equation (30) is obeyed, the total homogeneous strain can be expressed as the sum of
elastic and a plastic component:
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The di!erent components of the plastic deformation are obtained from the development present-
ed in this section.

From expression (8) the global plastic #ow is obtained
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Due to the fact that we take a homogenized surface for the homogenized material we can write
the previous expression depending on Mohr}Coulomb plastic strain
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From equation (12) developed for mode 2:
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Given the same yield surface for all the deformations as the previous case
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From equation (17) developed for mode 3
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Due to the fact that we take a homogenized surface for the homogenized material we can write the
previous expression as
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From expression (19) we obtain directly
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(36)

From expressions (33)}(36) we obtain the vector of plastic deformations in masonry model case as
a function of the vector calculated according to Mohr}Coulomb theory
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(37)
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Table I. Mechanical parameters of the masonry

Property Value

Elastic modulus for loading parallel to the base line E
x

(in kg/cm2) 59 200
Elastic modulus for loading perpendicular to the base line E

y
(in kg/cm2) 75 500

E
y
/E

x
1)35

In-plane Poisson ratio 0)167
Compressive strength of the brick (in kg/cm2) 362)5
Compressive strength of the mortar (in kg/cm2) 32
Internal angle of friction 303
Elastic modulus for the mortar (in kg/cm2) 8041

where eR 1 D
M0)3

is the classic Mohr}Coulomb plastic #ow and eR 1
G

is the modi"ed masonry plastic
#ow. The transformation plastic #ow tensor is expressed as
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While the problem is being treated with the Mohr}Coulomb yield criterion and plastic potential,
nonetheless, the plastic #ow is non-associated by virtue of orientation change e!ected by the
tensor M1 (see (37)).

5. VALIDATION EXAMPLES

5.1. Calibration example

In order to calibrate the model the experimental results of Page [7] have been used. This test is
one of those most commonly used in the calibration of numerical models of masonry. Lourenio
[8] also used this test for calibrating his model, which will also be compared with the results of the
model proposed here.

The dimensions of the panel were 75)7]45)7]5)4 cm3, using bricks of 12)2]3)7]5)4 cm3

with joints 0)5 cm thick. The mechanical characteristics of the materials used are summarized in
Table I. The test gives values of stresses and vertical deformations in a line of gauges arranged at
18)65 cm from the baseline. The load (P ) is applied with a piston and transmitted through a steel
beam over a length of 38)1 cm (see Figure 4).

Since no measurements of energies of fracture and plastic deformation in compression were
made, fracture energies of GM

&
"8)32 and GL

&
"207)36 kg/cm were assumed for the mortar
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Figure 4. Con"guration of the Page test

Figure 5. Stress}strain curves for 20 kN

and brick, respectively. For the energy of plastic deformation in compression, values of
GM

#
"384 kg/cm for the mortar and GL

#
"592 kg/cm for the brick were assumed. Large values

were chosen for these parameters in order to obtain better convergence of the constitutive
equations at high stress levels. The fundamental objective is not the simulation of the post-peak
response, and therefore, the adaptation of these values is considered to be acceptable.

The test was performed for the loads of 20, 40 and 60 kN, and the results obtained are given in
Figures 5}7. The gauges coincide with the positions of the top Gauss points of the elements in the
intermediate band and therefore the results have been used for these Gauss points.
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Figure 6. Stress}strain curves for 40 kN

The generated mesh had 72 four-node elements, each with 4 Gauss points. In order to study the
response of the model with a small number of elements, more elements were not used in the
analysis since "ne meshes would not demonstrate the advantages compared with simpli"ed
micromodels where the joints and bricks are discretized by separate elements. The usefulness of
this type of homogenization is in the ability to save on computational time and simplify the mesh
generation process.

In the following, a comparison is made between the stress states of the three tests along the line
of the gauges ([7, 8] the proposed model). A step loading process is used and the characteristic
values are determined.

It can be seen in the plots that the modelling is good with the exception of the extremes which
could have been distorted by (an experimental cause) local e!ects in the band of measurements or
(a numerical cause) due to the fact that the Gauss point does not coincide exactly with the
position of gauge since this is not speci"ed. Also, the lack of adequate discretization could cause
this poor approximation. Furthermore, a methodology for the masonry behaviour is here
presented, but not a speci"c model for each material compounding. Due to this fact a better
approximation can be used for the mortar and brick behaviour.

Another conclusion is that the behaviour is better at high stress levels beyond the elastic
limit since the P}d diagram, from which the energies of fracture and plastic deformation
in compression are obtained, is taken to be linear while the real law is exponentially de-
creasing.
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Figure 7. Stress}strain curve for 60 kN

5.2. Practical example

In order to see a practical example, an edi"cation panel built with the same material of the
previous example and loaded with gravitational load plus an increased external vertical uniform
load applied at the top and the middle height is presented as shown in Plate 1. The "nite element
mesh was made with 560 elements with four nodes each one.

6. CONCLUSIONS

Masonry is a composite material made up of components, such as mortar and bricks,
with di!erent mechanical characteristics. This heterogeneity in the composition along with
the arrangement of the elements (bricks and joints) lead to a combination that is strongly
anisotropic. Variations on the joints or the loading orientation lead to di!erent be-
haviours.

The homogenized model permits the simpli"ed treatment of masonry. The treatment of the
geometry through structured meshes with quadrilateral elements re#ects better the real arrange-
ment of the joints and bricks in the masonry. This type of mesh leads to more simple mesh
generation.
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The homogenization technique considerably reduces the time for the processes of mesh
generation and computation. The number of elements needed is much smaller than in macro-
models.

The homogenization technique is optimal for large structures where the use of individual
elements for each component is not practical for mesh generation.

The micromodels are advantageous when compared with macromodels, being e$cient for
studies of local details.

The homogenized model developed here is not capable of identifying the fracture mechanisms
but can identify the damage zone, which can be associated with the type of cracking through the
analysis of the stress state of these elements.

The anisotropy of the masonry can be adequately handled through the use of the Space
Transformation Theory.

The model permits the use of joints orientated in di!erent directions with respect to the
reference system axes.
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