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SUMMARY

We present a Lagrangian formulation for finite element analysis of quasi-incompressible fluids that has
excellent mass preservation features. The success of the formulation lays on a new residual-based stabilized
expression of the mass balance equation obtained using the Finite Calculus (FIC) method. The governing
equations are discretized with the FEM using simplicial elements with equal linear interpolation for the
velocities and the pressure. The merits of the formulation in terms of reduced mass loss and overall accuracy
are verified in the solution of 2D and 3D quasi-incompressible free-surface flow problems using the Particle
Finite Element Method (PFEM, www.cimne.com/pfem). Examples include the sloshing of water in a tank,
the collapse of one and two water columns in rectangular and prismatic tanks and the falling of a water
sphere into a cylindrical tank containing water. Copyright c© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Preservation of mass is a great challenge in the numerical study of flow problems with high values of
the bulk modulus that approach the conditions of incompressibility. Mass losses can be induced by
the so-called stabilization terms which are typically added to the discretized form of the momentum
and mass balance equations in order to account for high convective effects in the momentum
equations in the Eulerian description of the flow, and to satisfy the div-sup condition imposed by the
full incompressibility constraint when equal order interpolation of the velocities and the pressure is
used in mixed finite element methods (FEM) [1, 5, 43, 44].

An important source of mass loss emanates in the numerical solution of free-surface flows due,
among other reasons, to the inaccuracies in predicting the shape of the free-surface during large
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flow motions [13]. Mass losses can also occur in the numerical solution of flows with heterogeneous
material properties [12] and in homogeneous viscous flows using the Laplace form of the Navier-
Stokes equations [17].

Our interest in this work is the modelling and simulation of free surface quasi-incompressible
flows accounting for the actual value of the speed of sound in the fluid (or the equivalent bulk
modulus) using a particular class of Lagrangian FEM termed the Particle Finite Element Method
(PFEM, www.cimne.com/pfem) [2–4], [8]–[14],[16, 18, 19, 27, 28, 30, 32, 34, 35],[39]–[41]. The
PFEM treats the mesh nodes in the fluid and solid domains as particles which can freely move and
even separate from the main fluid domain representing, for instance, the effect of water drops. A
mesh connects the nodes discretizing the domain where the governing equations are solved using a
stabilized FEM.

In Lagrangian analysis procedures (such as the PFEM) the motion of fluid particles is tracked
during the transient solution. Hence, the convective terms vanish in the momentum equations and
no numerical stabilization is needed for treating those terms. Two other sources of mass loss,
however, remain in the numerical solution of Lagrangian flows, i.e. that due to the treatment of the
incompressibility constraint by a stabilized numerical method, and that induced by the inaccuracies
in tracking the flow particles and, in particular, the free surface.

In this work we present a new stabilized Lagrangian formulation for homogeneous quasi-
incompressible viscous flows that has excellent mass preservation features. The success of the
formulation relies on the consistent derivation of a residual-based stabilized expression of the mass
balance equation using the Finite Calculus (FIC) method [7],[20]–[26],[29]–[31],[36, 37].

The FIC approach in mechanics is based on expressing the equations of balance of mass and
momentum in a space-time domain of finite size and retaining higher order terms in the Taylor
series expansion typically used for expressing the change in the transported variables within the
balance domain. In addition to the standard terms of infinitesimal theory, the FIC form of the
balance equations contains derivatives of the classical differential equations in mechanics multiplied
by characteristic distances in space and time. Examples of stabilized FIC-FEM formulations in fluid
and solid mechanics can be found in the references given in the previous paragraph.

In our work we use the second order FIC form in space and the first order FIC form in time of
the mass balance equation as the basis for obtaining a new stabilized variational residual expression
of that equation useful for finite element analysis. The discretized variational form of the FIC mass
balance equation via the FEM introduces terms in the Neumann boundary of the domain and other
terms involving the first and second material time derivatives of the pressure that are relevant for
ensuring the consistency of the residual formulation. These terms are also crucial for preserving
the mass during the transient solution of free surface Lagrangian flows. In addition they allow
to compute the nodal pressures from the stabilized mass balance equation without imposing any
condition on the pressure at the free surface nodes, thus eliminating another source of mass loss
which occurs when the pressure is prescribed to a zero value on the free surface in viscous flows.
Numerical tests show that the numerical formulation here presented has an excellent performance
in terms of mass conservation and overall accuracy of the solution for free-surface flow problems.

The lay-out of the paper is the following. In the next section we present the basic equations
for conservation of linear momentum and mass for a quasi-incompressible fluid in a Lagrangian
framework. A full incompressible fluid is considered as a particular limit case of the former.
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Next we derive the stabilized FIC form of the mass balance equation. Then the finite element
discretization using simplicial element with equal order approximation for the velocity and the
pressure is presented and the relevant matrices and vectors of the discretized problem are given.
Details of the implicit solution of the Lagrangian FEM equations in time using a Newton iterative
scheme are presented. A particular form of the tangent stiffness matrix that accounts for the terms
introduced by the bulk modulus of the fluid is presented. The relevance of these terms for enhancing
the convergence and overall accuracy of the iterative solution scheme is discussed. The basic steps
of the PFEM for solving free-surface flow problems are described.

The efficiency and accuracy of the new stabilized formulation are verified by solving a set of free
surface flow problems in two (2D) and three (3D) dimensions with the PFEM. The problems include
the sloshing of water in a tank, the motion of a stream within a tank originated by the collapse of a
water column, the collision and mixing of two streams due to the collapse of two water columns in a
tank and the falling and subsequent penetration of a water sphere into a cylindrical tank containing
water. The excellent performance of the numerical method proposed in terms of mass conservation
and general accuracy is highlighted.

2. BASIC EQUATIONS

We write the governing equations for a quasi-incompressible Newtonian flow problem in the
Lagrangian description as follows [1, 44].

Momentum equations

ρ
Dvi
Dt
− ∂σij
∂xj

− bi = 0 , i, j = 1, ns in Ω (1)

In Eq.(1), Ω is the analysis domain with boundary Γ, vi and bi are the velocity and body force
components along the ith Cartesian axis, ρ is the density of the fluid, ns is the number of space
dimensions (i.e. ns = 3 for 3D problems) and σij are the Cauchy stresses that are split in the
deviatoric (sij) and pressure (p) components as

σij = sij + pδij (2)

where δij is the Kronecker delta. Note that the pressure is assumed to be positive for a tension state.
Summation of terms with repeated indices is assumed in Eq.(1) and in the following, unless

otherwise specified.
The relationship between the deviatoric stresses and the strain rates has the standard form for a

Newtonian fluid,

sij = 2µ

(
εij −

1

3
εvδij

)
(3)

where µ is the viscosity and the strain rates εij are related to the velocities by

εij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
(4)
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In Eq.(4) εv is the volumetric strain rate defined as

εv = εii =
∂vi
∂xi

(5)

Substituting Eqs.(2) and (4) into (1) gives a useful form of the momentum equations as

ρ
Dvi
Dt
− ∂

∂xj
(2µεij) +

∂

∂xi

(
2

3
µεv

)
− ∂p

∂xi
− bi = 0 , i, j = 1, ns (6)

Remark 1. The term Dvi
Dt in Eq.(1) is the material derivative of the ith velocity component vi. This

term is typically computed in a Lagrangian framework as

Dvi
Dt

=
n+1vi − nvi

∆t
(7a)

with
n+1vi := vi(

n+1x, n+1t) , nvi := vi(
nx, nt) (7b)

where nvi(nx, nt) is the velocity of the material point that has the position nx at time t = nt,
where x = [x1, x2, x3]T is the coordinates vector of a point in a fixed Cartesian system. Note
that the convective term, typical of Eulerian formulations, does not appear in the definition of
the material derivative [1, 5, 44].

Boundary conditions

The boundary conditions at the Dirichlet (Γv) and Neumann (Γt) boundaries with Γ = Γv ∪ Γt are

vi − vpi = 0 on Γv (8)

σijnj − tpi = 0 on Γt i, j = 1, ns (9)

where vpi and tpi are the prescribed velocities and prescribed tractions on the Γv and Γt boundaries,
respectively [1, 5, 44].

Clearly at a free surface the Neumann boundary conditions typically apply.
For a unloaded free surface tpi = 0 and the boundary conditions (9) simplify to

σijnj = 0 on Γt (10)

Eq.(10) simplifies further for the inviscid case (µ = 0) using Eqs.(2) and (3) to

p = 0 on Γt (11)

The use of Eq.(11) on an unloaded free surface instead of Eq.(10) leads to considerable mass
losses in numerical solution schemes [13]. In our work the full form of the Neumann boundary
condition, as expressed in Eq.(9), is used.
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3. MASS BALANCE EQUATION

The standard mass balance equation for a quasi-incompressible fluid can be written as [1, 5, 44]

rv = 0 (12a)

with
rv := − 1

c2
Dp

Dt
+ ρεv (12b)

In Eq.(12b) c is the speed of sound in the fluid. For a fully incompressible fluid c =∞ and
Eq.(12a) simplifies to the standard form, εv = 0. In our work we will retain the quasi-incompressible
form of rv of Eq.(12b) for convenience.

4. STABILIZED FIC FORM OF THE MASS BALANCE EQUATION

Previous stabilized FEM formulations for quasi and fully incompressible fluids and solids were
based on the first order form of the Finite Calculus (FIC) balance equation in space [20]–
[22],[25],[29]–[31],[36]. In this work we will use the second order FIC form of the mass balance
equation in space for a quasi-incompressible fluid [36, 37], as well as the first order FIC form of the
mass balance equation in time. These forms have the following expressions:

Second order FIC mass balance equation in space

rv +
h2
i

12

∂2rv
∂x2

i

= 0 in Ω i = 1, ns (13)

First order FIC mass balance equation in time

rv +
δ

2

Drv
Dt

= 0 in Ω (14)

Eq.(13) is obtained by expressing the balance of mass in a rectangular domain of finite size
with dimensions h1 × h2 (for 2D problems), where hi are arbitrary distances, and retaining up to
third order terms in the Taylor series expansions used for expressing the change of mass within the
balance domain. The derivation of Eq.(13) for 2D incompressible flows can be found in [37].

Eq.(14), on the other hand, is obtained by expressing the balance of mass in a space-time domain
of infinitesimal length in space and finite dimension δ in time [20]. The derivation of Eqs.(13) and
(14) for a 1D problem are shown in the Appendix A.

The FIC terms in Eqs.(13) and (14) play the role of space and time stabilization terms respectively.
In the discretized problem, the space dimensions hi and the time dimension δ are related to
characteristic element dimensions and the time step increment, respectively as it will be explained
later.

Note that for hi → 0 and δ → 0 the standard form of the mass balance equation (12a), as given
by the infinitesimal theory, is recovered.
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5. FIC FORM OF THE MASS BALANCE EQUATION IN TERMS OF THE MOMENTUM
EQUATIONS

From the momentum equations (6) we obtain (neglecting the space changes of the viscosity µ in the
term involving εv)

2

3
µ
∂εv
∂xi

= −ρDvi
Dt

+
∂

∂xj
(2µεij) +

∂p

∂xi
+ bi = −ρDvi

Dt
+ r̂mi (15)

From this equation we deduce

∂εv
∂xi

=
3

2µ

[
−ρDvi

Dt
+ r̂mi

]
(16)

In the above two equations r̂mi is a static momentum term defined as

r̂mi
=

∂

∂xj
(2µεij) +

∂p

∂xi
+ bi (17)

Let us introduce ∂εv
∂xi

from Eq.(16) into Eq.(13). This gives, using Eq.(12b)

− 1

c2
Dp

Dt
+ ρεv −

h2
i

12

∂2

∂x2
i

(
1

c2
Dp

Dt

)
+
h2
i

12

∂

∂xi

(
∂

∂xi
(ρεv)

)
= − 1

c2
Dp

Dt
+ ρεv

−h
2
i

12

∂2

∂x2
i

(
1

c2
Dp

Dt

)
+
ρh2

i

8µ

∂

∂xi

(
−ρDvi

Dt
+ r̂mi

)
(18)

In the derivation of Eq.(18), and in the following, we neglect the space changes of c and ρ in the
derivatives.

Observation of the term involving the material derivative of vi in Eq.(18) gives

∂

∂xi

(
−ρDvi

Dt

)
= −ρ D

Dt

(
∂vi
∂xi

)
= −ρDεv

Dt
(19)

Substituting Eq.(19) into (18) gives

− 1

c2
Dp

Dt
+ ρεv −

h2
i

12c2
∂2

∂x2
i

(
Dp

Dt

)
+
ρh2

i

8µ

(
−ρDεv

Dt
+
∂r̂mi

∂xi

)
= 0 (20)

Expanding the FIC mass balance equation in time (Eq.(14)) gives

− 1

c2
Dp

Dt
+ ρεv −

δ

2c2
D2p

Dt2
+
δ

2
ρ
Dεv
Dt

= 0 (21)

From Eq.(21) we deduce

−ρDεv
Dt

= − 2

δc2
Dp

Dt
+

2ρ

δ
εv −

1

c2
D2p

Dt2
(22)

Int. J. Numer. Meth. Fluids (0000)
DOI: 10.1002/fld



LAGRANGIAN FORMULATION FOR FINITE ELEMENT ANALYSIS OF QUASI-INCOMPRESSIBLE FLUIDS7

Substituting Eq.(22) into (20) gives

− 1

c2
Dp

Dt
+ ρεv −

h2
i

12c2
∂2

∂x2
i

(
Dp

Dt

)
+
ρh2

i

8µ

(
− 2

δc2
Dp

Dt
+

2ρ

δ
εv −

1

c2
D2p

Dt2
+
∂r̂mi

∂xi

)
= 0 (23)

In the following we will assume hi = h where h is a characteristic length that will be related to
a typical average dimension of each element in the mesh. Multiplying Eq.(23) by 8µ

ρh2 gives, after
grouping some terms,

− 1

κ

Dp

Dt
+ εv −

2µτ

3κ

∂

∂xi

(
∂

∂xi

(
Dp

Dt

))
− τ

c2
D2p

Dt2
+ τ

∂r̂mi

∂xi
= 0 (24)

In Eq.(24) κ = ρc2 is the bulk modulus of the fluid and τ is a stabilization parameter given by

τ =

(
8µ

h2
+

2ρ

δ

)−1

(25)

Remark 2. The coefficient 2µτ
3κ multiplying the second space derivatives of Dp

Dt in Eq.(24) is much
smaller than the coefficients multiplying the rest of the terms in this equation. Numerical tests
have shown that the results are not affected by this term. Consequently, this second space
derivative term will be neglected in the rest of this work.

Remark 3. The term ∂
∂xi

(
∂
∂xj

(2µεij)
)

within r̂mi in Eq.(24) (see the definition of r̂mi in Eq.(17))
vanishes for a linear approximation of the velocity field. This is the case for the simplicial
elements used in this work.

6. VARIATIONAL EQUATIONS

6.1. Variational expression of the momentum equation

Multiplying Eq.(1) by arbitrary test functions wi with dimensions of velocity and integrating over
the analysis domain Ω gives the weighted residual form of the momentum equations as [1, 5, 44]∫

Ω

wi

(
ρ
Dvi
Dt
− ∂σij
∂xj

− bi
)
dΩ = 0 (26)

Integrating by parts the term involving σij and using the Neumann boundary conditions (9) yields
the weak variational form of the momentum equations as∫

Ω

wiρ
Dvi
Dt

dΩ +

∫
Ω

δεijσijdΩ−
∫

Ω

wibidΩ−
∫

Γt

wit
p
i dΓ = 0 (27)

where δεij = ∂wi

∂xj
+

∂wj

∂xi
is an arbitrary (virtual) strain rate field. Eq.(27) is the standard form of the

principle of virtual power with the test functions wi interpreted as “virtual velocities” [1, 5, 44].

Int. J. Numer. Meth. Fluids (0000)
DOI: 10.1002/fld
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Substituting the expression of the stresses from Eq.(2) into (27) gives∫
Ω

wiρ
Dvi
Dt

dΩ +

∫
Ω

[
δεij2µ

(
εij −

1

3
εiiδij

)
+ δεvp

]
dΩ−

∫
Ω

wibidΩ−
∫

Γt

wit
p
i dΓ = 0 (28)

Eq.(28) can be written in matrix form as∫
Ω

wT ρ
Dv
Dt

dΩ +

∫
Ω

δεεεεεεεεεεεεεεTDεεεεεεεεεεεεεεdΩ +

∫
Ω

δεεεεεεεεεεεεεεTmpdΩ−
∫

Ω

wTbdΩ−
∫

Γt

wT tpdΓ = 0 (29)

In Eq.(29) w,v, εεεεεεεεεεεεεε and δεεεεεεεεεεεεεε are vectors containing the test functions, the velocities, the strain
rates and the virtual strain rates respectively; b and tp are body force and surface traction vectors,
respectively; D is the viscous constitutive matrix and m is an auxiliary vector. These vectors are
defined as (for 3D problems)

w = [w1, w2, w3]T , v = [v1, v2, v3]T , b = [b1, b2, b3]T , tp = [tp1, t
p
2, t

p
3]T

εεεεεεεεεεεεεε = [ε11, ε22, ε33, ε12, ε13, ε23]T , δεεεεεεεεεεεεεε = [δε11, δε22, δε33, δε12, δε13, δε23]T

D = µ



4/3 −2/3 −2/3 0 0 0

4/3 −2/3 0 0 0

4/3 0 0 0

2 0 0

Sym. 2 0

2


, m = [1, 1, 1, 0, 0, 0]T

(30)

Remark 4. From the definition of m and D and Eqs.(2), (3) and (5) we deduce

σσσσσσσσσσσσσσ = s + mp , s = Dεεεεεεεεεεεεεε and εv = mTεεεεεεεεεεεεεε (31)

where σσσσσσσσσσσσσσ = [σ11, σ22, σ33, σ12, σ13, σ31]T , and s = [s11, s22, s33, s12, s13, s23]T are the stress
and deviatoric stress vectors, respectively.

6.2. Variational expression of the stabilized mass balance equation

We multiply Eq.(24) by arbitrary (continuous) test functions q (with dimensions of pressure) defined
over the analysis domain Ω. Integrating over Ω gives (neglecting the term involving the second space
derivatives of DpDt , as mentioned earlier)∫

Ω

− q
κ

Dp

Dt
dΩ−

∫
Ω

q
τ

c2
D2p

Dt2
dΩ +

∫
Ω

qεvdΩ +

∫
Ω

qτ
∂r̂mi

∂xi
dΩ = 0 (32)

Int. J. Numer. Meth. Fluids (0000)
DOI: 10.1002/fld
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2

3
µ
∂εv
∂n
|ij '

2

hn

(
2

3
µ+ε+

v −
2

3
µ−ε−v

)
ε+
v = 0 outside Ω

2

3
µ
∂εv
∂n
|ij ' −

4

3hn
µ−ε−v = − 4

3hn
µeεev

Figure 1. Computation of the term of
2

3
µ
∂εv
∂n

at the side ij of a 3-node triangle ijk adjacent to the external
boundary Γ

Integrating by parts the last integral in Eq.(32) (and neglecting the space changes of τ ) yields∫
Ω

− q
κ

Dp

Dt
dΩ−

∫
Ω

q
τ

c2
D2p

Dt2
dΩ +

∫
Ω

qεvdΩ−
∫

Ω

τ
∂q

∂xi
r̂mi

dΩ +

∫
Γ

qτ r̂mi
nidΓ︸ ︷︷ ︸

BT

= 0 (33)

where ni are the components of the unit normal vector to the external boundary Γ of Ω.
In the derivation of Eq.(33) we have accepted that functions q vanish at any internal element

boundary within Ω as it usual in the FEM [1, 5, 44].
Let us consider the boundary term BT in Eq.(33). Using Eq.(16) we deduce

BT =

∫
Γ

qτ r̂minidΓ =

∫
Γ

qτ

(
ρ
Dvi
Dt

+
2µ

3

∂εv
∂xi

)
nidΓ =

∫
Γ

qτ

(
ρ
Dvn
Dt

+
2µ

3

∂εv
∂n

)
dΓ (34)

where ∂εv
∂n is the derivative of the volumetric strain in the direction of the normal to the external

boundary and vn is the velocity normal to the boundary.
The term 2µ

3
∂εv
∂n can be approximated as follows

2µ

3

∂εv
∂n

=
2

hn

(
2

3
µ+ε+

v −
2

3
µ−ε−v

)
at Γ (35)

where (µ+, ε+
v ) and (µ−, ε−v ) are respectively the values of µ and εv at exterior and interior points

of the boundary Γ and hn is a characteristic length in the normal direction to the boundary. Figure
1 shows an example of the computation of 2

3µ
∂εv
∂n at the side of a 3-noded triangle adjacent to the

external boundary. The same procedure applies for 4-noded tetrahedra.
Clearly, at external boundaries ε+

v = 0 and ε−v = εv. Hence, ε−v coincides with the volumetric
strain in the 3-noded triangular element adjacent to the boundary.

Using above argument Eq.(35) simplifies to

2µ

3

∂εv
∂n

= − 4µ

3hn
εv at Γ (36)

Int. J. Numer. Meth. Fluids (0000)
DOI: 10.1002/fld
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On the other hand, the stresses at any boundary satisfy the traction equilibrium condition (9)

σijnj − ti = 0 at Γ (37)

Substituting Eqs.(2) and (3) into (37) we can rewrite this last equation after multiplying all terms
by ni, as

2µ
∂vn
∂n
− 2

3
µεv + p− tn = 0 at Γ (38)

where tn = tini is the normal traction to the boundary (Figure 1) and ∂vn
∂n = ni

∂vi
∂xj

nj .
From Eq.(38) we deduce

2

3
µεv = 2µ

∂vn
∂n

+ p− tn at Γ (39)

Substituting Eq.(39) into (36) and this one into (34) gives the expression of the boundary integral
as

BT =

∫
Γ

qτ

(
ρ
Dvn
Dt
− 2

hn
(2µ

∂vn
∂n

+ p− tn)

)
dΓ (40)

The normal velocity vn is fixed at a Dirichlet boundary Γv and hence Dvn
Dt = 0 at Γv. Also,

accepting that εv = 0 at Γv, the surface tractions at Γv coincide precisely with the reactions
computed as tn = 2µ∂vn∂n + p. Hence, the boundary integral can be neglected at a Dirichlet boundary
and, therefore, it has a meaning at a Neumann boundary only. In conclusion,

BT =

∫
Γt

qτ

(
ρ
Dvn
Dt
− 2

hn
(2µ

∂vn
∂n

+ p− tn)

)
dΓ (41)

Substituting Eq.(41) into (33) and using the expression of r̂mi
of Eq.(17) yields the variational

expression of the stabilized mass balance equation, after rearranging the different terms, as

∫
Ω

q

κ

Dp

Dt
dΩ +

∫
Ω

q
τ

c2
D2p

Dt2
dΩ−

∫
Ω

qεvdΩ +

∫
Ω

τ
∂q

∂xi

(
∂

∂xi
(2µεij) +

∂p

∂xi
+ bi

)
dΩ

−
∫

Γt

qτ

[
ρ
Dvn
Dt
− 2

hn
(2µ

∂vn
∂n

+ p− tn)

]
dΓ = 0

(42)

Expression (42) holds for 2D and 3D problems.
The terms involving the first and second material time derivative of the pressure and the boundary

term in Eq.(42) are important to preserve the consistency of the residual form of the FIC mass
balance equation. This, in turn, is essential for preserving the conservation of mass in the transient
solution of free flow problems. The form of Eq.(42) is a key contribution of the new stabilized
formulation, versus previous works on this topic [21, 27, 30, 32, 36, 37, 40].

Remark 5. At an unloaded free surface (Neumann) boundary tn = 0, and hence

BT =

∫
Γt

qτ

(
ρ
Dvn
Dt
− 2

hn
(2µ

∂vn
∂n

+ p)

)
dΓ (43)

For an inviscid fluid µ = 0 and Eq.(43) simplifies to

BT =

∫
Γt

qτ

(
ρ
Dvn
Dt
− 2p

hn

)
dΓ (44)
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Remark 6. Accounting for the term Dvn
Dt in the boundary integral of Eq.(42) has proven to be

relevant for the enhanced conservation of mass in free surface flows (see Figure 9 in Example
10.1). On the other hand, the effect of the term involving D2p

Dt2 was negligible in all the
problems analyzed in this work.

Remark 7. Eq.(47) is the starting point for deriving a new class of linear triangles with
discontinuous pressure field adequate for analysis of incompressible flows with heterogeneous
material properties [38].

7. FEM DISCRETIZATION

We discretize the analysis domain into finite elements with n nodes in the standard manner leading
to a mesh with a total number of Ne elements and N nodes. In our work we will choose simple
3-noded linear triangles (n = 3) for 2D problems and 4-noded tetrahedra (n = 4) for 3D problems
with local linear shape functions Ne

i defined for each node i (i = 1, n) of element e [33, 42]. The
velocity components, the test functions and the pressure are interpolated over the mesh in terms of
their nodal values in the same manner using the global linear shape functions Nj spanning over the
elements sharing node j (j = 1, N ) [33, 42, 44]. The finite element interpolation can be written in
matrix form as

v = Nvv̄ , w = Nvw̄ , p = Npp̄ (45)

where

v̄ =


v̄1

v̄2

...
v̄N

 with v̄i =


v̄i1
v̄i2
v̄i3

 , w̄ =


w̄1

w̄2

...
w̄N

 with w̄i =


w̄i1
w̄i2
w̄i3

 and p̄ =


p̄1

p̄2

...
p̄N


Nv = [N1,N2, · · · ,NN ]T , Np = [N1, N2, · · · , NN ]T

(46)

with Nj = NjIn where In is the n× n unit matrix.
In Eq.(46) vectors v̄, w̄ and p̄ contain the nodal velocities, the nodal test functions and the nodal

pressures for the whole mesh, respectively and the upperindex denotes the nodal value for each
vector or scalar magnitude.

Substituting the FEM approximation (45) into Eqs.(4) and (31) yields the strain rates, the virtual
strain rates and the stresses at a point in a mesh in terms of the nodal velocities v̄, the nodal test
functions w̄ and the nodal pressures p̄ as

εεεεεεεεεεεεεε = Bv̄ , δεεεεεεεεεεεεεε = Bw̄ , εv = mTBv̄ , s = DBv̄ , σσσσσσσσσσσσσσ = DBv̄ + mNpp̄ (47)

where B = [B1,B2, · · · ,BN ]. The expression of Bj (with index j being a global node number)
coincides with the element matrix Be

i (with index i being a local node number) of Box 1 changing
i by j and Ne

i by Nj .
Substituting the approximations (45) and (47) into Eqs.(29) and (42) and choosing a Galerkin

form with q = Ni gives the discretized form of the momentum and (stabilized) mass balance
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12 E. OÑATE, A. FRANCI AND J.M. CARBONELL

equations, after eliminating the arbitrary test functions w̄, as∫
Ω

NT
v ρNv

Dv̄

Dt
dΩ +

∫
Ω

BTDBv̄dΩ +

∫
Ω

BTmNpp̄dΩ−
∫
V

NT
v bdΩ−

∫
Γt

NT
v t

p = 0 (48a)

∫
Ω

1

κ
NT
pNp

Dp̄

Dt
dΩ +

∫
Ω

τ

c2
NT
pNp

D2p̄

Dt2
dΩ−

∫
Ω

NT
pm

TBp̄dΩ +

∫
Ω

τ(∇∇∇∇∇∇∇∇∇∇∇∇∇∇Np)
T (∇∇∇∇∇∇∇∇∇∇∇∇∇∇Npp̄ + b)dΩ +

+

∫
Γt

2τ

hn
NT
pNpp̄dΓ− fp = 0 (48b)

where

∇∇∇∇∇∇∇∇∇∇∇∇∇∇Np ≡ [∇∇∇∇∇∇∇∇∇∇∇∇∇∇N1,∇∇∇∇∇∇∇∇∇∇∇∇∇∇N2, · · · ,∇∇∇∇∇∇∇∇∇∇∇∇∇∇NN ] with ∇∇∇∇∇∇∇∇∇∇∇∇∇∇ =


∂

∂x1
∂

∂x2
∂

∂x3

 (48c)

and fp includes the boundary terms shown in Box 1. Eqs.(48a,b) can be written in matrix form as

M0 ˙̄v + Kv̄ + Qp̄− fv = 0 (49a)

M1 ˙̄p + M2 ¨̄p−QT v̄ + (L + Mb)p̄− fp = 0 (49b)

where ˙̄a and ¨̄a denote the first and second material time derivatives of the components of a vector a.
The different matrices and vectors in Eqs.(49) are assembled from the element contributions given
in Box 1.

Remark 8. The boundary terms of vector fp can be incorporated in the different matrices of
Eq.(49b). This, however, leads to a non symmetrical set of equations. For this reason we have
chosen to compute these boundary terms iteratively within the incremental solution scheme.

Remark 9. The presence of matrix Mb in Eq.(49b) allows us to compute the pressure without the
need of prescribing its value at the free surface. This eliminates the error introduced when the
pressure is prescribed to zero in free boundaries, which leads to considerable mass losses in
viscous flows. Matrix Mb was introduced in the discretized stabilized mass balance equation
in [13] using a fractional step method and heuristic arguments.

Remark 10. For transient problems the stabilization parameter τ of Eq.(25) is computed for each
element e using h = le and δ = ∆t as

τ =

(
8µ

(le)2
+

2ρ

∆t

)−1

(50)

where ∆t is the time step used for the transient solution and le is a characteristic element
length computed as le = 2(Ωe)1/ns where Ωe is the element area (for 3-noded triangles) or
volume (for 4-noded tetrahedra). For fluids with heterogeneous material properties the values
of µ and ρ in Eq.(50) are computed at the element center.
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Me
0ij

=

∫
Ωe

ρNe
i NjI3dΩ , Ke

ij =

∫
Ωe

BeTi DBejdΩ , Qe
ij =

∫
Ωe

BeTi mNe
j dΩ

Me
1ij

=

∫
Ωe

1

κ
Ne
i N

e
j dΩ , Me

2ij
=

∫
Ωe

τ

c2
Ne
i N

e
j dΩ , Me

bij =

∫
Γt

2τ

hn
Ne
i N

e
j dΓ

Leij =

∫
Ωe

τ(∇∇∇∇∇∇∇∇∇∇∇∇∇∇TNe
i )∇∇∇∇∇∇∇∇∇∇∇∇∇∇Ne

j dΩ , fevi =

∫
Ωe

Ne
ibdΩ +

∫
Γt

Ne
i tdΓ

fepi =

∫
Γt

τNe
i

[
ρ
Dvn
Dt
− 2

hn
(2µεn − tn)

]
dΓ−

∫
Ωe

τ∇∇∇∇∇∇∇∇∇∇∇∇∇∇TNe
i bdΩ

with i, j = 1, n.
For 3D problems

Be
i =



∂Ne
i

∂x1
0 0

0
∂Ne

i

∂x2
0

0 0
∂Ne

i

∂x3
∂Ne

i

∂x2

∂Ne
i

∂x1
0

∂Ne
i

∂x3
0

∂Ne
i

∂x1

0
∂Ne

i

∂x3

∂Ne
i

∂x2


, Ne

i = Ne
i I3 and ∇∇∇∇∇∇∇∇∇∇∇∇∇∇ =


∂

∂x1
∂

∂x2
∂

∂x3



Ne
i : Local shape function of node i of element e [33, 42]

Box 1. Element form of the matrices and vectors in Eqs.(49)

For steady state problems the stabilization parameter is computed as

τ =

(
8µ

(le)2
+

2ρ|ve|
le

)−1

(51)

where ve is the velocity vector at the element center. Also, the characteristic boundary length
hn in the expression of fp (Box 1) has been taken equal to le in our computations.

8. INCREMENTAL SOLUTION OF THE DISCRETIZED EQUATIONS

Eqs.(49) are solved in time with an implicit Newton-Raphson type iterative scheme [1, 5, 42, 44].
The basic steps within a time increment [n, n+ 1] are:

- Initialize variables: (n+1x1, n+1v̄1, n+1p̄1, n+1r̄1
m) ≡ {nx, nv̄, np̄, nr̄m}.

- Iteration loop: i = 1, NITER.
For each iteration.
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14 E. OÑATE, A. FRANCI AND J.M. CARBONELL

Step 1. Compute the nodal velocity increments ∆v̄

From Eq.(49a), we deduce
n+1Hi

v∆v̄ = −n+1r̄im → ∆v̄ (52a)

with the momentum residual r̄m and the iteration matrix Hv given by

r̄m = M0 ˙̄v + Kv̄ + Qp̄− fv , Hv =
1

∆t
M0 + K + Kv (52b)

Step 2. Update the nodal velocities

n+1v̄i+1 = n+1v̄i + ∆v̄ (53)

Step 3. Compute the nodal pressures n+1p̄i+1

From Eq.(49b) we obtain

n+1Hi
p
n+1p̄i+1 =

1

∆t
M1

n+1p̄i +
1

∆t2
M2(2np̄−n−1 p̄) + QT n+1v̄i+1 + n+1f̄ ip → n+1p̄i+1

(54a)
with

Hp =
1

∆t
M1 +

1

∆t2
M2 + L + Mb (54b)

Step 4. Update the nodal coordinates

n+1xi+1 = n+1xi +
1

2
(n+1v̄i+1 + nv̄)∆t (55)

A more accurate expression for computing n+1xi+1 can be used involving the nodal accelerations
[39].

Step 5. Check convergence

Verify the following conditions:

‖n+1v̄i+1 − n+1v̄i‖ ≤ ev‖nv̄‖
‖n+1p̄i+1 − n+1p̄i‖ ≤ ep‖np̄‖

(56)

where ev and ep are prescribed error norms for the nodal velocities and the nodal pressures,
respectively. In the examples solved in this work we have set ev = ep = 10−3.

If both conditions (56) are satisfied then make n← n+ 1 and proceed to the next time step.
Otherwise, make the iteration counter i← i+ 1 and repeat Steps 1–5.

Remark 11. In Eqs.(52)–(56) n+1(·) denotes the values of a matrix or a vector computed using
the nodal unknowns at time n+ 1. In our work the derivatives and integrals in the iteration
matrices Hv and Hp and the residual vector r̄m are computed on the discretized geometry at
time n (i.e. Ωe = nΩe) while the nodal force vectors fv and fp are computed on the current
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configuration at time n+ 1. This is equivalent to using an updated Lagrangian formulation
[1, 43, 44].

Remark 12. The tangent “bulk” stiffness matrix Kv in the iteration matrix Hv of Eq.(52b) accounts
for the changes of the pressure due to the velocity. Including matrix Kv in Hv has proven to
be essential for the fast convergence, mass preservation and overall accuracy of the iterative
solution. The element expression of Kv can be obtained as (Appendix B)

Ke
v =

∫
Ωe

BTmθ∆tκmTBdΩ (57)

where θ is a positive number such that 0 < θ ≤ 1 that has the role of preventing the ill-
conditioning of the iteration matrix Hv for very large values of the speed of sound in the
fluid that lead to a dominant role of the terms of the tangent bulk stiffness matrix Kv. An
adequate selection of θ also improves the overall accuracy of the numerical solution and the
preservation of mass for large time steps [8]. For fully incompressible fluids (c and κ =∞),
a finite value of κ is used in practice in Kv as this helps to obtaining an accurate solution
for velocities and pressure with reduced mass loss in few iterations per time step [8]. These
considerations, however, do not affect the value of κ within matrix M1 in Eq.(49b) that
vanishes for the fully incompressible case. Clearly, the value of the terms of Ke

v can also be
limited by reducing the time step size. This, however, leads to an increase in the overall cost
of the computations. A similar approach for improving mass conservation in incompressible
flows was proposed in [40].

Remark 13. The iteration matrix Hv in Eq.(52a) is an approximation of the exact tangent matrix in
the updated Lagrangian formulation for a quasi/fully incompressible fluid [39]. The simplified
form of Hv used in this work has yielded very good results with convergence achieved for the
nodal velocities and pressure in 3–4 iterations in all the problems analyzed.

Remark 14. The time step within a time interval [n, n+ 1] has been chosen as ∆t =

min
(

nlemin

|nv|max
,∆tb

)
where nlemin is the minimum characteristic distance of all elements in

the mesh, with le computed as explained in Remark 10, |nv|max is the maximum value of the
modulus of the velocity of all nodes in the mesh and ∆tb is the critical time step of all nodes
approaching a solid boundary defined as ∆tb = min

(
nlb

|nvb|max

)
where nlb is the distance from

the node to the boundary and nvb is the velocity of the node. This definition of ∆t intends that
no node crosses a solid boundary during a time step. Again n(·) denotes values at time t =n t.

A method that allows using large time steps in the integration of the PFEM equations can be
found in [14].

9. ABOUT THE PARTICLE FINITE ELEMENT METHOD (PFEM)

9.1. The basis of the PFEM

Let us consider a domain V containing fluid and solid subdomains. Each subdomain is characterized
by a set of points, hereafter termed particles. The particles contain all the information for defining
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16 E. OÑATE, A. FRANCI AND J.M. CARBONELL

the geometry and the material and mechanical properties of the underlying subdomain. In the
PFEM both subdomains are modelled using an updated Lagrangian formulation [1, 43]. That is,
all variables are assumed to be known in the current configuration at time n(t = nt). The new set of
variables in the fluid and solid subdomains is sought for the next or updated configuration at time
n+ 1(t = n+1t). The FEM is used to solve the equations of continuum mechanics for each of the
subdomains. Hence the boundary of each subdomain is identified and then a mesh discretizing these
domains is generated in order to solve the governing equations for each subdomain in the standard
FEM fashion [1, 5, 33, 42, 44].

The solution steps within a time step in the PFEM are as follows:

n+1
x ,

n+1
u , n+1

v, n+1
a ,n+1ε , n+1ε , n+1σ

n
M → 

n+1 
C

n+1
V → 

n+1
M

n+1 
C → 

n+1 
V

n+1
M → 

n+2 
C

n
V → 

n 
M

n 
C → 

n 
V

Solid node

Fixed boundary node
Fluid node

Initial “cloud” of nodes 
n 
C

Domain n

Flying Sub-domains 

Fixed 
boundary 

n

Γ

Mesh n 

M

n
x ,

n
u , nv, na ,nε , nε , nσ

. 
. 

Cloud  n+2 
C

Domain n+1Fixed 
boundary 

nΓ 

Mesh n+1 

M 

Cloud n+1 
C

.

etc… 

Figure 2. Sequence of steps to update a “cloud” of nodes representing a domain containing a fluid and a
solid part from time n (t =n t) to time n+ 2 (t =n t+ 2∆t)

1. The starting point at each time step is the cloud of points C in the fluid and solid domains.
For instance nC denotes the cloud at time t = nt (Figure 3).

2. Identify the boundaries defining the analysis domain nV , as well as the subdomains in the
fluid and the solid. This is an essential step as some boundaries (such as the free surface in
fluids) may be severely distorted during the solution, including separation and re-entering of
nodes. The Alpha Shape method [6] is used for the boundary definition. Clearly, the accuracy
in the reconstruction of the boundaries depends on the number of points in the vicinity of each
boundary and on the Alpha Shape parameter. In the problems solved in this work the Alpha
Shape method has been implementation as described in [10, 27].

3. Discretize the the analysis domain nV with a finite element mesh nM.We use an efficient
mesh generation scheme based on an enhanced Delaunay tesselation [9, 10].
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4. Solve the Lagrangian equations of motion for the overall continuum. Compute the state
variables in at the next (updated) configuration for nt+ ∆t: velocities, pressure and viscous
stresses in the fluid and displacements, stresses and strains in the solid.

5. Move the mesh nodes to a new position n+1C where n+1 denotes the time nt+ ∆t, in terms
of the time increment size.

6. Go back to step 1 and repeat the solution for the next time step to obtain n+2C (Figure 2).

We note that the key differences between the PFEM and the classical FEM are the remeshing
technique and the identification of the domain boundary at each time step.

The quality of the numerical solution depends on the discretization chosen as in the standard
FEM. Adaptive mesh refinement techniques can be used to improve the solution.

The CPU time required for meshing grows linearly with the number of nodes. As a general rule,
meshing consumes for 3D problems around 15% of the total CPU time per time step, while the
solution of the equations (with typically 3 iterations per time step) and the system assembly consume
approximately 70% and 15% of the CPU time per time step, respectively. These figures refer to
analyses in a single processor Pentium IV PC [35]. Considerable speed can be gained using parallel
computing techniques.

In this work we will apply the PFEM to problems involving a rigid domain containing fluid
particles only. Application of the PFEM in fluid and solid mechanics and in fluid-structure
interaction problems can be found in [2–4], [8]–[14],[16, 18, 19, 27, 28, 30, 32, 34, 35],[39]–[41],
as well in www.cimne.com/pfem.

9.2. Treatment of contact conditions in the PFEM

Known velocities at boundaries in the PFEM are prescribed in strong form to the boundary nodes.
These nodes might belong to fixed external boundaries or to moving boundaries linked to the
interacting solids. Surface tractions are applied to the Neumann part of the boundary, as usual in
the FEM.

Contact between fluid particles and fixed boundaries is accounted for by the incompressibility
condition which naturally prevents fluid nodes to penetrate into the solid boundaries [10, 27, 32, 35].

The contact between two solid interfaces is treated by introducing a layer of contact elements
between the two interacting solid interfaces. This contact layer is automatically created during the
mesh generation step by prescribing a minimum distance (hc) between two solid boundaries. If the
distance exceeds the minimum value (hc) then the generated elements are treated as fluid elements.
Otherwise the elements are treated as contact elements where a relationship between the tangential
and normal forces and the corresponding displacement is introduced [27, 32, 35] (Figure 3).

This algorithm allows us to model complex frictional contact conditions between two or more
interacting bodies moving in water in an a simple manner. The algorithm has been used to model
frictional contact situations between rigid or elastic solids in structural mechanics applications, such
as soil/rock excavation problems [2, 3]. The frictional contact algorithm described above has been
extended by Oliver et al. [18, 19] for analysis of metal cutting and machining problems.
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Figure 3. Modelling of contact conditions at a soil-solid interface with the PFEM

10. EXAMPLES

10.1. Sloshing of water in prismatic tank

The problem has been solved first in 2D. Figure 4 shows the geometry of the tank, the material
properties, the time step size and the initial mesh of 5064 3-noded triangles discretizing the interior
fluid. The fluid oscillates due to the hydrostatic forces induced by its original position.

The problem has been run using different values of the parameter θ influencing the condition
number of the tangent bulk stiffness matrix Ke

v (see Eq.(57) and Appendix B). The first set of
results (Figures 5–9) were obtained with θ = 1. The problem was then solved for θ = 0.08, thereby,
reducing in one order the magnitude of the diagonal terms in Ke

v.
Figure 5 shows snapshots of the water geometry at different times. Pressure contours are

superposed to the deformed geometry of the fluid in the figures.
The convergence of the iterative scheme for a typical time step is shown in Figure 6. Convergence

for the velocity and the pressure is found in less than 4 iterations for all time steps.
Figure 7 shows the evolution of the percentage of water volume (i.e. mass) loss introduced by the

numerical solution scheme. The accumulated volume loss (in percentage versus the initial volume)
for the method proposed with θ = 1 is approximately 1.33% over 20 seconds of simulation time
(Figure 7a). The average volume variation in absolute value per time step is 1.09× 10−4% (Figure
7b). The total water volume loss is the sum of the losses induced by the numerical scheme and the
losses due to the updating of the free surface using the PFEM (Section 9.1). No correction of mass
has been introduced at the end of each time step. Taking all this into account, the fluid volume loss
over the analysis period is remarkably low.
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As mentioned earlier, the volume losses induced by the free surface updating can be reduced
using a finer mesh in that region in conjunction with an enhanced alpha shape technique.

Figure 8 shows that the total fluid volume loss can be reduced to almost zero by introducing a
small correction in the free surface at the end of each time step.

The fluid volume losses obtained using a standard first order fractional step method and the PFEM
(Appendix C) are shown in Figure 7a for comparison. Clearly the method proposed in this paper
leads to a reduction in the overall fluid volume loss, as well as in the volume loss per time step.

The positive effect of accounting for the normal acceleration term Dvn
Dt in the boundary integral

of Eq.(41) in terms of volume preservation is shown in Figure 9. Curve (a) in the figure shows that
the accumulated volume variation over 20 seconds using the full formulation amount to 2.18%. If
the Dvn

Dt term is neglected the percentage of volume loss reaches 3.3% in the same period (curve
(b)). These figures do not include any volume correction in the free surface at each time step.

Figure 10 shows a comparison between the fluid volume loss for θ = 1 and θ = 0.08 using the
same time step in both cases (∆t = 10−3s). Results show that the reduction of the tangent bulk
stiffness matrix terms leads to an improvement in the preservation of the initial volume of the fluid.
It is noted that the convergence of the iterative solution for θ = 0.08 was the same as for θ = 1.

Figure 11 shows that a similar improvement in the volume preservation can be obtained using θ =

1 and reducing the time step to ∆t = 10−4s. This, however, increases the cost of the computations.
These results indicate that accurate numerical results with reduced volume losses can be obtained

by appropriately adjusting the parameter θ in the tangent bulk modulus matrix while keeping the
time step size to competitive values in terms of CPU cost. A study of the influence of θ in the
numerical solution for quasi-incompressible free surface fluids in terms of volume preservation and
overall accuracy using the formulation here presented can be found in [8].

Figures 12 and 13 show a similar set of results for the 3D analysis of the same sloshing problem
using a relative coarse initial mesh of 106771 4-noded tetrahedra and θ = 1. It is remarkable that
the percentage of total fluid volume loss due to the numerical scheme after 10 seconds of analysis
is approximately 1%.

Figure 4. 2D analysis of sloshing of water in rectangular tank. Initial geometry, analysis data and mesh of
5064 3-noded triangles discretizing the water in the tank
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(a) t=5.7s (b) t=7.4s

(c) t=13.3s (d) t=18.6s

Figure 5. 2D sloshing of water in rectangular tank. Snapshots of water geometry at two different times
(θ = 1). Colours indicate pressure contours

Figure 6. 2D sloshing of water in rectangular tank. Convergence of velocity and pressure at a certain time of
the analysis (θ = 1)

10.2. Collapse of water column in prismatic tank with internal rigid step

The geometry of the water column, the tank and the internal step are shown in Figure 14 together
with the initial mesh of 3880 3-noded triangles, the material properties and the analysis data. The
problem was solved with the new method proposed with θ = 1. The effect of the surrounding air
has not been taken into account in the 2D analysis.
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Collapse of the water column is induced by instantaneously removing the vertical wall retaining
the water. This originates the flow of water within the tank, the formation of a jet after the water
stream hits the rigid step and the subsequent sloshing of the fluid as it impacts the tank walls.

Figure 15 shows the evolution of the water stream at different times. The contour of the velocity
modulus are superposed over the fluid domain.

Figure 16a shows that the percentage of initial water volume loss over 2 seconds of simulation
time is negligible. The percentage of volume loss per time step is 9.86 ×10−4 (Figure 16b). This
is remarkably low for a problem of this complexity. We note that no mass correction has been
introduced at the end of each time step.

Figures 17–20 show a similar set of results for the same problem solved in 3D using the same
method and an initial mesh of 132956 4-noded tetrahedra discretizing both the water and the air
domain. The qualitative agreement of numerical results with the experimental ones shown in Figure
19 [15] is noticeable despite the coarseness of the mesh used. The accumulated fluid volume loss
(in percentage) introduced by the numerical algorithm after 0.4 seconds of analysis is ' 2%. The
average percentage of volume loss per time step is 1.71× 10−4% (Figure 20).

Convergence of the numerical solution was again found in less than four iterations per time step
for the 2D and 3D solutions.

10.3. Impact and mixing of fluids after collapse of two water columns in a rectangular tank

This problem simulates the 2D motion, impact and subsequent mixing of two fluid streams
originated by the collapse of two water columns located at the end sides of a rectangular tank.

Figure 21 shows the initial geometry of the tank, the two water columns, the initial mesh of 3988
3-noded triangles chosen for discretizing the two columns, the fluid properties and the analysis data.
The effect of the surrounding air was not taken into account in the analysis. The problem was solved
using the method proposed in the paper with θ = 1.

Figure 22 shows snapshots of the motion of the water columns after removal of the retaining
walls. Alter a few instants the two water streams impact with each other and mix as shown in the
figure.

The evolution of the percentage of the initial fluid volume loss over the simulation time is shown
in Figure 23. A maximum of 2.8% of the initial fluid volume is lost over eight seconds of analysis.
This can be considered a low value for a problem of this complexity. No mass correction was
introduced during the simulation to compensate any volume losses.

10.4. Falling of a water sphere in a cylindrical tank containing water

The final example is the 3D analysis of the impact of a sphere made of water as it falls in a cylindrical
tank containing water. Both the water in the sphere and in the tank mix in a single fluid after the
impact. Figure 24 shows the material and analysis data and the initial discretization of the sphere,
the water in the tank and the air in 88892 4-noded tetrahedra. The problem was solved with the
new stabilized method presented in the paper with θ = 1. Figure 25 shows snapshots of the mixing
process at different times. An average of four iterations for convergence of the velocity and the
pressure were needed during all the steps of the analysis. The total water mass lost in the sphere and
the tank due to the numerical algorithm was ' 2% after 3 seconds of analysis (Figure 26a).
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(a) Accumulated volume loss over 20 seconds of analysis

(b) Volume variation (in %) per time step over 20 seconds of analysis (Current method)

Figure 7. 2D sloshing of water in rectangular tank. (a) Time evolution of the percentage of water volume
loss due to the numerical algorithm. (b) Volume variation per time step. Average value. Current method.

1.09×10−4%. Fractional step: 2.07×10−4%.

Int. J. Numer. Meth. Fluids (0000)
DOI: 10.1002/fld



LAGRANGIAN FORMULATION FOR FINITE ELEMENT ANALYSIS OF QUASI-INCOMPRESSIBLE FLUIDS23

Figure 8. 2D sloshing of water in rectangular tank (θ = 1). Recovery of initial fluid volume by correcting
the free surface at mesh generation level. Right figures: (a) Compute total volume variation (∆V ) before
remeshing. (b) Compute free surface offset = ∆V

Lfree surface
. (c) Move free surface nodes in the normal direction

to the boundary a distance equal to the offset computed in b)

Figure 9. 2D sloshing of water in rectangular tank (θ = 1). Accumulated fluid volume loss (in %) over
time using the full stabilized formulation (curve a) and neglecting the normal acceleration term Dvn

Dt in the
expression of fp (curve b)
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Figure 10. 2D sloshing of water in rectangular tank. Time evolution of percentage of water volume loss
obtained using the current method with θ = 0.08 (curve A) and θ = 1 (curve B) ∆t = 10−3s

Figure 11. 2D sloshing of water in rectangular tank. Time evolution of percentage of value loss obtained
with the current method. Curve A: θ = 1 and ∆t = 10−4s. Curve B: θ = 1 and ∆t = 10−3s
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(a) t=5.7s (b) t=7.4s

Figure 12. 3D analysis of sloshing of water in prismatic tank (θ = 1). Initial geometry, analysis data and
snapshots of water geometry at two different times (t = 5.7s left and t = 7.4s right)
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(a)

(b)

(c)

Figure 13. 3D analysis of sloshing of water in prismatic tank (θ = 1). (a) Convergence of velocities and
pressure for a certain time step. (b) Time evolution of accumulated water volume loss (in percentage) due to
the numerical algorithm. (c) Volume loss (in %) per time step over 2 seconds of analysis. Average volume

loss per time step: 1.64×10−4%
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Figure 14. 2D collapse of water column in rectangular tank containing a rigid step. Geometry, analysis data
and initial mesh of 3880 3-noded triangles discretizing the water column (θ = 1)
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Figure 15. 2D collapse of water column. Snapshots of water flow at different times (t = 0.1s, t = 0.2s,
t = 0.3s, t = 0.4s). Results for θ = 1

Int. J. Numer. Meth. Fluids (0000)
DOI: 10.1002/fld



LAGRANGIAN FORMULATION FOR FINITE ELEMENT ANALYSIS OF QUASI-INCOMPRESSIBLE FLUIDS29

(a)

(b)

Figure 16. 2D collapse of water column. (a) Accumulated volume loss (in percentage) over two seconds of
analysis due to the numerical algorithm. (b) Volume loss (in %) per time step. Average volume variation in

a time step: 9.86×10−4%. Results for θ = 1
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30 E. OÑATE, A. FRANCI AND J.M. CARBONELL

Figure 17. 3D collapse of water column in prismatic tank containing a rigid step. Analysis data and initial
geometry of the analysis domain chosen for discretizing the column and the surrounding air

Figure 18. 3D collapse of water column. Evolution of the water flow at different times t = 0.1s, t = 0.2s,
t = 0.3s. The effect of the surrounding air has been taken into account in the analysis. Results for θ = 1

Figure 19. Collapse of water column. Comparison between experimental and 3D PFEM results at different
times (θ = 1)
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(a)

(b)

Figure 20. 3D collapse of water column. (a) Accumulated volume loss (in percentage) over 0.4 seconds of
analysis due to the numerical algorithm. (b) Volume loss (in %) per time step. Average volume variation in

a time step: 1.71 × 10−4%. Results for θ = 1

Figure 21. Collapse and impact of two water columns in a rectangular tank. Analysis data, geometry and
discretization of the columns in two meshes with a total of 3988 3-noded triangles
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Figure 22. Collapse and impact of two water columns. Snapshots of the evolution of the flow at different
times. Results for θ = 1
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(a)

(b)

Figure 23. Collapse and impact of two water columns. (a) Accumulated fluid volume (in percentage) over
eight seconds of analysis due to the numerical algorithm. (b) Volume loss (in %) per time step. Average

volume variation in a time step: 2.24×10−3%. Results for θ = 1
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Figure 24. Falling of water sphere in a tank filled with water. Analysis data, geometry and discretization of
the sphere and the water in the tank with a total of 88892 4-noded tetrahedra

(a) t = 0.175s (b) t = 0.275s

(c) t = 0.5s (d) t = 0.9s

Figure 25. Falling of water sphere in tank containing water. Evolution of the impact and mixing of the two
liquids at different times. Results for θ = 1
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(a)

(b)

Figure 26. Falling of water sphere in a tank containing water. (a) Accumulated volume over three seconds
of analysis due to the numerical algorithm. (b) Volume loss (in %) per time step. Average volume variation

in a time step: 2.54×10−4%. Results for θ = 1

11. CONCLUDING REMARKS

We have presented a new FIC-based stabilized finite element method for Lagrangian analysis
of incompressible flows that has excellent mass preservation properties. The method has been
successfully applied to the analysis of free-surface incompressible flows using the PFEM and
an updated Lagrangian formulation. These problems are more demanding in terms of the mass
preservation features of the numerical algorithm. The method proposed has yielded excellent results
for a variety of 2D and 3D free surface flow problems solved with the PFEM involving surface
waves, water splashing, violent impact of flows with containment walls and mixing of fluids.

The method proposed can be easily extended to Stokes flow problems, as well as to Navier-Stokes
problems using standard Eulerian formulations.
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[2] Carbonell JM, Oñate E, Suárez B (2010) Modeling of ground excavation with the Particle
Finite Element Method. Journal of Engineering Mechanics (ASCE) 136(4):455–463

[3] Carbonell JM, Oñate E, Suárez B (2013) Modelling of tunnelling processes and cutting tool
wear with the Particle Finite Element Method (PFEM). Accepted in Comput. Mech. (2013)
DOI:10.1007/s00466-013-0835-x

[4] Cremonesi M, Frangi A, Perego U (2011) A Lagrangian finite element approach for the
simulation of water-waves induced by landslides. Computers & Structures 89:1086–1093

[5] Donea J, Huerta A (2003) Finite element method for flow problems. J. Wiley

[6] Edelsbrunner H, Mucke EP (1999) Three dimensional alpha shapes. ACM Trans. Graphics
13:43–72
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[28] Oñate E, M.A. Celigueta, Idelsohn SR (2006a) Modeling bed erosion in free surface flows by
the Particle Finite Element Method, Acta Geotechnia 1(4):237–252
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[33] Oñate E (2009), Structural analysis with the finite element method. Linear statics. Volume 1.
Basis and Solids. CIMNE-Springer
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Figure A.1. Evolution of mass flux φ = ρv in a tubeAB moving in a Lagrangian frame over a time increment
δ

APPENDIX A. DERIVATION OF FIC EQUATIONS

Let us consider a 1D tubular domain AB containing a fluid with a density ρ flowing at a velocity
v. The domain evolves over a time increment δ to a position A’B’. The horizontal distance
AA′ = dx = vδ. The balance of fluid mass flux through the domain is expressed as

Total mass flux(TMF ) =
∑

Mass flux-in −
∑

Mass flux-out = Accumulated mass (AM)

(A.1)
From the observation of Figure A.1 and Eq.(A.1) we obtain (using the notation φ := ρv)

TMF =
1

2
(φA + φA′)− 1

2
(φB + φB′) (A.2)

Expanding in Taylor series up to third order terms in space around points A and A′ we obtain

φA = φ0 −
1

2
φ′0 +

h2

8
φ

′′

0 −
h3

24
φ

′′′

0 , φB = φ0 +
1

2
φ′0 +

h2

8
φ

′′

0 +
h3

24
φ

′′′

0

φA′ = φ0′ − 1

2
φ′0′ +

h2

8
φ

′′

0′ −
h3

24
φ

′′′

0′ , φB′ = φ0′ +
1

2
φ′0′ +

h2

8
φ

′′

0′ +
h3

24
φ

′′′

0′

(A.3)

In the above expressions and in the following dash superscripts denote partial derivatives with
respect to the space coordinate x (i.e. φ′ = ∂φ

∂x ), whereas an upper dot denotes time derivatives (i.e.
φ̇ = ∂φ

∂t ).
Substituting the expression of φA, φA′ , φB and φB′ into TMF in (A.2) gives

TMF ' −1

2

(
hφ′0 +

h3

12
φ

′′′

0

)
− 1

2

(
hφ′0′ +

h3

12
φ

′′′

0′

)
(A.4)

On the other hand, we can write

φ0′ = φ0 + dxφ′0 + δφ̇0 (A.5)
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Substituting (A.5) into (A.4) gives, neglecting higher order terms (HOT)

TMF ' −h
2

(
φ0 +

h2

12
φ

′′′

0

)
− h

2

(
φ′0dxφ

′′

0 + δφ̇′0

)
+
h2

12
(φ

′′′

0 + dxφIV

0 + δφ
′′′

0 ) =

= −h
2

[
2φ′0 + dxφ

′′

0 + δφ̇0 +
h2

6
φ

′′′

0 +
dxh2

12
φIV

0 +
δh2

12
φ̇

′′′

0

]
' −h

[
φ′0 +

dx

2
φ

′′

0 +
δ

2
φ̇0 +

h2

12
φ

′′′

0

]
(A.6)

The accumulated mass over time is approximated as

AM ' 1

2

[
h

2
(CA + CB) +

h

2
(CA′ + CB′)

]
=
h

2

[(
C0 + α

h2

16
C

′′

0

)
+

(
C0′ + β

h2

16
C

′′

0′

)]
(A.7)

where α ≥ 1, β ≥ 1 and Cj denotes the accumulated mass at point j (i.e. C0 = ∂ρ
∂t

∣∣∣
0
).

On the other hand, we can write, following (A.5)

C0′ = C0 + dxC ′0 + δĊ0 (A.8)

Substituting (A.8) into (A.7) gives

AM ' h

2

[(
C0 + α

h2

16
C

′′

0

)
+

(
C0 + dxC ′0 + δĊ0 + β

h2

16
C

′′

0

)
+ HOT

]
'

' h
[
C0 +

dx

2
C ′0 +

δ

2
Ċ0 + (α+ β)

h2

16
C

′′

0

] (A.9)

For convenience we choose
α+ β =

4

3

This gives

AM ' C0 +
dx

2
C ′0 +

δ

2
Ċ0 +

h2

12
C

′′

0 (A.10)

Equalling Eqs.(A.6) and (A.10) we obtain the flux balance equation as (after substituting dx = vδ

and C0 = ∂ρ
∂t )

−
(
φ′0 +

vδ

2
φ

′′

0 +
δ

2
φ̇′0 +

h2

12
φ

′′′

0

)
=
∂ρ

∂t
+
h2

12

∂2

∂x2

(
∂ρ

∂t

)
+

+
vδ

2

∂

∂x

(
∂ρ

∂t

)
+
δ

2

∂

∂t

(
∂ρ

∂t

)
+
h2

12

∂2

∂x2

(
∂ρ

∂t

)
(A.11)

Substituting φ0 = ρv and rearranging terms in (A.11) gives

∂ρ

∂t
+
∂(ρv)

∂x
+
h2

12

∂2

∂x2

[
∂ρ

∂t
+
∂(ρv)

∂x

]
+

δ

2

[
∂

∂t

(
∂ρ

∂t
+
∂(ρv)

∂x

)
+ v

∂

∂x

(
∂ρ

∂t
+
∂(ρv)

∂x

)]
= 0 (A.12)
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Eq.(A.12) can be rewritten in compact form as

rv +
h2

12

∂2rv
∂x2

+
δ

2

Drv
Dt

= 0 (A.13)

with
rv :=

∂ρ

∂t
+
∂(ρv)

∂x
=
Dρ

Dt
+ ρ

∂v

∂x
(A.14)

Eqs.(13) and (14) in this paper are obtained by neglecting the time and space derivatives of rv in
Eq.(A.13), respectively.

APPENDIX B. DERIVATION OF THE TANGENT BULK STIFFNESS MATRIX

From Eqs.(12) and (32) we deduce

n+1p =n p+ ∆tκ(θ n+1εv + (1− θ)nεv) (B.1)

where κ = ρc2 is the bulk modulus of the fluid and θ is a positive parameter such that 0 < θ ≤ 1.
Eq.(B.1) can be rewritten using Eq.(31) as

n+1p = np+ mT (θ n+1εεεεεεεεεεεεεε+ (1− θ) nεεεεεεεεεεεεεε)∆tκ (B.2)

Substituting the expression of εεεεεεεεεεεεεε of Eq.(47) into (B.2) gives

n+1p = np+ mTBT (θ n+1v̄ + (1− θ) nv̄)∆tκ (B.3)

Linearization of Eq.(B.3) with respect to the nodal velocity unknowns n+1v̄ gives

Dv̄
n+1p = θ∆tκmTBT∆v̄ (B.4)

where Dv̄
n+1p denotes the directional derivative of the pressure at the updated configuration in the

direction of the velocity increments [1, 39], i.e.

Dv̄
n+1p(x, v̄) =

d

dε

∣∣∣∣∣
ε=0

n+1p(x, v̄ + ε∆v̄) (B.5)

The linearization of the pressure term in the expression of the virtual power (Eq.(29)) is expressed
as

Dv̄

∫
Ωe

δεεεεεεεεεεεεεεTm n+1pdΩ =

∫
Ω

δεεεεεεεεεεεεεεTm(Dv̄
n+1p)dΩ (B.6)

Making use of Eqs.(B.4) and (47) we finally obtain

Dv̄

∫
δεεεεεεεεεεεεεεTm n+1pdΩ = w̄T

(∫
Ω

BTmθ∆tκmTBdΩ

)
∆v̄ = w̄TKv∆v̄ (B.7)
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where
Kv =

∫
Ω

BTmθ∆tκmTBdΩ (B.8)

with B is defined in Eq.(47).
The elemental expression of the tangent “bulk” matrix Kv is

Ke
vij =

∫
Ωe

BeT
i mθ∆tκmTBe

jdΩ , i = 1, n (B.9)

with Be
i defined in Box 1.

APPENDIX C. FRACTIONAL STEP SCHEME

The velocities can be computed from the momentum equation (1) after time integration (using
Eq.(2)) as

n+1vi = nvi +
∆t

ρ

(
∂ nsij
∂xj

+
∂ n+1p

∂xi
+ bi

)
(C.1)

In the so-called first order fractional step method [5, 44] Eq.(C.1) is split in the following two
equations

n+1ṽi = nvi +
∆t

ρ

(
∂ nsij
∂xj

+ bi

)
(C.2)

n+1vi = n+1ṽi +
∆t

ρ

∂ n+1p

∂xi
(C.3)

where n+1ṽi is the so called fractional velocity [44].
Substituting Eq.(C.3) into the mass balance equation (12a) gives

− 1

ρc2
Dp

Dt
+ ε̃v +

∆t

ρ

∂2n+1p

∂x2
i

= 0 (C.4)

where ε̃v = ∂ṽi
∂xi

.
The weighed residual form of Eq.(C.4) after integrating by parts of the terms involving ε̃v and the

pressure, gives using Eq.(C.3)∫
Ω

q

ρc2
Dp

Dt
dΩ +

∫
Ω

∂q

∂xi
ṽidΩ +

∫
Ω

∆t

ρ

∂q

∂xi

∂ n+1p

∂xi
dΩ−

∫
Γt

q n+1vndΓ = 0 (C.5)

where q are the pressure test functions and n+1vn is the normal velocity to the Neumann boundary
Γt (typically the free boundary in the fluid).

Eqs.(C.2), (C.3) and (C.5) are discretized using the Galerkin FEM in the standard manner
[5, 42, 44].

The three-steps of the first order fractional step method are:

Step 1. Compute the nodal fractional velocities from Eq.(C.2).
Step 2. Compute the nodal pressures from Eq.(C.5).
Step 3. Compute the nodal velocities from Eq.(C.3).
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44 E. OÑATE, A. FRANCI AND J.M. CARBONELL

Typically the nodal velocities are prescribed in the Step 3 while the fractional velocities are left
unprescribed in the solution of Step 1.

The computation of the pressure in Step 2 via Eq.(C.5) requires prescribing the pressure at the
free boundary to avoid the singularity of the equation system involving the inverse of a Laplacian
matrix.

The normal velocities n+1vn can be substituted by nvn in order to make the scheme fully
explicit. A more accurate implicit scheme can be obtained by iterating between Steps 2 and 3 until
convergence of the nodal velocities and pressures is achieved.

An alternative second order fractional step method can be obtained by writing Eqs.(C.3) and
(C.4) as

n+1ṽi = nvi +
∆t

ρ

(
∂ nsij
∂xj

+
∂ np

∂xi
+ bi

)
(C.6)

n+1vi = n+1ṽi +
∆t

ρ

∂∆p

∂xi
with ∆p = n+1p− p (C.7)

Eq.(C.5) has the same form with the pressure increment ∆p substituting the pressure n+1p. The
solution scheme follows the three steps described above for computation of the nodal velocities and
the nodal pressure increments.

The second order fractional step is typically more accurate from the first order one. However, it
requires additional stabilization as the Laplacian of pressure term in Eq.(C.5) vanishes as ∆p→ 0

[44].
Further details of the fractional step method can be found in [5, 44] and the references therein.
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