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Abstract

A volume of fluid (VOF) technique has been developed and coupled with an incompressible Euler/Navier–Stokes solver operating on
adaptive, unstructured grids to simulate the interactions of extreme waves and three-dimensional structures. The present implementation
follows the classic VOF implementation for the liquid–gas system, considering only the liquid phase. Extrapolation algorithms to obtain
velocities and pressure in the gas region near the free surface have been implemented. The VOF technique is validated against the classic
dam-break problem, as well as series of 2D sloshing experiments and results from smoothed particle hydrodynamics (SPH) calculations.
These and a series of other examples demonstrate that the present CFD method is capable of simulating violent free surface flows with
strong nonlinear behavior.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Marine engineering; Computational techniques; Incompressible flow; Projection schemes; VOF; Level set; FEM; CFD
1. Introduction

High sea states, waves breaking near shores and moving ships, the interaction of extreme waves with floating structures,
green water on deck and sloshing (e.g., in liquid natural gas (LNG) tankers) are but a few examples of flows with violent
free surface motion. Many of these flows have a profound impact on marine engineering [4].

The computation of highly nonlinear free surface flows is difficult because neither the shape nor the position of the inter-
face between air and water is known a priori; on the contrary, it often involves unsteady fragmentation and merging pro-
cesses. There are basically two approaches to compute flows with free surface: interface-tracking and interface-capturing
methods. The former computes the liquid flow only, using a numerical grid that adapts itself to the shape and position of
the free surface. The free surface is represented and tracked explicitly either by marking it with special marker points, or by
attaching it to a mesh surface. Various surface fitting methods for attaching the interface to a mesh surface were developed
during the past decades [15,1,40]. In the interface-tracking methods, the free surface is treated as a boundary of the com-
putational domain, where the kinematic and dynamic boundary conditions are applied. These methods cannot be used if
the interface topology changes significantly, as is contemplated here for overturning or breaking waves. The second pos-
sible approach is given by the so-called interface-capturing methods [45,26,59,57,60,49,8,17,10,5,28,51,16,11]. These con-
sider both fluids as a single effective fluid with variable properties; the interface is captured as a region of sudden
change in fluid properties. The main problem of complex free surface flows is that the density q jumps by three orders
of magnitude between the gaseous and liquid phase. Moreover, this surface can move, bend and reconnect in arbitrary
ways. The difficulties that can arise if one treats either the complete system or just the liquid phase can be illustrated on
0045-7825/$ - see front matter � 2006 Elsevier B.V. All rights reserved.
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Figs. 1,2. Hydrostatic pressure distribution and communicating tubes.
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two small examples. The first one considers hydrostatic flow, where the exact solution is v = 0, p = �g Æ (x � x0), where x0

denotes the position of the free surface (see Fig. 1). Unless the free surface coincides with the faces of elements, there is no
way for typical finite element shape functions to capture the discontinuity in the gradient of the pressure. This implies that
one has to either increase the number of Gauss-points [10] or modify (e.g., enrich) the shape function space [11]. Using the
standard linear element procedure leads to spurious velocity jumps at the interface, as any small pressure gradient that
‘pollutes over’ from the water to the air region will accelerate the air considerably. This in turn will lead to loss of diver-
gence, causing more spurious pressures. The whole cycle may, in fact, lead to a complete divergence of the solution.

Faced with this dilemma, most flows with free surfaces have been solved neglecting the air. The shortcomings of this
approach can be illustrated in the second example, sketched in Fig. 2. A tube is filled with a column of fluid which is inter-
rupted by a pocket of air. Neglecting the air would never allow the higher column to push the lower column up. In the
present case, we have followed this approach, fully aware of the limitations.

The remainder of the paper is organized as follows: Section 2 summarizes the basic elements of the present incompress-
ible flow solver; Sections 3 and 4 describe the temporal and spatial discretization; Section 5 describes the volume of fluid
extensions; some examples are shown in Section 6; finally, some conclusions are given in Section 7.

2. Basic elements of the solver

In order to fix the notation, the equations describing incompressible, Newtonian flows in an arbitrary Lagrangian–Eule-
rian (ALE) frame are written as:

qv;t þ qvarvþrp ¼ rlrvþ qg; ð1Þ
r � v ¼ 0. ð2Þ

Here q denotes the density, v the velocity vector, p the pressure, l the viscosity and g the gravity vector. The advective
velocity is given by va = v � w, where w is the mesh velocity. We remark that both the gaseous and liquid phases are con-
sidered incompressible, thus Eq. (2). The liquid–gas interface is described by a scalar equation of the form:

U;t þ va � rU ¼ 0. ð3Þ
For the classic volume of fluid (VOF) technique, U represents the total density of the material in a cell/element or control
volume (see [45,26,49,8,17,5,28]). For pseudo-concentration techniques, U represents the percentage of liquid in a cell/ele-
ment or control volume. For the level set (LS) approach U represents the signed distance to the interface [51,16]. For a
combination of these approaches, see [52].

Since over a decade [37,43,48,40] the numerical schemes chosen by the authors to solve the incompressible Navier–
Stokes equations given by Eqs. (1) and (2) have been based on the following criteria:

• Spatial discretization using unstructured grids (in order to allow for arbitrary geometries and adaptive refinement).
• Spatial approximation of unknowns with simple finite elements (in order to have a simple input/output and code

structure).
• Temporal approximation using implicit integration of viscous terms and pressure (the interesting scales are the ones asso-

ciated with advection).
• Temporal approximation using explicit integration of advective terms.
• Low-storage, iterative solvers for the resulting systems of equations (in order to solve large 3D problems).
• Steady results that are independent from the timestep chosen (in order to have confidence in convergence studies).



R. Löhner et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 5597–5620 5599
3. Temporal discretization

For most of the applications listed above, the important physical phenomena propagate with the advective timescales.
We will therefore assume that the advective terms require an explicit time integration. Diffusive phenomena typically occur
at a much faster rate, and can/should therefore be integrated implicitly. Given that the pressure establishes itself immedi-
ately through the pressure-Poisson equation, an implicit integration of pressure is also required. The hyperbolic character
of the advection operator and the elliptic character of the pressure-Poisson equation have led to a number of so-called pro-
jection schemes. The key idea is to predict first a velocity field from the current flow variables without taking the divergence
constraint into account. In a second step, the divergence constraint is enforced by solving a pressure-Poisson equation. The
velocity increment can therefore be separated into an advective–diffusive and pressure increment:

vnþ1 ¼ vn þ Dva þ Dvp ¼ v� þ Dvp. ð4Þ
For an explicit (forward Euler) integration of the advective terms, with implicit integration of the viscous terms, one com-
plete timestep is given by:

• Advective–diffusive prediction: vn! v*

q
Dt
� hrlr

h i
ðv� � vnÞ þ vn

a � rvn þrpn ¼ rlrvn þ qg. ð5Þ

• Pressure correction: pn! pn+1

r � vnþ1 ¼ 0; ð6Þ

q
vnþ1 � v�

Dt
þrðpnþ1 � pnÞ ¼ 0; ð7Þ

which results in

r � 1
q
rðpnþ1 � pnÞ ¼ r � v

�

Dt
. ð8Þ

• Velocity correction: v*! vn+1

vnþ1 ¼ v� � Dt
q
rðpnþ1 � pnÞ. ð9Þ

At steady-state, v* = vn = vn+1 and the residuals of the pressure correction vanish, implying that the result does not depend
on the timestep Dt. h denotes the implicitness-factor for the viscous terms (h = 1: first order, fully implicit; h = 0.5: second
order, Crank–Nicholson). One can replace the one-step explicit advective–diffusive predictor by a multistage Runge–Kutta
scheme [42], allowing for higher accuracy in the advection-dominated regions and larger timesteps without a noticeable
increment in CPU cost. A k-step, time-accurate Runge–Kutta scheme or order k for the advective parts may be written as:
qvi ¼ qvn þ aicDtð�qvi�1
a � rvi�1 �rpn þrlrvi�1Þ; i ¼ 1; k � 1; ð10Þ

q
Dt
� hrlr

h i
ðvk � vnÞ þ qvk�1

a � rvk�1 þrpn ¼ rlrvk�1. ð11Þ

Here, the ai are the standard Runge–Kutta coefficients ai = 1/(k + 1 � i). As compared to the original scheme given by Eq.
(5), the k � 1 stages of Eq. (10) may be seen as a predictor (or replacement) of vn by vk�1. The original right-hand side has
not been modified, so that at steady-state vn = vk�1, preserving the requirement that the steady-state be independent of the
timestep Dt. The factor c denotes the local ratio of the stability limit for explicit timestepping for the viscous terms versus
the timestep chosen. Given that the advective and viscous timestep limits are proportional to:

Dta �
h
jvj ; Dtv �

qh2

l
; ð12Þ

we immediately obtain

c ¼ Dtv

Dta

� qjvjh
l
� Reh; ð13Þ

or, in its final form:

c ¼ minð1;RehÞ. ð14Þ
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In regions away from boundary layers, this factor is O(1), implying that a high-order Runge–Kutta scheme is recovered.
Conversely, for regions where Reh = O(0), the scheme reverts back to the original one (Eq. (5)). Projection schemes of this
kind (explicit advection with a variety of schemes, implicit diffusion, pressure-Poisson equation for either the pressure or
pressure increments) have been widely used in conjunction with spatial discretizations based on finite differences [33,2,3,1],
finite volumes [29], and finite elements [21,12,23,37,43,48,40,53,13,30,9,36,31,42,7].

One complete timestep is then comprised of the following substeps:

• predict velocity (advective–diffusive predictor, Eqs. (5), (10), and (11));
• extrapolate the pressure (imposition of boundary conditions);
• update the pressure (Eq. (8));
• correct the velocity field (Eq. (9));
• extrapolate the velocity field;
• update the scalar interface indicator.

4. Spatial discretization

As stated before, we desire a spatial discretization with unstructured grids in order to:

• approximate arbitrary domains, and
• perform adaptive refinement in a straightforward manner, i.e., without changes to the solver.

From a numerical point of view, the difficulties in solving Eqs. (1)–(3) are the usual ones. First-order derivatives are
problematic (overshoots, oscillations, instabilities), while second-order derivatives can be discretized by a straightforward
Galerkin approximation. We will first treat the advection operator and then proceed to the divergence operator. Given that
for tetrahedral grids solvers based on edge data structures incur a much lower indirect addressing and CPU overhead than
those based on element data structures [41], only these will be considered.

4.1. The advection operator

It is well known that a straightforward Galerkin approximation of the advection terms will lead to an unstable scheme
(recall that on a 1-D mesh of elements with constant size, the Galerkin approximation is simply a central difference
scheme). Three ways have emerged to modify (or stabilize) the Galerkin discretization of the advection terms:

• integration along characteristics [27,22];
• Taylor–Galerkin (or streamline diffusion) [32,6,12]; and
• edge-based upwinding [40].

Of these, we only consider the third option here. The Galerkin approximation for the advection terms yields a right-
hand side (RHS) of the form:

ri ¼ DijFij ¼ Dijðf i þ fjÞ; ð15Þ

where the fi are the ‘fluxes along edges’:

f i ¼ Sij
k Fk

i ; Sij
k ¼

dij
k

Dij ; Dij ¼
ffiffiffiffiffiffiffiffiffiffi
dij

k dij
k

q
; ð16Þ

Fij ¼ f i þ fj; f i ¼ ðSij
k vk

i Þvi; fj ¼ ðSij
k vk

j Þvj ð17Þ

and the edge-coefficients are based on the shape-functions Ni as follows:

dij
k ¼

1

2

Z
X
ðN i

;kN j � N j
;kN iÞdX. ð18Þ

A consistent numerical flux is given by

Fij ¼ f i þ fj � jvijjðvi � vjÞ; vij ¼ 1

2
Sij

k ðvk
i þ vk

j Þ. ð19Þ



R. Löhner et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 5597–5620 5601
As with all other edge-based upwind fluxes, this first-order scheme can be improved by reducing the difference vi � vj

through (limited) extrapolation to the edge center [41]. The same scheme is used for the transport equation that describes
the propagation of the VOF fraction, pseudo-concentration or distance to the free surface given by Eq. (3).

4.2. The divergence operator

A persistent difficulty with incompressible flow solvers has been the derivation of a stable scheme for the divergence con-
straint (2). The stability criterion for the divergence constraint is also known as the Ladyzenskaya–Babuska–Brezzi or LBB
condition [24]. The classic way to satisfy the LBB condition has been to use different functional spaces for the velocity and
pressure discretization [18]. Typically, the velocity space has to be richer, containing more degrees of freedom than the pres-
sure space. Elements belonging to this class are the p1/p1 + bubble mini-element [50], the p1/iso-p1 element [56], and the
p1/p2 element [54]. An alternative way to satisfy the LBB condition is through the use of artificial viscosities [37], ‘stabil-
ization’ [19,55,20] or a ‘consistent numerical flux’ (more elegant terms for the same thing). The equivalency of these
approaches has been repeatedly demonstrated (e.g. [50,37,41]). The approach taken here is based on consistent numerical
fluxes, as it fits naturally into the edge-based framework. For the divergence constraint, the Galerkin approximation along
edge i,j is given by

Fij ¼ f i þ fj; f i ¼ Sij
k vk

i ; fj ¼ Sij
k vk

j . ð20Þ

A consistent numerical flux may be constructed by adding pressure terms of the form:

Fij ¼ f i þ fj � jkijjðpi � pjÞ; ð21Þ

where the eigenvalue kij is given by the ratio of the characteristic advective timestep of the edge Dt and the characteristic
advective length of the edge l:

kij ¼ Dtij

lij . ð22Þ

Higher order schemes can be derived by reconstruction and limiting, or by substituting the first-order differences of the
pressure with third-order differences:

Fij ¼ f i þ fj � jkijj pi � pj þ
lij

2
ðrpi þrpjÞ

� �
ð23Þ

This results in a stable, low-diffusion, fourth-order damping for the divergence constraint.

5. Volume of fluid extensions

The extension of a solver for the incompressible Navier–Stokes equations to handle free surface flows via the VOF or LS
techniques requires a series of extensions which are the subject of the present section. Before going on, we remark that both
the VOF and LS approaches were implemented as part of this effort. Experience indicates that both work well. For VOF,
the profiles can be sharp fronts that propagate through the domain. This places a higher demand on the quality of the
advection schemes used to integrate Eq. (3). In particular, it is important to have a monotonicity preserving scheme for
U. The profiles advected for LS are smoother, and do not place such demands on advection schemes. On the other hand,
for LS, it is important to balance the cost and accuracy loss of reinitializations vis-a-vis propagation. Given that the advec-
tion solvers used are all monotonicity preserving, and that the VOF option is less CPU-demanding than LS, only the VOF
technique is considered in the following.

5.1. Extrapolation of the pressure

The pressure in the gas region needs to be extrapolated properly in order to obtain the proper velocities in the region of
the free surface. This extrapolation is performed using a three step procedure. In the first step, the pressures for all point in
the gas region are set to (constant) values, either the atmospheric pressure or, in the case of bubbles, the pressure of the
particular bubble. In a second step, the gradient of the pressure for the points in the liquid that are close to the liquid–gas
interface are extrapolated from the points inside the liquid region (see Fig. 3). This step is required as the pressure gradient
for these points cannot be computed properly from the data given. Using this information (i.e., pressure and gradient of
pressure), the pressure for the points in the gas that are close to the liquid–gas interface are computed.
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5.2. Extrapolation of the velocity

The velocity in the gas region needs to be extrapolated properly in order to propagate accurately the free surface. This
extrapolation is started by initializing all velocities in the gas region to v = 0. Then, for each subsequent layer of points in
the gas region where velocities have not been extrapolated (unknown values), an average of the velocities of the surround-
ing points with known values is taken (see Fig. 4).

5.3. Imposition of constant mass

Experience indicates that the amount of liquid mass (as measured by the region where the VOF indicator is larger than a
cut-off value) does not remain constant for typical runs. The reasons for this loss or gain of mass are manifold: loss of
Air
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Fig. 5. Bubble in water.
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steepness in the interface region, inexact divergence of the velocity field, boundary velocities, etc. This lack of exact con-
servation of liquid mass has been reported repeatedly in the literature [51,52,16]. The recourse taken here is the classic one:
add/remove mass in the interface region in order to obtain an exact conservation of mass. At the end of every timestep, the
total amount of fluid mass is compared to the expected value. The expected value is determined from the mass at the pre-
vious timestep, plus the mass-flux across all boundaries during the timestep. The differences in expected and actual mass are
typically very small, so that quick convergence is achieved by simply adding and removing mass appropriately. The amount
of mass taken/added is made proportional to the absolute value of the normal velocity of the interface:

vn ¼ v � rU
jrUj

����
����. ð24Þ
Fig. 6b. Breaking dam: surface discretization for the coarse mesh.

Figs. 6c–f. Breaking dam: flowfield at different times.
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In this way the regions with no movement of the interface remain unaffected by the changes made to the interface in order
to impose strict conservation of mass.

5.4. Deactivation of air region

Given that the air region is not treated/updated, any CPU spent on it may be considered wasted. Most of the flow solver
work is spent in loops over the edges (upwind solvers, limiters, gradients, etc.). Given that edges have to be grouped in
order to avoid memory contention/allow vectorization when forming right-hand sides [38,39], this opens a natural way
of avoiding unnecessary work: form relatively small edge-groups that still allow for efficient vectorization, and deactivate
groups instead of individual edges [41]. In this way, the basic loops over edges do not require any changes. The if-test
whether an edge group is active or deactive is placed outside the inner loops over edges, leaving them unaffected. On scalar
processors, edges-groups as small as negrp = 8 are used. Furthermore, if points and edges are grouped together in such a
way that proximity in memory mirrors spatial proximity, most of the edges in air will not incur any CPU penalty.

5.5. Treatment of bubbles

The treatment of bubbles follows the classic assumption that the timescales associated with speed of sound in the bubble
are much faster than the timescales of the surrounding fluid. This implies that at each instance the pressure in the bubble is
4m
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Fig. 7a. 3D dam-break wave with circular cylinder: problem definition.
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R. Löhner et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 5597–5620 5605
(spatially) constant. As long as the bubble is not in contact with the atmospheric air (see Fig. 5), the pressure can be
obtained from the isentropic relation:

pb

pb0

¼ qb

qb0

� �c

; ð25Þ

where pb,qb denote the pressure and density in the bubble and pb0,qb0 the reference values (e.g., those at the beginning of
the simulation). The gas in the bubble is marked by solving a scalar advection equation of the form given by Eq. (3):

b;t þ va � rb ¼ 0. ð26Þ
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At the beginning of every timestep the total volume occupied by gas is added. From this volume the density is inferred, and
the pressure is computed from Eq. (25).

At the end of every timestep, a check is performed to see if the bubble has reached contact with the air. Should this be
the case, the pressure in the bubble is set to atmospheric pressure. One then typically observes a rather quick collapse of the
bubble.

6. Examples

6.1. Breaking dam problem

This is a classic test case for free surface flows.
The problem definition is shown in Fig. 6a. This case was run on a coarse mesh with nelem = 16,562 elements, a fine

mesh with nelem = 135,869 and an adaptively refined mesh (where the coarse mesh was the base mesh) with approxi-
mately nelem = 30,000 elements. The refinement indicator for the latter was the free surface, and the mesh was adapted
every 5 time steps. Fig. 6b shows the discretization for the coarse mesh, and Figs. 6c–f the development of the flowfield and
Y

L=1m

H=1m

A1

50mmA

h=0.35m

X

Fig. 8a. 2D tank: problem definition.
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the free surface until the column of water hits the right wall. Note the mesh adaptation in time. The initialization was per-
formed using a step-function (i.e., a discontinuous function). For this reason, when displayed, the free surface indicator will
look like a ‘sawtooth’ oscillation in 2D and a ‘heavy sea’ in 3D (see also Fig. 11 below). The results obtained for the hor-
izontal location of the free surface along the bottom wall are compared to the experimental values of Martin and Moyse
[44], as well as the numerical results obtained by Hansbo [25], Kölke [34] and Walhorn [58] in Fig. 6g. The dimensionless
time and displacement are given by s ¼ t

ffiffiffiffiffiffiffiffiffiffi
2g=a

p
and d = x/a, where a is the initial width of the water column. As one can

see, the agreement is very good, even for the coarse mesh. The difference between the adaptively refined mesh and the fine
mesh was almost indistinguishable, and therefore only the results for the fine mesh are shown in the graph. CPU times were
of the order of 1–5 min on a Dell PC (3.2 GHz IP4, Linux OS, 2Gbyte RAM, Intel compiler).
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6.2. 3D dam-break wave interacting with a circular cylinder

The previous example validated the accuracy of the numerical model for studying dam breaking. This example considers
a three-dimensional dam-break wave interacting with a circular cylinder. The tank is 20 m long, 5 m wide, and 10 m high.
The volume of water initially contained behind a thin gate is 4 m · 5 m · 7 m. The circular cylinder, which has a radius
r = 1 m and height h = 5 m, is placed in the middle of the tank. The problem definition is shown in Fig. 7a. The entire tank
is selected as the computational domain with nelem = 1,315,224 elements. Fig. 7b shows a sequence of snapshots of the
Fig. 8d. Snapshots of free surface wave elevation for T = 1.3 and A/L = 0.05.
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free surface wave elevation, and Fig. 7c the time history of the horizontal force acting on the cylinder. The run took
approximately 8 h on a Dell PC (3.2 GHz IP4, Linux OS, 2Gbyte RAM, Intel compiler).

6.3. Sloshing of a 2D tank due to sway excitation

This example considers the sloshing of a partially filled 2D tank. The main tank dimensions are L = H = 1 m, with tank
width B = 0.1 m. The problem definition is shown in Fig. 8a. Experimental data for this tank with a filling level h/L = 0.35
have been provided by Olsen [46], and reported in Faltisen [14] and Olsen and Johnsen [47], where the tank was undergoing
a sway motion, i.e., the tank oscillates horizontally with law x = A sin(2pt/T). A wave gauge was placed 0.05 m from the
right wall and the maximum wave elevation relative to a tank-fixed coordinate system was recorded. In the numerical sim-
ulations reported by Landrini et al. [35] using the smoothed particle hydrodynamics (SPH) method, the forced oscillation
amplitude increases smoothly in time and reaches its steady regime value in 10 T. The simulation continues for another
30 T and the maximum wave elevation is recorded in last 10 periods of oscillation.

We followed the same procedure as Landrini et al. [35] in our numerical simulation for 32 cases, which correspond to 2
amplitudes (A = 0.025, 0.05) and 16 periods, ranging from T = 1.0 to 1.8 s or T/T1 = 0.787 to 1.42 s, where T1 = 1.27 s.
When h/L = 0.35 the primary resonances of the first and the third modes occur at T/T1 = 1.0 and T/T1 = 0.55, respectively.
The secondary resonance of the second mode is at T/T1 = 1.28 (see Landrini et al. [35]). The present VOF results for
the time history of the lateral force Fx when T = 1.2, 1.3 and A = 0.025, 0.05 are shown in Fig. 8b. The corresponding
time history of the wave elevation at the wave probe A1 (see Fig. 8a) is shown in Fig. 8c. Some free surface snapshots,
together with pressure contours, are shown in Fig. 8d. Note the ‘undershoot’ of the pressure in the gas region due to
L=1m

H=1m
X

h=0.35m

Y

AB=1m

Z

Fig. 9a. 3D tank: problem definition.
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the extrapolation from the liquid region. The present VOF results for maximum wave elevation f at the wave probe A1 (see
Fig. 8a) are compared with the experimental data and SPH results [35] in Fig. 8e for A/L = 0.025, 0.05.

The predicted lateral absolute values of maximum forces are compared with the experimental data and SPH results [35]
in Fig. 8f for A/L = 0.05 (there is no force data available for A/L = 0.025). Fig. 8f shows the comparison of predicted lat-
eral absolute values of maximum forces for A/L = 0.025, 0.05. It can be seen from Figs. 8e and 8f that both maximum wave
height and lateral absolute values of maximum forces predicted by present VOF method agrees fairly well with the exper-
imental data and SPH results, with a small phase shift among the three results. Figs. 8b and 8c are typical time history
plots. It should be noted from these figures that even after a long simulation time (40 periods), steady-state results are
not generally obtained. This is due to very small damping in the system. Landrini et al. [35] noted the same behavior in
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Fig. 9b. 3D tank: time history of force Fx for a 2D tank at A/L = 0.025, T/T1 = 1.

-150

-100

-50

 0

 50

 100

 150

 0  10  20  30  40  50  60  70  80

F x
 1

03  /
 g

L2 b

t /T

VOF, A/L=0.025, 3D Tank

Fig. 9c. 3D tank: time history of force Fx for a 3D tank at A/L = 0.025, T/T1 = 1.

t /T

-150

-100

-50

 0

 50

 100

 150

 0  10  20  30  40  50  60  70  80

F z
 1

03  /
 g

L2 b

VOF, A/L=0.025, 3D Tank

Fig. 9d. 3D tank: time history of force Fz for a 3D tank at A/L = 0.025, T/T1 = 1.
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their numerical simulations. As a result, the predicted maximum wave elevation and the lateral absolute values of maxi-
mum forces plotted in Fig. 8e are average maximum values for the last few periods for the cases when the steady-state
is not reached.
Fig. 9e. Snap shots of the free surface wave elevation for 3D tank.
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6.4. Sloshing of a 3D tank due to sway excitation

In order to study the three-dimensional effects, the sloshing of a partially filled 3D tank is considered. The main tank
dimensions are L = H = 1 m, with tank width b = 1 m. The problem definition is shown in Fig. 9a. The 3D tank has the
Fig. 9f. Snap shots of the free surface wave elevation for 3D tank.
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same filling level h/L = 0.35 as the 2D tank. The 3D tank case is run on a mesh with nelem = 561,808 elements, and the
2D tank is run on a mesh with nelem = 54,124 elements. The numerical simulations are carried out for both 3D and 2D
tanks, where both tanks are undergoing the same prescribed sway motion given by x = A sin(2pt/T). The simulations were
Fig. 9g. Snap shots of the free surface wave elevation for 3D tank.
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carried out for A = 0.025 and T = 1.27 (i.e., T/T1 = 1). The forced oscillation amplitude increases smoothly in time and
reaches its steady regime value in 10 T. The simulation continues for another 70 T. In order to show the 3D effects, the
forces are nondimensionalized with qgL2b for both 2D and 3D tanks. Figs. 9b and 9c show the time history of the force
Fx (horizontal force in the same direction as the tank moving direction) for both 2D and 3D tanks. Fig. 9d shows the time
history of the force Fz (horizontal force perpendicular to the tank moving direction) for 3D tank. It is very interesting to
Fig. 9h. Snap shots of the free surface wave elevation for 2D tank.
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observe from Figs. 9c and 9d that there are almost no 3D effects for the first 25 oscillating periods. The 3D modes start to
appear after 25 T, and fully build up at about 40 T. The 3D flow pattern then remains steady and periodic for the rest of the
simulation, which is about 40 more oscillating periods. CPU times were of the order of 8 h for the 2D cases and 36 h for the
3D cases on a Dell PC (3.2 GHz IP4, Linux OS, 2Gbyte RAM, Intel compiler).

Figs. 9e–9g show a sequence of snapshots of the free surface wave elevation for the 3D tank. For the first set of snap-
shots (see Fig. 9e), the flow is still two-dimensional. The 3D flow starts to build up in the second set of snapshots (see
Fig. 9f). The flow remains periodic three-dimensional for the last 40 periods. Fig. 9g show the typical snapshots of the free
surface for the last 40 periods. The 3D effects are clearly shown in these plots. Fig. 9h shows a sequence of snapshots of the
free surface wave elevation for the 2D tank at the same time instance as those shown in Fig. 9e. The flow remains periodic
and two-dimensional for the rest of the simulation.
6.5. Sinking tank

This test case is included to show the combination of the present techniques with mesh movement and remeshing. The
problem definition is given in Fig. 10a. The tank is assumed filled with air, and a hole opens up at the bottom of one of
the compartments. The mass of the tank was estimated by assuming that when floating empty, half of the tank is outside
the water. This yielded approximately m = 15,700 kg. The moment of inertia was estimated at Hz = 80,000 kg m2. The fill-
ing of the tank, and the ensuing movement, can be seen from Figs. 10b–f, which show the free surface, velocity and mesh in
the plane of symmetry as the calculation proceeds. Note the deformation of the mesh during the run, as well as the effect of
the (only 4) automatic global remeshings required to guarantee a proper mesh. The mesh had approximately nelem =
530,000 elements. The position and velocity of the center of mass as a function of time, as well as the trajectory are sum-
marized in Figs. 10g–h. The run took approximately 3 h on a Dell PC (3.2 GHz IP4, Linux OS, 2Gbyte RAM, Intel
compiler).
6.6. Bubble collapse beneath generic ship

This example shows the use of the present methodology to predict the effects of bubble collapse close to structures. The
problem definition is given in Fig. 11a. The ship is a generic ferry. The reference values for the bubble, which was located at
mid-ship and approximately 4 m from the hull, were set as follows: volume V0 = 128 m3, density q0 = 1.25 kg/m3, pressure
p0 = 1.0e + 8 N/m2, polytropic coefficient: c = 1.4. The initial radius for the bubble was set to r = 2 m. The mesh had
approximately nelem = 1,530,000 elements. Figs. 11b–g show the evolution of the flowfield. Note the change of shape
for the bubble, first into a torus and subsequently into a rather complex shape. The pressure recorded at midship on the
hull is shown in Fig. 11h. CPU time was of the order of 9 h on a Dell PC (3.2 GHz IP4, Linux OS, 2 Gbyte RAM, Intel
compiler).
7. Conclusions and outlook

A volume of fluid (VOF) technique has been developed and coupled with an incompressible Euler/Navier–Stokes solver
operating on adaptive, unstructured grids to simulate the interactions of extreme waves and three-dimensional structures.
Fig. 10a. Sinking tank: problem definition.



Figs. 10b–f. Sinking tank: flowfield at different times.
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The present implementation follows the classic VOF implementation for the liquid–gas system, considering only the liquid
phase. Extrapolation algorithms to obtain velocities and pressure in the gas region near the free surface have been imple-
mented. The VOF technique was validated against the classic dam-break problem, as well as series of 2D sloshing exper-
iments and results from SPH calculations. Other examples presented include violent wave interaction with a column, a
leaky tank filling with water and sinking, and a bubble collapsing under a generic ship.

When taken together, these recent advances, which include:

• accurate, fast incompressible Navier–Stokes solvers operating on adaptive, unstructured grids;
• robust volume of fluid (VOF) techniques for free surface flows;
• deactivation techniques to speed up calculations; and
• extensive parallelization of solvers

have made it possible to simulate flows with violent free surface motion with a high degree of accuracy, allowing decision-
making based on them. Like every human endeavour, numerical algorithms are subject to continuous improvements. Pres-
ent research is directed at the proper treatment of:

• surface tension;
• incoming and outgoing waves for 3D VOF-based free surface flows;
• free surface wall boundary conditions for RANS, NS cases (i.e., those cases where the velocity at the wall v = 0); and
• multiple bubble interaction (splitting, merging, etc.).
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Fig. 11a. Bubble collapse: problem definition.
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