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RESUMEN

Presentamos un esquema de variacién automatica del paso de tiempo, para la integracién
temporal de las ecuaciones de movimiento en dindmica estructural y de mecanismos.
Incorporamos este esquema al algoritmo de Hilber, Hughes y Taylor, el cual es apropiado
para el tratamiento de los sistemas de ecuaciones diferenciales/algebraicas que caracterizan al
analisis dindmico de mecanismos. La estrategia de cambio de paso se basa en el seguimiento de
las derivadas de orden superior. Desarrollamos una base tedrica original, dando un fundamento
sélido al método. Presentamos numerosos ejemplos numéricos de aplicacién que ilustran la
potencia del algoritmo propuesto.

SUMMARY

We present a scheme of automatic time step variation for time integrating the equations
of motion in structural dynamics. The scheme is incorporated to the Hilber, Hughes and
Taylor algorithm, which is well-suited to deal with the differential/algebraic systems typical of
mechanisms dynamic simulation. The strategy for chosing the time step is based on monitoring
the higher order derivatives. An original theory is presented, giving a solid foundation to the
method. Several numerical examples are shown, that illustrate the power of the proposed
algorithm.

INTRODUCCION

En la simulacién numérica de mecanismos flexibles, el sistema de ecuaciones a
resolver es del tipo diferencial-algebraico (EDA’s), estando las ecuaciones algebraicas
originadas por la introduccién de restricciones para modelar juntas y cuerpos rigidos.
Para integrar en el tiempo estos sistemas se debe tener particular precaucién: los
algoritmos usuales de integracién de ecuaciones diferenciales ordinarias no dan una
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solucién satisfactoria, comportandose la mayoria de éstos en forma inestable al tratar
de integrar EDA’s.

En las referencias'? presentamos un método de paso fijo —controlado por el usuario—
para resolver sistemas de ecuaciones diferenciales-algebraicas basado en el algoritmo
de Hilber, Hughes y Taylor (HHT). En base a la teorfa alli expuesta desarrollamos
el codigo MECANO?, el cual ha sido empleado en una gran variedad de aplicaciones
industriales. La experiencia con éste ha sido francamente positiva restando sin embargo
solucionar el problema de la adopcién automdtica del paso.

Los métodos de paso variable —con paso de tiempo controlado en forma automética
por el programa- tienen especial importancia en problemas de aplicacién practica.
Estos métodos liberan al usuario de la tarea de seleccionar un paso, la cual se
ve dificultada en problemas con alta nolinealidad, friccién, rigidizacién brusca y en’
instantes imprevisibles, etc.. En estos casos es casi imposible prever un incremento
de tiempo que asegure la convergencia durante todo el intervalo de andlisis, y que al
mismo tiempo no involucre un costo exagerado de célculo.

En afios recientes, varios autores han estudiado este tema. Zienkiewicz y otros*,
introducen una familia de esquemas de integracién para sistemas dindmicos lineales
(extensible a sistemas no lineales). Proponen variar el paso de integracién basados en un
control del error local de truncamiento, el cual es evaluado por diferencia entre derivadas
de orden superior. El método funciona correctamente, aunque los fundamentos teéricos
de tal aproximacién no resultan del todo claros. Entre otros problemas a resolver,
resta determinar un valor de comparacién adecuado e independiente del problema bajo
analisis. Destacamos ademds que la determinacién del error local de truncamiento por
diferencia entre las derivadas de mayor orden presentes tiene sentido dinicamente para
pasos de tiempo extremadamente chicos.

Thomas y Gladwell, en sus trabajos®® toman la misma familia de algoritmos y
proponen un método a paso variable que basa su estimacién de error en la comparacién
entre resultados entregados por algoritmos de distinto orden de precisién, idea habitual
en algoritmos generales de integracién de sistemas de ecuaciones diferenciales ordinarias
(EDO’s)". Si bien este método funciona correctamente en problemas de dindmica de
estructuras, falla si se lo aplica directamente al andlisis de mecanismos, como mostramos
en el trabajo®. En el mismo trabajo hemos propuesto una forma de superar los
problemas originados por la presencia de restricciones algebraicas; lamentablemente,
el integrador obtenido posee s6lo primer orden de precisién y los resultados muestran
una excesiva disipacion numérica.

Anantharaman y Hiller® proponen usar una versién modificada del cédigo DASSL,
desarrollado por Petzold'®, pero usan una formulacién distinta a la nuestra para la
derivacién de las ecuaciones de movimiento. En forma similar trabajan Simeon, Fihrer
y Rentrop' quienes “estabilizan” las restricciones y usan el cédigo ODASSL (otra
versién modificada del DASSL). En los ensayos que realizamos con el cédigo DASSL,
encontramos que el paso de integracién resulta extremadamente pequefio, motivado
quizds por el hecho de poseer el integrador un primer orden de precisién'?.

Hoff y Taylor, para sistemas con inestabilidad, controlan el paso del tiempo en base
al seguimiento de cargas y desplazamientos por un métodp parecido al de “longitud de
arco” usado en analisis estatico’®. Lee y Hsieh **, por su parte, regulan el incremento
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de tiempo determinando una frecuencia dominante instantanea w, y eligen un paso
que es aproximadamente h = T,/20, combinando esto con un “método de biseccién”
para prevenir una divergencia en casos con cambios bruscos. Ambos trabajos orientan
su aplicacién a problemas de dindmica estructural, aunque sus ideas podrian llegar a
extenderse al tratamiento de mecanismos flexibles.

En este trabajo pretendemos incorporar un algoritmo de control del paso
al algoritmo HHT, para tratar sistemas de ecuaciones diferenciales-algebraicas.
Anteriormente hemos desarrollado un estudio comparativo que muestra la potencialidad
de tal algoritmo'?. La idea, a manera similar a lo hecho por Zienkiewicz y colab. en su
familia de algoritmos*, es controlar el paso usando un estimador de error local basado en
derivadas de orden superior. Dicho estimador de error es analizado en profundidad en
este trabajo, dando una justificacién tedrica precisa al método, y llegando a determinar
acotaciones independientes del problema en consideracién.

En la seccién de andlisis del error local de truncamiento desarrollamos una
breve teoria en donde analizamos sucesivamente problemas de un grado de libertad,
multidimensionales desacoplados y multidimensionales acoplados. En la parte que
le sigue, se describe la estrategia de cambio de paso. Por dltimo, mostramos varios
ejemplos numéricos que corroboran la teoria. Se pone de manifiesto ademas la utilidad
del algoritmo para el andilisis de fendmenos con alta nolinealidad e impacto, en donde
se hace imperativo por momentos disminuir fuertemente el paso de integracién para
asegurar resultados precisos.

ESTIMACION DEL ERROR - DERIVADAS DE ORDEN SUPERIOR

Sea ¢(t) una funcién continua del tiempo t. Sean ademads ¢(t), §(t), ... sus derivadas
sucesivas respecto de {. Planteando el desarrollo en serie de Taylor en torno a este
instante ¢ para aproximar el valor de la funcién en un instante (¢ 4+ h), el error que
estaremos cometiendo al evaluarla usando & términos en el desarrollo sera:

hk+1|q(k+1)l
T T+ D)

donde k es el exponente del 1ltimo término completo en la serie de Taylor.
En el caso particular del algoritmo HHT, es ficil escribir la aproximacién de los
desplazamientos que realiza el integrador en la forma siguiente:

1

alt + ) = a(t) + h(t) + 2 ie) + B 60 2)

con

5(t) = .q(tLh}}.__g@ (3)

Si notamos que el itimo término completo es h?/2 §, entonces en este algoritmo
k = 2 y la estimacién de error cometido resulta:
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h3 |q(3)! h3

e = ——— = —

dg
dt

La derivada de las aceleraciones puede aproximarse:

d§g Gt +h)—g(t) _
YT, = (5)

Reemplazando la ecuacién (5) en (4), obtenemos una estimacién del error cometido
por el algoritmo de HHT al integrar usando un paso &

(4)

e = Blierm—aw) = Liag ©)

La expresién del error hallada tiene validez dnicamente para pasos de tiempo
chicos (muy inferiores al periodo del oscilador considerado); sin embargo, igualmente
seguiremos refiriéndonos a esta expresiéon como el “error local de integracién”. Nos
proponemos a continuacion analizar el signiﬁcado de esta ecuacién para el caso de ser
aplicada a osciladores de frecuencias mucho mds elevadas de la que puede resolver el
algoritmo de integracién numeérica con un paso dado.

ANALISIS DEL ERROR LOCAL DE TRUNCAMIENTO

En esta seccion realizamos un andlisis de la aplicacion de la medida de error
local de truncamiento, dada por la ecuacién (6), a diversos sistemas estructurales.
Primeramente analizamos un sistema lineal de un grado de libertad, y ponemos de
manifiesto la existencia de una “funcién error adimensional” que caracteriza los valores
esperados del error local de truncamiento, y que depende tnicamente del algoritmo
de integracién y del paso de tiempo. Extendemos luego el estudio a casos con muchos
grados de libertad, y brindamos un significado fisico a la tolerancia usada para controlar
el paso de tiempo. A

Sistema de un grado de libertad

Tomemos un oscilador lineal de un grado de libertad (GDL), el cual sdlo estd
excitado por un desplazamiento inicial y no tiene fuerzas viscosas:

j+wiy=0 (7)
con las condiciones iniciales ¥(0) = yo; = 9(0) = 0. Evidentemente la solucién exacta
al problema planteado es

y(t) = yo cos(wt) (8)

Supongamos que nos encontramos en el instante ¢, donde conocemos la solucién
exacta y(t), y a partir de este instante efectuamos un paso de integracién por medio
del algoritmo HHT con un incremento de tiempo A. El incremento de desplazamientos,
velocidades y aceleraciones al pasar del instante t al ¢t + h puede escribirse en la forma



ANALISIS DINAMICO DE ESTRUCTURAS Y MECANISMOS

Ay yo cos(wt)
{ h Ay } =[A(Q) -1 { —Qyq sin(wt) } (9)
h? Aj —Q%y cos(wt)

A(Q) es la matriz de amplificacién del algoritmo HHT, la cual en el caso sin disipacién
se escribe!®18:

1 1+ aff)? 1 %—,3
A:B [ -1 1-(1+a)(y=-B)9* 1—‘7—(1+a)(%7_j3)g2] (10)
- ~(1+a)? ~(+a)(3 - )2

donde D = 1+ (1 4+ a)B9Q? y la frecuencia adimensional Q es igual al producto de la
frecuencia del oscilador w por el paso de tiempo h. Los pardmetros a, 3,7 permiten
regular el comportamiento del integrador. En realidad, para mantener un mdximo
grado de precisién, los pardmetros 8 y v se hacen dependientes de a, €l cual pasa a ser
el dnico pardmetro libre pudiendo tomar valores entre [0, -1/3]. Variando a se regula
el grado de disipacion del algoritmo a altas frecuencias®®¢.

Usando esta tltima ecuacién, vemos que el error local medido mediante la ecuacién
(6) sera:

e= Q—;—%)— sin(wt) + (% - ﬁ) Q cos{wt) (11)

El cociente e/|yo| puede ser interpretado como un error adimensional, independiente
de la excitacién que recibe el oscilador. Para eliminar la dependencia de la funcién
error ¢ respecto del tiempo, definiremos la funcién () (valor esperado del error
adimensional) en la forma:

%ol

€(9) = Ele] _ limT_.oo%foTedt
%ol 90l

Por la ecuacién (11), puede verse que £({2) resulta:

(12)

(14 )03 (1+ (%_ﬂ)2 92)1/2
(@) = 37 (1+(1+)B0?) (13)

En la Figura 1 representamos esta funcién, la cual vemos toma valores crecientes
con la frecuencia adimensional 2 del problema.

La precisién de un integrador se caracteriza usualmente a través del concepto de
radio espectral. Este nos predice su comportamiento a largo plazo, permitiéndonos
apreciar para un sistema y un paso de integracion dados el grado de disipacién numérica
introducido. En la Figura 1, representamos también el radio espectral del algoritmo
HHT para un valor dado del pardmetro «.

Destacamos ademds en la misma figura, la frecuencia adimensional de corte Q.
Esta es caracteristica del integrador e indica a partir de qué valor las componentes del
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Figura 1. Funcién de error adimensional.

sistema sufren una atenuacién significativa por disipacién numérica. Usualmente, se
acepta que para un valor de frecuencia adimensional Qx = 0.6 —valor correspondiente
a un paso de tiempo igual a un décimo del periodo del oscilador— el algoritmo entrega
resultados mds que suficientes desde un punto de vista ingenieril. El radio espectral
minimo para este valor de frecuencia resulta:

p(0.6)[ 4= _o5 = 0.9981

Definiendo luego la constante Ko = £(Qk ), €l cociente €(2)/ Kq sera estrictamente
mayor o igual a 1 para valores de frecuencia superiores a la frecuencia de corte Q.
En consecuencia, si aceptamos que, en promedio, se verifica una igualdad aproximada
entre el “valor esperado” y el “valor actual” del error local, podemos escribir

(14)

h? Al Ele] Q) | >1 si > Qg
6Kalwl 0 " Kalwl Ka | <1 si Q< Ok

Luego, si integramos la ecuacién diferencial (7) con un paso de tiempo tal que
asegure que:

h2
6 Kq |yol

entonces el paso de tiempo se ajustard, en promedio, para cumplir con la relacion
Q < Qg. Dicho en otras palabras, el mismo tomard valores para los cuales el
algoritmo integra adecuadamente las ecuaciones de movimiento del oscilador planteado
(ver ejemplo “Oscilador lineal de un grado de libertad”). ’

lagl <1 (15)

Andlisis para un sistema multidimensional desacoplado

Ahora estudiaremos el caso de un sistema lineal de “m” grados de libertad
desacoplados. Este sistema serd del tipo:

Gitwly =0 i=1,.m . a6)
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sujeto a condiciones iniciales:
%:(0) =yo;
yi(O) =0

El error local evaluado segin la ecuacién (6) resulta ahora un vector; su norma
servird como medida global de] error cometido:

i=1,..m

lell = & s (1)

En el andlisis siguiente determinaremos la significacién de esta tltima cantidad.
Debemos notar primeramente que, como las ecuaciones de movimiento estdn
desacopladas, el valor esperado para cada componente del vector error tendra la forma
dada por la ecuacién (13), o sea:

Elei] = [yo;] e(wih) (18)

Para un sistema dindmico homogéneo y sin amortiguamiento como el (16), la
excitacién inicial en los desplazamientos dada por el vector yo es representativa de
la distribucién energética total durante toda la evolucién (nétese que en ¢ = 0 toda la
energia es de deformacién; luego, para cada componente, ésta va cambiando a cinética
y otra vez a energia de deformacién, pero al estar los osciladores desacoplados, cada
uno conserva su energia total inicial).

En la Figura 2 mostramos la distribucién de desplazamientos iniciales tipica de un
sistema en términos de la frecuencia adimensional {2 = w h, para dos valores distintos
del paso de tiempo h; , hy. Vemos que al disminuir el paso de tiempo usado en el
integrador, se produce una traslacién de la curva hacia la zona de bajas frecuencias, en
la cual el integrador posee mayor precision. '
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Figura 2. Distribucién de desplazamientos iniciales en funcién de la frecuencia
adimensional 2.

L . "
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Una estrategia apropiada de seleccién del paso de integracién deberd elegir éste de
forma que las componentes del sistema que mds interesen en el cilculo de la respuesta
sean integradas correctamente. En otras palabras, la frecuencia adimensional Q; de las
componentes de mayor contenido energético (de mayor participacién en la respuesta)
deberdn ser inferiores a la frecuencia de corte Qx. Mostramos a continuacién una
estrategia que asegura el cumplimiento de este objetivo, basados en el “seguimiento”
del error local y la correccién del paso de integracién para cumplir que el mismo se
ubique por debajo de una tolerancia dada.

Al tratarse de un sistema desacoplado, el valor esperado del error resulta

1/2

1/2 QK Qo
Elflell = 2 Ea(] (zyof 2(9)) =(Zyo? Q) + S o? ezmo)
0 Qx

(19)

donde €, es la maxima frecuencia presente en el sistema (16).
Considerando que ambos términos dentro de la raiz cuadrada son estrictamente

positivos, podemos escribir que
1/2
2 2 h2 .

2 w! (0| < Elag]) (20)
Recordando la deﬁnicmn de la constante Kq = ¢{Qx), y aceptando nuevamente la

equivalencia entre el valor esperado y el valor actual del error local, podemos encontrar
la siguiente desigualdad:

an, 1/2 1/2 2
2 2 £2(Q; < AV 1
QXI;yot < I‘ Zyoz @) <y el (21)

Luego, si integramos con un paso de integracién que asegure, instante a instante,
que:

2
6 Kq

entonces podemos inferir que la suma de amplitudes de los osciladores de frecuencia
superior a la frecuencia de corte estard por debajo de la tolerancia TOL:

Ay < TOL (22)

o 1/2
> vo? ) <TOL (23)
Qx

En consecuencia, el paso de integracién que elija el algoritmo se regulard
para integrar correctamente todas las componentes de amplitud tal que deban ser
consideradas en la respuesta final, y disipard aquellas componentes de baja amplitud
—-de norma inferior a 70 L— y alta frecuencia que no sean de interés retener en la
solucién. La gama de energias disipadas numéricamente estard luego regida por el
valor de TOL.
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Andlisis para un sistema multidimensional acoplado

Estudiaremos finalmente el comportamiento de un sistema dinamico estructural
(lineal) del tipo:

Mg+Kq=0 | (24)

con condiciones iniciales q(0) = qo; q(0) = 0 y donde M y K son las matrices
de masa y rigidez respectivamente y q es el vector de desplazamientos en el sistema
de coordenadas estructurales. De aqui en mds denotaremos con y a las coordenadas
modales del sistema (24)

q=%®y (25)

siendo ® la matriz que contiene los autovectores del problema de autovalores
K¢, =wiM¢;, = &=[¢1,¢,,...¢n] (26)
Asegurandonos que los autovectores son ortonormales respecto de la masa,

™M@ =1

27
37K & = W? siendo W? = diag(w?) 27)

el sistema de ecuaciones diferenciales (24) puede ser proyectado sobre su base modal,
quedando un sistema desacoplado similar al (16)

Ji+wiy; =0 i=1,..m (28)

A partir de la ecuacién (21) podemos escribir:

Qm 1/2 B2 h2 T h2 7 /
|2 < — vil = Gl — — - <1172
Dlwol’ | < g lavi = griet™Mdl = g (AaTMAGN (20

en donde hemos usado la identidad M7 ®®7 = Iy la equivalencia entre valores esperado
y actual del error. El resultado anterior nos da una acotacién para la amplitud de
desplazamientos de las componentes del sistema de frecuencias superiores a la frecuencia
de corte. Para resultar de utilidad, debemos encontrar una magnitud respecto de la
cual ésta pueda ser comparada.

Si calculamos la norma del vector de desplazamientos modales iniciales (incluyendo
todas las componentes, sin importar su frecuencia) vemos que:

lIlyoll = (¥3 yo)"” = (afM7#8™Mq,) " = (q'E’fl\’Iqo)l/2 (30)

Luego, combinando este resultado con la ecuacién (29), obtenemos la desigualdad:
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(a7 AFs,,)"
(31)

siendo AF;n.r el vector donde se encuentran almacenados los “saltos” o “diferencias”
de las fuerzas de inercia de un paso a otro. Logramos asi una acotacién al porcentaje
de la energia total del sistema que se distribuye entre las componentes de frecuencia
superior a la frecuencia de corte.

En casos generales (por ejemplo, en problemas dindmicos no homogéneos),
reemplazaremos el vector de desplazamientos iniciales en (31) por un vector de
desplazamientos de referencia qp, que da magnitudes caracteristicas del modelo. En el
apéndice A-1 proponemos una forma de evaluar este vector de referencia para modelos
de mecanismos. De aqui en mds denominaremos £ al valor de referencia dado por
L = (ngqR)%. El vector de desplazamientos de referencia para la estructura en
consideracién —qgr— es calculado una dnica vez al comienzo de la integracién.

En consecuencia, definimos una funcién error relativo e,.; en la forma

1/2
(Chpw?) ™ w (AQTMAi)m: %
[vo ~ 6Ka \ aiMaqo 6Kq (a7 Mqo)'/?

h? 1/

T 2
= ; <
el = 57 (a4" AF;ne,) " < TOL (32)

y basamos nuestra estrategia de seleccion del paso de integracién en adoptar un paso
tal que dicho error relativo sea inferior a una tolerancia TOL fijada por el usuario. El
desarrollo realizado anteriormente nos permite asegurar que el paso de integracién que
adoptar el algoritmo hard que la energia disipada se vea acotada indirectamente por
TOL: la suma de amplitudes modales de componentes superiores a la frecuencia de
corte estd limitada por el valor de tolerancia fijado:

Qm 2\ 1/2
(M) <TOL (33)

o™ Y?{

De esta manera, se logra una regulacién automdtica del paso de tiempo, el cual se
adapta naturalmente a circunstancias cambiantes en el curso del andlisis.

Debe destacarse que la tolerancia TOL resulta totalmente independiente del
problema. En los ejemplos analizados, un valor TOL = 1 x 1073 entreg6 resultados
correctos desde un punto de vista ingenieril, con pasos de integracidén apropiados para
el problema tratado. Todo el analisis precedente est4 realizado considerando que h es
aproximadamente constante y los sistemas a integrar son lineales. Es posible extender lo
visto a casos no-lineales basados en una linealizacién del problema. Entre los ejemplos
numeéricos tratados presentamos un ejemplo con marcada no linealidad, obteniendo
excelentes resultados.
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ESTRATEGIA DE CAMBIO DE PASO

En la seccién anterior hemos desarrollado una forma de estimar un error relativo,
que depende de las caracteristicas del sistema y del paso de tiempo usado. Buscaremos
ahora fijar una estrategia de variacién del paso de tiempo h tal que lleve y mantenga
—durante el cdlculo— al error local medido por la ecuacién (32) a valores inferiores a
la tolerancia TOL. Para ser coherentes con la teoria expuesta, y mantener validos los
criterios de precisién y estabilidad del algoritmo de integracidn, el paso de tiempo se
deberd mantener constante durante lapsos prolongados. En consecuencia, la estrategia
a seguir debe asegurar que éste no cambie a menos que sea estrictamente necesario,
evitando caer en una modificacién permanente del incremento de tiempo que degradaria
el algoritmo.

Analizando la ecuacién (13), podemos estimar el efecto producido sobre la
magnitud del error al variar el paso de tiempo. Llamando r = h;i/h; al cociente
entre dos pasos de tiempo h; y kg, podemos ver que

e'ref(hl) = eref(hZ) i (34)
siendo 7 un coeficiente que varia entre 2 y 3, en la forma
3 siQ—0 (35)
—
772 5i Q- 0o

Vemos que la variacién del error depende del contenido frecuencial del sistema en
anélisis. En lo que sigue adoptaremos (en forma un tanto arbitraria) n = 3, aunque la
estrategia a seguir nos independizari en parte de esta decision.

Decidiremos el nuevo paso de integracién de acuerdo a la relacién entre el error
relativo calculado y la tolerancia fijada por el usuario, basados en ideas expuestas en
la referencia’. Siguiendo un criterio conservativo, buscaremos que en todo momento el
error se ubique en torno a un valor igual a la mitad de la tolerancia. Diferenciaremos
cuatro casos:

i. Siel error supera la tolerancia, rechazamos el paso anterior y lo recalculamos usando
un incremento de tiempo igual a la mitad del valor anterior.

1. Si el error es inferior a la tolerancia, pero mayor que la mitad de ésta, aceptamos
el paso calculado pero el préximo incremento de tiempo lo disminuimos tratando
de llevar el error a un valor TOL/2, siguiendo la ecuacién (34) (ver Figura 3).

ili. Si el error es inferior a la mitad de la tolerancia, pero superior a un octavo de
TOL/2, mantendremos el valor del paso. Este criterio se basa en que, de acuerdo a
lo indicado por la ecuacién (34), de aumentarse el paso al doble del valor anterior
el error pasarfa a superar la cota deseada (la mitad de la tolerancia).

iv. Si el error es inferior a un dieciseisavo de la tolerancia, aceptamos el paso de tiempo
anterior y aumentamos el nuevo incremento al doble del valor precedente.

La Figura 3 presenta un diagrama de flujo, en donde se aprecian claramente las
distintas acciones a seguir para la seleccién del nuevo paso de tiempo.
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Figura 3. Estrategia de seleccion del paso.
EJEMPLOS NUMERICOS

En esta seccién presentamos diversos ejemplos de aplicacién. Las pruebas fueron
realizadas utilizando el programa de andlisis de mecanismos MECANO 2, al cual se
incorporé el algoritmo.

Comenzamos mostrando casos sencillos (sistemas de un grado de libertad),
realizando un estudio paramétrico que permite verificar la validez de las ecuaciones
(14,15).

Luego calculamos la respuesta en un problema dindmico lineal multidimensional,
poniendo de manifiesto la capacidad del algoritmo de adaptar el paso e integrar
adecuadamente las componentes del sistema efectivamente excitadas. Los resultados
son usados para verificar las predicciones de la teoria para casos multidimensionales.

Por dltimo presentamos dos ejemplos de mecanismos con alta no-linealidad e
impacto. Se aprecia en estos casos la capacidad del método de asegurar, en un primer
y unico analisis, resultados de muy buena calidad en problemas de dificil solucién.

Oscilador lineal de un grado de libertad

Analizamos un sistema de un grado de libertad (como el planteado en la ecuacién
(7) ) para dos valores distintos de rigidez: w? = 1000 y w2 = 100; la excitacién inicial
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fue en ambos casos 3o = 0.01. El anélisis se repitié para distintos valores de tolerancia
del algoritmo de control del paso:

Q) h?
Kq = 6Kq lyo

(comparar con la ecuacién (14)), y en cada caso se determiné el paso de integracién’
promedio escogido por el algoritmo.

En la Figura 4 representamos en ordenadas la tolerancia impuesta y en abscisas la
frecuencia adimensional calculada como el producto de la frecuencia del oscilador por
el paso promedio que determina el algoritmo. Puede observarse ademds en la misma
figura la funcién £(§2)/ Kq calculada por la ecuacién (13). La distancia entre ésta dltima
y los valores medidos se debe al criterio seguido de mantener el error en un valor igual
a la mitad de la tolerancia impuesta.

' |aj] < TOL

10° : —— —

18 =TT

TOL

T S W Rt S S T I I R TTTT MR TV T M I RIS

103 I RN N

,_.
<

101 Q 100

K

Q

Figura 4. Oscilador lineal de un grado de libertad.
Anélisis paramétrico variando la tolerancia de integracion.

Debemos notar que para una tolerancia 7O L = 1, el algoritmo encuentra un paso
de integracién tal que la frecuencia adimensional toma el valor @ = 0.4 en ambos
casos, préoximo a la frecuencia de corte Qx = 0.6. Esto coincide plenamente con las
predicciones de la teoria.

La Figura 5 muestra finalmente la variacién del paso de tiempo para el caso
TOL =1, w? = 100, en el curso de la integracién.

Estructura aporticada

Con este ejemplo pretendemos corroborar la teoria para casos multidimensionales.
La estructura estudiada es mostradaen la Figura 6, y posee las siguientes caracteristicas
fisicas: area normal A = 3.2 x 10~3, momento de inercia I = 1.707 x 107, densidad
p = 7800, médulo de elasticidad E = 206.01 x 10°, coeficiente de Poisson v = 0.3. El
valor de referencia y el pardmetro a del algoritmo valen en este caso: £ = 34.0412 , a =
-0.05.
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Figura 5. Oscilador lineal de un grado de libertad.
Evolucién del paso de tiempo; TOL = 1; w? = 100.

3

Figura 6. Estructura aporticada.

MQDO PULSACION [rad/s] MODO PULSACION [rad/s)
1 5.542866E+01 9 2.793058E+03
2 2.693958E+02 10 3.541398E+03
3 3.832101E+02 11 4.415571E403
4 8.230052E4-02 12 5.987948E+403
5 9.948448E+02 13 8.182647E+03
6 1.786312E+403 14 9.428862E+03
7 2.140908E+403 15 1.456397E+04
8 2.655421E403 16 1.662069E+04

Tabla I.
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La Tabla I muestra las frecuencias caracteristicas de la estructura. Para mantener
una relacién con lo expuesto en la teorfa, la excitacién fue del tipo “desplazamientos
iniciales”. Se analizaron dos casos: uno, en que la excitacién es tal que excita
esencialmente las componentes de baja frecuencia del sistema; y un segundo, en donde
se buscd excitar frecuencias mas elevadas.

a) Excitacién predominante en las componentes de baja frecuencia

Se impuso un desplazamiento inicial en la componente vertical del nodo 1 igual
a 0.006, y se pidié que el resto de los desplazamientos fuera tal que la estructura se
encuentre en equilibrio. Esto indujo una excitacién esencialmente en modos de baja
frecuencia, como veremos luego. Se realizaron dos andlisis de la respuesta, para dos
valores de tolerancia diferentes: TOL; = 1. x10~3 y TOL, = 1. x 10~%. Denominamos
a estos casos PMB1 y PMB2 respectivamente.

En las Figuras 7 y 8 se pueden ver las posiciones y aceleraciones calculadas para
ambas opciones en la componente vertical del nodo 1. En la Figura 9 es mostrada
la evolucién de los respectivos pasos de integracién, pudiéndose determinar un paso
promedio A, = 0.26 x 10~2 en el primer caso y hy = 0.1 x 102 en el segundo.

—— et |

— — PmB2

18.02 18.05 18,08
L H n H L 2

POSITION 107"
17.99

17.96
1 "

17.93
FAAd

‘?17»90.

Figura 7. Pértico, casos PMB1 y PMB2. Evolucién de la posicién vertical del nodo 1.

Para validar las predicciones de la teoria, se calculé la proyeccién de los
desplazamientos iniciales en la base modal, y se representaron éstos en términos de
la frecuencia adimensional promedio (calculada usando el paso de tiempo medio dado
por el algoritmo). La Figura 10 muestra la distribucién de desplazamientos modales
iniciales (en valor absoluto), en funcién de la frecuencia adimensional. En la misma
figura se puede comprobar, combinando los valores vistos en la Tabla I con un paso
medio A; = 0.26x10~2, que para una tolerancia de integracién igual a TOL; = 1.x1073
se integra correctamente un sélo modo (linea continua). Para una tolerancia de
TOL, = 1.x 1074, que lleva a un paso medio de hy = 0.1 x 1072 (Figura 9), vemos que
son tres las componentes que poseen frecuencia adimensional 2 menor que la frecuencia
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Figura 8. Pédrtico, casos PMB1 y PMB2. Evolucién de la aceleracién vertical del nodo 1.
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Figura 9. Pértico, casos PMB1 y PMB2. Evolucién del paso de integracién.
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Figura 10. Pértico, casos PMB1 y PMB2
Desplazamientos modales iniciales en funcién de la frecuencia adimensional.
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de corte Qi (linea de trazos). Es posible igualmente comprobar el cumplimiento del
acotamiento mencionado en la ecuacién (33). Ademds podemos ver en la figura la
traslacién que sufre el espectro por variacién de la tolerancia del integrador.

b) Excitacién de modos intermedios

Para excitar componentes modales de mayor frecuencia se impusieron los siguientes
desplazamientos iniciales: la componente vertical del nodo 1 igual a 0.006, la
componente horizontal del nodo 5 igual a 0.01, y el resto de los desplazamientos tal
que la estructura se encuentre en equilibrio. Se realizaron dos anélisis de respuesta
transitoria, para distintas tolerancias: casos PMM1 (TOL; = 1. x 107%) y PMM2
(TOL; = 1. x 107%). En la Figura 11 graficamos la variacién en el tiempo de las
aceleraciones verticales del nodo 1; elegimos representar las aceleraciones, ya que
permiten apreciar mejor la inclusién de componentes de alta frecuencia en la respuesta
dindmica.

210.00

150.00
Pl L

«10'
90-.00

-30.00 30,00

ACCEL .

L

3

~210.00 -150.00 -90.00
L A 1

Figura 11. Pértico, casos PMM1 y PMM2. Evolucién de la aceleracién vertical del
nodo 1.

Como se puede ver en la Figura 13, para los mismos valores de tolerancia exigidas
que en los casos PMB1 y PMB2, el algoritmo detecta la existencia de componentes
de frecuencia més alta con peso en la respuesta y produce una reduccién general del
paso de tiempo. Se aprecia que para el caso PMM1 (TOL; = 1. x 1073) y con un
paso promedio h; = 0.67 x 1073 (Figura 12), se incluyen por debajo de la frecuencia de
corte los cuatro primeros modos. Para el caso PMM2 (T'OL; = 1.x107%), el integrador
incluye nueve componentes modales (h; = 0.18 X 1073) debajo de la frecuencia de corte.
Igual que en el ejemplo anterior, aquf es posible verificar que la norma de las amplitudes
de los desplazamientos modales iniciales que se ubican por encima de la frecuencia de
corte, es menor que la tolerancia exigida.




456 ALBERTO CARDONA Y ARTURO CASSANO

had
T ———TirE STEF
PMMI

1 —= — _1IME STEP
PHN2

Figura 12. Pértico, casos PMM1 y PMM2. Evolucién del paso de integracién.
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Figura 13. Pértico, casos PMM1 y PMM2
. Desplazamientos modales iniciales en funcién de la frecuencia
adimensional.

Casos no lineales - mecanismos -

En esta seccién pretendemos mostrar ejemplos con alta no-linealidad en el sistema a
resolver. Fueron estudiados dos casos: un péndulo doble como el mostrado en la Figura
14 y un mecanismo de barras articuladas con bloqueo; ambos involucran ecuaciones de
restriccion de tipo algebraico.

Péndulo doble

Los elementos de unién fueron considerados como cuerpos rigidos y las masas
concentradas en los nodos: m; = 5 y m; = 2 (ver Figura 14). La excitacién impuesta,
fue una fuerza horizontal en el nodo 2 con la variacién temporal indicada en la misma
figura. La tolerancia adoptada fue TOL = 1. x 10~ y el pardmetro de integracién del
algoritmo: a = —0.15.
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Figura 14. Péndulo doble.
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Figura 16. Péndulo doble. Evolucién del paso de integracion.
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En las Figuras 15 y 16 se muestra la variacién de la posicién horizontal de los
nodos 1y 2 en el tiempo, asi como la evolucién del paso de integracién. La integracion
fue realizada correctamente y puede apreciarse c¢émo el paso de tiempo se ajusta
automdticamente en el transcurso de la simulacién (Figura 16).

Mecanismo de barras articuladas con bloqueo

Consideramos este caso como el ejemplo més exigente. El mecanismo consta de
dos vigas, articuladas entre si y vinculadas, una de ellas a una articulacién fija y la otra
a un apoyo deslizante sobre el eje « (Figura 17). Se simulé la apertura del mecanismo
hasta llegar a una posicién completamente extendida, donde el angulo formado por las
barras es # = 7 y la rétula B es bloqueada. El modelado de este fenédmeno se logra
introduciendo la ley de variacién del momento en B indicada en la misma figura.

Las caracteristicas estructurales del sistema son: &rea normal A = 4.8 x 1073,
momento de inercia I,, = 4.5 x 107>, densidad p = 7800, mddulo de elasticidad
E = 2.101 x 101, coeficiente de Poisson v = 0.3; y los pardmetros de integracion:
TOL=1.x10"%*y a = —0.15.

|x|o°\
o

C;;/@ b »xxxo“’( ————————————————————

2
Figura 17. Mecanismo de barras con bloqueo.
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Figura 18. Mecanismo de barras con bloqueo. Evolucién del dngulo de apertura de
barras en el tiempo '
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Figura 19. Mecanismo de barras con bloqueo. Evolucién del paso de integracién.

En la Figura 18 se muestra la variacion del angulo d con el tiempo y en la Figura
19 la evolucién del paso de integracién h. Debe destacarse la capacidad del algoritmo
de disminuir el paso en los momentos de impacto y aumentarlo cuando es posible,
lograndose de esta forma una integracion econdémica y muy precisa.

CONCLUSIONES

Hemos presentado un algoritmo de integracién temporal a paso variable sumamente
robusto y eficiente. La estrategia de variacién del paso se basé en mantener el error
local (calculado en base a derivadas de orden superior), por debajo de una tolerancia
especificada al comienzo de la integracion. Se establecié una correlacién adecuada
entre esta medida y el paso de integracién, de forma de mantener el mismo en valores
apropiados. Se desarrollaron varios ejemplos numéricos, encontrandose una total
concordancia con las predicciones tedricas y mostrando la potencialidad del método
propuesto.

La metodologia desarrollada es altamente original y absolutamente general. Dicho
en otras palabras, si bien en este trabajo aplicamos la misma al algoritmo integrador
de Hilber, Hughes y Taylor (HHT), es posible emplear ésta en cualguier integrador
implicito para formular una estrategia de variacién del paso. Mencionamos igualmente
que, bajo la éptica desarrollada, no estamos limitados a utilizar la funcién ¢ vista. Bien
podrian concebirse otras combinaciones de aceleraciones, velocidades y desplazamientos
que den lugar a funciones error (o “filtro”) que aseguren un mejor funcionamiento del
algoritmo. Dicho tema serd objeto de préximas investigaciones.

En la implementaciéon actual de MECANO, el método mostré excelentes resultados,
permitiendo resolver en forma directa problemas con alta no linealidad e impacto.
La resolucién de estos casos resulta excesivamente cara, o bien casi imposible por la
dificultad para lograr convergencia, usando algoritmos a paso constante.
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APENDICE A-1: CALCULO DE LOS VALORES DE REFERENCIA

Para calcular el valor de referencia £, se hace necesario fijar valores caracteristicos
en el vector qp:

{= (ng qR)I/Z (A-1)

En nuestro caso, el algoritmo fue usado para analizar mecanismos, e implementado
en el programa MECANO?. Se hicieron, en consecuencia las siguientes consideraciones

i) Para los GDL de rotacién, el programa maneja valores de dngulos comprendidos
entre 0 y |7|; luego adoptamos como referencia para dichas componentes en qg una
décima parte del maximo

9Rrot = 7['/10 (A - 2)

ii) Con respecto a los GDL de traslacion, MECANO trabaja con “posiciones” en lugar
de “desplazamientos”; para tener un valor que corresponda a las dimensiones del
problema elegimos dichas componentes en la forma

Ly
qRir = /—""—NEL

donde L, es la longitud de la diagonal del prisma rectangular que encierra al modelo
en su configuracién inicial, y N EL es el nimero total de elementos.

(A-3)

i) Finalmente, para realizar el producto (A-1), se utilizé la matriz de masas
concentradas.

REFERENCIAS

1. A. Cardona y-M. Géradin, “Time integration of the equations of motion in mechanism
analysis”, Computers and Structures, Vol. 33, pp. 801-820, (1989).

2. A. Cardona, “An Integrated approach to mechanism analysis”, Tesis Doctoral, Facultad de
Ciencias Aplicadas, Universidad de Lieja, (1989).

3. A.Cardonay M. Géradin, “SAMCEF-Module d’analyse de mécanismes MECANQO (manuel
d’utilisation)”, Facultad de Ciencias Aplicadas, Universidad de Lieja, (1987).

4. O.C. Zienkiewicz, W.L. Wood, N.W. Hine y R.L. Taylor, “A unified set of single step
algorithms; part 1: General formulation and aplications”, International Journal for
Numerical Methods in Engineering, Vol. 20, pp. 1529-1552, (1984).

5. R.M. Thomas y I. Gladwell, “Variable-Order Variable-Steps Algorithms for Second-Order
Systems. Part 1: The Methods”, Int. J. Num. Meth. Engng., Vol. 26, pp. 39-53, (1988).

6. I. Gladwell y R.M. Thomas, “Variable-Order Variable-Steps Algorithms fcr Second-Order
Systems. Part 2: The Codes”, Int. J. Num. Meth. Engng. Vol. 26, pp. 55--80, (1988).

7. L.F.Shampine y M.K. Gordon, “Computer solution of ordinary differential equations. The
initial value problem”, Freeman and Company, (1975).

8. A. Cassano y A. Cardona, “Algoritmo de paso variable para sistemas de segundo orden”,
Mecdnica Computacional, Vol. 10, AMCA, (1990).




10.

11.

12.

13.

14.

15.

16.

ANALISIS DINAMICO DE ESTRUCTURAS Y MECANISMOCS

M. Anantharaman y M. Hiller, “Formulation of the equations of motions for mechanical
systems consisting of rigid and flexible bodies”, Fachgebiet Mechanik, Universitat Duisburg,
Alemania Occidental, (1990).

L. Petzold, “A description of DASSL: a differential/algebraic system solver”. En R.
Stepleman, Editor, Scientific Computing, pp. 65-68, North-Holland, (1983).

B. Simeon, C. Fihrer y P. Rentrop, “Introduction to differential-algebraic equations in
vehicle system dynamics”, Technische Universitdt Miinchen, (1990).

A. Cassano y A. Cardona, “A comparison between three variable-step algorithms for the
integration of the equations of motion in structural dynamics”, Latin American Applied
Research, Vol. 21, pp.187-197, (1991).

C. Hoff y R.L. Taylor, “Step-by-step integration methods and time step control for
systems with arbitrary stiffness”, en Anales del Second World Congress on Computational
Mechanics, Stuttgart, (1990).

S.H. Lee y S.S. Hsieh, “Expedient implicit integration with adaptive time stepping
algorithm for nonlinear transient analysis”, Comp. Meth. Appl. Mech. Engng., Vol.
81, pp. 151-172, (1990).

H.M. Hilber, T.J.R. Hughes y R.L. Taylor, “Improved numerical dissipation for time
integration algoritms in structural dynamics”, Eaerthquake Engineering and Structural
Dynamics, Vol. 5, pp. 283-292, (1977).

T.J.R. Hughes, Algorithms for hyperbolic and parabolic-hyperbolic problems en “The Finite
Element Method. Linear Static and Dynamic Finite Element Analysis”, Prentice - Hall,
Englewood Cliffs, N.J., Cap. 9, pp. 490-569, (1987).






