
Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería. Vol. 8,4, 439-461(1992) 

INTEGRADOR TEMPORAL DE PASO VARIABLE 
PARA ANALISIS DINAMICO DE 

ESTRUCTURAS Y MECANISMOS 

ALBERTO CARDONA 
Y 

ARTURO CASSANO 

Grupo de Tecnología Mecánica 
INTEC, Giiemes 3/50, 3000 Santa Fe, Argentina. 

RESUMEN 

Presentamos un esquema de variación automática del paso de tiempo, para la integración 
temporal de las ecuaciones de movimiento en dinámica estructural y de mecanismos. 
Incorporamos este esquema al algoritmo de Hilber, Hughes y Taylor, el cual es apropiado 
para el tratamiento de los sistemas de ecuaciones diferenciales/algebraicas que caracterizan al 
análisis dinámico de mecanismos. La estrategia de cambio de paso se basa en el seguimiento de 
las derivadas de orden superior. Desarrollamos una base teórica original, dando un fundamento 
sólido al método. Presentamos numerosos ejemplos numéricos de aplicación que ilustran la 
potencia del algoritmo propuesto. 

SUMMARY 

We present a scheme of automatic time step variation for time integrating the equations 
of motion in structural dynamics. The scheme is incorporated to the Hilber, Hughes and 
Taylor algorithm, which is well-suited to deal with the differential/algebraic systems typical of 
mechanisms dynamic simulation. The strategy for chosing the time step is based on monitoring 
the higher order derivatives. An original theory is presented, giving a solid foundation to the 
method. Severa1 numerical examples are shown, that illustrate the power of the proposed 
algorithm. 

INTRODUCCION 

En la simulación numérica de mecanismos flexibles, el sistema de ecuaciones a 
resolver es del tipo diferencial-algebraico (EDA's), estando las ecuaciones algebraicas 
originadas por la introducción de restricciones para modelar juntas y cuerpos rígidos. 
Para  integrar en el tiempo estos sistemas se debe tener particular precaución: los 
algoritmos usuales de integración de ecuaciones diferenciales ordinarias no dan una 
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solución satisfactoria, comportándose la mayoría de éstos en forma inestable al tratar 
de integrar EDA's. 

En las referencias112 presentamos un método de paso fijo -controlado por el usuario- 
para resolver sistemas de ecuaciones diferenciales-algebraicas basado en el algoritmo 
de Hilber, Hughes y Taylor (HHT). En base a la teoría allí expuesta desarrollamos 
el código MECAN03, el cual ha sido empleado en una gran variedad de aplicaciones 
industriales. La experiencia con éste ha sido francamente positiva restando sin embargo 
solucionar el problema de la adopción automática del paso. 

Los métodos de paso variable -con paso de tiempo controlado en forma automática 
por el programa- tienen especial importancia en problemas de aplicación práctica. 
Estos métodos liberan al usuario de la tarea de seleccionar un paso, la cual se 
ve dificultada en problemas con alta nolinealidad, fricción, rigidización brusca y en 
instantes imprevisibles, etc.. En estos casos es casi imposible prever un incremento 
de tiempo que asegure la convergencia durante todo el intervalo de análisis, y que al 
mismo tiempo no involucre un costo exagerado de cálculo. 

En años recientes, varios autores han estudiado este tema. Zienkiewicz y otros4, 
introducen una familia de esquemas de integración para sistemas dinámicos lineales 
(extensible a sistemas no lineales). Proponen variar el paso de integración basados en un 
control del error local de truncamiento, el cual es evaluado por diferencia entre derivadas 
de orden superior. El método funciona correctamente, aunque los fundamentos teóricos 
de tal aproximación no resultan del todo claros. Entre otros problemas a resolver, 
resta determinar un valor de comparación adecuado e independiente del problema bajo 
análisis. Destacamos además que la determinación del error local de truncamiento por 
diferencia entre las derivadas de mayor orden presentes tiene sentido únicamente para 
pasos de tiempo extremadamente chicos. 

Thomas y Gladwell, en sus trabajos5p6 toman la misma familia de algoritmos y 
proponen un método a paso variable que basa su estimación de error en la comparación 
entre resultados entregados por algoritmos de distinto orden de precisión, idea habitual 
en algoritmos generales de integración de sistemas de ecuaciones diferenciales ordinarias 
(ED07s)'. Si bien este método funciona correctamente en problemas de dinámica de 
estructuras, falla si se lo aplica directamente al análisis de mecanismos, como mostramos 
en el trabajo8. En el mismo trabajo hemos propuesto una forma de superar los 
problemas originados por la presencia de restricciones algebraicas; lamentablemente, 
el integrador obtenido posee sólo primer orden de precisión y los resultados muestran 
una excesiva disipación numérica. 

Anantharaman y Hillerg proponen usar una versión modificada del código DASSL, 
desarrollado por Petzoldl', pero usan una formulación distinta a la nuestra para la 
derivación de las ecuaciones de movimiento. En forma similar trabajan Simeon, Führer 
y RentropI1 quienes "estabilizan" las restricciones y usan el código ODASSL (otra 
versión modificada del DASSL). En los ensayos que realizamos con el código DASSL, 
encontramos que el paso de integración resulta extremadamente pequeño, motivado 
quizás por el hecho de poseer el integrador un primer orden de precisión12. 

Hoff y Taylor, para sistemas con inestabilidad, controlan el paso del tiempo en base 
al seguimiento de cargas y desplazamientos por un método parecido al de "longitud de 
arco" usado en análisis estático13. Lee y Hsieh 14, por su parte, regulan el incremento 
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de tiempo determinando una frecuencia dominante instantánea u, y eligen un paso 
que es aproximadamente h = Tn/20, combinando esto con un "método de bisecciónY7 
para prevenir una divergencia en casos con cambios bruscos. Ambos trabajos orientan 
su aplicación a problemas de dinámica estructural, aunque sus ideas podrían llegar a 
extenderse al tratamiento de mecanismos flexibles. 

En este trabajo pretendemos incorporar un algoritmo de control del paso 
al algoritmo HHT, para tratar sistemas de ecuaciones diferenciales-algebraicas. 
Anteriormente hemos desarrollado un estudio comparativo que muestra la potencialidad 
de tal algoritmo12. La idea, a manera similar a lo hecho por Zienkiewicz y colab. en su 
familia de algoritmos4, es controlar el paso usando un estimador de error local basado en 
derivadas de orden superior. Dicho estimador de error es analizado en profundidad en 
este trabajo, dando una justificación teórica precisa al método, y llegando a determinar 
acotaciones independientes del problema en consideración. 

En la sección de análisis del error local de truncamiento desarrollamos una 
breve teoría en donde analizamos sucesivamente problemas de un grado de libertad, 
multidimensionales desacoplados y multidimensionales acoplados. En la parte que 
le sigue, se describe la estrategia de cambio de paso. Por último, mostramos varios 
ejemplos numéricos que corroboran la teoría. Se pone de manifiesto además la utilidad 
del algoritmo para el análisis de fenómenos con alta nolinealidad e impacto, en donde 
se hace imperativo por momentos disminuir fuertemente el paso de integración para 
asegurar resultados precisos. 

ESTIMACION DEL ERROR - DERIVADAS DE ORDEN SUPERIOR 

Sea q(t) una función continua del tiempo t. Sean además q(t), q(t), ... sus derivadas 
sucesivas respecto de t .  Planteando el desarrollo en serie de Taylor en torno a este 
instante t para aproximar el valor de la función en un instante (t +. h), el error que 
estaremos cometiendo al evaluarla usando k términos en el desarrollo será: 

donde k es el exponente del último término completo en la serie de Taylor. 
En el caso particular del algoritmo HHT, es fácil escribir la aproximación de los 

desplazamientos que realiza el integrador en la forma siguiente:. 

con 

Si notamos que el último término completo es h2/2 q, entonces en este algoritmo 
k = 2 y la estimación de error cometido resulta: 



La derivada de las aceleraciones puede aproximarse: 

Reemplazando la ecuación (5) en (4), obtenemos una estimación del error cometido 
por el algoritmo de HHT al integrar usando un paso h 

La expresión del error hallada tiene validez únicamente para pasos de tiempo 
chicos (muy inferiores al período del oscilador considerado); sin embargo, igualmente 
seguiremos refiriéndonos a esta expresión como el "error local de integración". Nos 
proponemos a continuación analizar el significado de esta ecuación para el caso de ser 
aplicada a osciladores de frecuencias mucho más elevadas de la que puede resolver el 
algoritmo de integración numérica con un paso dado. 

ANALISIS DEL ERROR LOCAL DE TRUNCAMIENTO 

En esta sección realizamos un análisis de la aplicación de la medida de error 
local de truncamiento, dada por la ecuación (6), a diversos sistemas estructurales. 
Primeramente analizamos un sistema lineal de un grado de libertad, y ponemos de 
manifiesto la existencia de una "función error adimensional" que caracteriza los valores 
esperados del error local de truncamiento, y que depende únicamente del algoritmo 
de integración y del paso de tiempo. Extendemos luego el estudio a casos con muchos 
grados de libertad, y brindamos un significado físico a la tolerancia usada para controlar 
el paso de tiempo. 

Sistema de un grado de libertad 

Tomemos un oscilador lineal de un grado de libertad (GDL), el cual sólo está 
excitado por un desplazamiento inicial y no tiene fuerzas viscosas: 

con las condiciones iniciales y(0) = yo; 
' 

y(0) = O. Evidentemente la solución exacta 
al problema planteado es 

Supongamos que nos encontramos en el instante t ,  donde conocemos la solución 
exacta y(t), y a partir de este instante efectuamos un paso de integración por medio 
del algoritmo HHT con un incremento de tiempo h. El incremento de desplazamientos, 
velocidades y aceleraciones al pasar del instante t al t + h puede escribirse en la forma 
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A(Q) es la matriz de amplificación del algoritmo HHT, la cual en el caso sin disipación 
se escribe15J6 : 

donde D = 1 + (1 + a)PR2 y la frecuencia adimensional fl es igual al producto de la 
frecuencia del oscilador w por el paso de tiempo h. Los parámetros a, P, y permiten 
regular el comportamiento del integrador. En realidad, para mantener un máximo 
grado de precisión, los parámetros ,B y y se hacen dependientes de a ,  el cual pasa a ser 
el único parámetro libre pudiendo tomar valores entre [O, -1/3]. Variando cr se regula 
el grado de disipación del algoritmo a altas frecuencias15J6. 

Usando esta última ecuación, vemos que el error local medido mediante la ecuación 
(6) será: 

El cociente e/(yo( puede ser interpretado como un error adimensional, independiente 
de la excitación que recibe el oscilador. Para eliminar la dependencia de la función 
error e respecto del tiempo, definiremos la función &(O) (valor esperado del error 
adimensional) en la forma: 

Por la ecuación ( l l ) ,  puede verse que & ( a )  resulta: 

En la Figura 1 representamos esta función, la cual vemos toma valores crecientes 
con la frecuencia adimensional Q del problema. 

La precisión de un integrador se caracteriza usualmente a través del concepto de 
radio espectral. Este nos predice su comportamiento a largo plazo, permitiéndonos 
apreciar para un sistema y un paso de integración dados el grado de disipación numérica 
introducido. En la Figura 1, representamos también el radio espectral del algoritmo 
HHT para un valor dado del parámetro a. 

Destacamos además en la misma figura, la frecuencia adimensional de corte QK. 
Esta es característica del integrador e indica a partir de qué valor las componentes del 
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Figura 1. Función de error adimensional. 

sistema sufren una atenuación significativa por disipación numérica. Usualmente, se 
acepta que para un valor de frecuencia adimensional SZK = 0.6 -valor correspondiente 
a un paso de tiempo igual a un décimo del período del oscilador- el algoritmo entrega 
resultados más que suficientes desde un punto de vista ingenieril. El radio espectral 
mínimo para este valor de frecuencia resulta: 

Definiendo luego la constante Iín = &(OK), el cociente &(R)/Kn será estrictamente 
mayor o igual a 1 ,para valores de frecuencia superiores a la frecuencia de corte 5 2 ~ .  
En consecuencia, si aceptamos que, en promedio, se verifica una igualdad aproximada 
entre el "valor esperado" y el "valor actual" del error local, podemos escribir 

Luego, si integramos la ecuación diferencial (7) con un paso de tiempo tal que 
asegure que: 

entonces el paso de tiempo se ajustará, en promedio, para cumplir con la relación 
R 5 Q K .  Dicho en otras palabras, el mismo tomará valores para los cuales el 
algoritmo integra adecuadamente las ecuaciones de movimiento del oscilador planteado 
(ver ejemplo LLOs~ilador lineal de un grado de libertad"). 

Análisis p a r a  u n  s i s tema multidimensional desacoplado 

Ahora estudiaremos el caso de un sistema lineal de "m7' grados de libertad 
desacoplados. Este sistema será del tipo: 
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sujeto a condiciones iniciales: 

Yi(0) 'Yo; i = 1, ... m 
y; (O) =o 

El error local evaluado según la ecuación (6) resulta ahora un vector; su norma 
servirá como medida global del error cometido: 

En el análisis siguiente determinaremos la significación de esta última cantidad. 
Debemos notar primeramente que, como las ecuaciones de movimiento están 
desacopladas, el valor esperado para cada componente del vector error tendrá la forma 
dada por la ecuación (13), o sea: 

Para un sistema dinámico homogéneo y sin amortiguamiento como el (16), la  
excitación inicial en los desplazamientos dada por el vector yo es representativa de 
la distribución energética total durante toda la evolución (nótese que en t = O toda la 
energía es de deformación; luego, para cada componente, ésta va cambiando a cinética 
y otra vez a energía de deformación, pero al estar los osciladores desacoplados, cada 
uno conserva su energía total inicial). 

En la Figura 2 mostramos la distribución de desplazamientos iniciales típica de un 
sistema en términos de la frecuencia adimensional f2 = w h, para dos valores distintos 
del paso de tiempo hi , h2. Vemos que al disminuir el paso de tiempo usado en el 
integrador, se produce una traslación de la curva hacia la zona de bajas frecuencias, en 
la cual el integrador posee mayor precisión. 

AL 

Figura 2. Distribución de desplazamientos iniciales en función de la frecuencia 
adimensional R. 
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Una estrategia apropiada de selección del paso de integración deberá elegir éste de 
forma que las componentes del sistema que más interesen en el cálculo de la respuesta 
sean integradas correctamente. En otras palabras, la frecuencia adimensional ni de las 
componentes de mayor contenido energético (de mayor participación en la respuesta) 
deberán ser inferiores a la frecuencia de corte Q K .  Mostramos a continuación una 
estrategia que asegura el cumplimiento de este objetivo, basados en el "seguimiento" 
del error local y la corrección del paso de integración para cumplir que el mismo se 
ubique por debajo de una tolerancia dada. 

Al tratarse de un sistema desacoplado, el valor esperado del error resulta 

donde 0, es la máxima frecuencia presente en el sistema (16). 
(19) 

Considerando que ambos términos dentro de la raíz cuadrada son estrictamente 
positivos, podemos escribir que 

Recordando la definición de la constante KS2 = &(aK) ,  y aceptando nuevamente la 
equivalencia entre el valor esperado y el valor actual del error local, podemos encontrar 
la siguiente desigualdad: 

Luego, si integramos con un paso de integración que asegure, instante a instante, 
que: 

entonces podemos inferir que la suma de amplitudes de los osciladores de frecuencia 
superior a la frecuencia de corte estará por debajo de la tolerancia T O L :  

En consecuencia, el paso de integración que elija el algoritmo se regulará 
para integrar correctamente todas las componentes de amplitud tal que deban ser 
consideradas en la respuesta final, y disipará aquellas componentes de baja amplitud 
-de norma inferior a TOL- y alta frecuencia que no sean de interés retener en la 
solución. La gama de energías disipadas numéricamente estará luego regida por el 
valor de TO L. 
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Análisis para un sistema multidimensional acoplado 

Estudiaremos finalmente el comportamiento de un sistema dinámico estructural 
(lineal) del tipo: 

con condiciones iniciales q(0) = qo; q(0) = O y donde M y K son las matrices 
de masa y rigidez respectivamente y q es el vector de desplazamientos en el sistema 
de coordenadas estructurales. De aquí en más denotaremos con y a las coordenadas 
modales del sistema (24) 

siendo @ la matriz que contiene los autovectores del problema de autovalores 

K 4 ; = ~ ; 2 ~ 4 ;  =+ @ = [ 4 1 , 4 2 > . . . 4 m l  (26) 

Asegurándonos que los autovectores son ortonormales respecto de la masa, 

aTM cp = 1 

Q ~ ~ K  9 = w2 siendo w2 = diag(w:) 
(27) 

el sistema de ecuaciones diferenciales (24) puede ser proyectado sobre su base modal, 
quedando un sistema desacoplado similar al (16) 

2 
y; + w; y; = O i = 1, ... m 

A partir de la ecuación (21) podemos escribir: 

en donde hemos usado la identidad M ~ @ @ ~  = 1 y la equivalencia entre valores esperado 
y actual del error. El resultado anterior nos da una acotación para la amplitud de 
desplazamientos de las componentes del sistema de frecuencias superiores a la frecuencia 
de corte. Para resultar de utilidad, debemos encontrar una magnitud respecto de la 
cual ésta pueda ser comparada. 

Si calculamos la norma del vector de desplazamientos modales iniciales (incluyendo 
todas las componentes, sin importar su frecuencia) vemos que: 

Luego, combinando este resultado con la ecuación (29), obtenemos la desigualdad: 
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(31) 
siendo AF;,,, el vector donde se encuentran almacenados los "saltos" o "diferencias7' 
de las fuerzas de inercia de un paso a otro. Logramos así una acotación al porcentaje 
de la energía total del sistema que se distribuye entre las componentes de frecuencia 
superior a la frecuencia de corte. 

En casos generales (por ejemplo, en problemas dinámicos no homogéneos), 
reemplazaremos el vector de desplazamientos iniciales en (31) por un vector de 
desplazamientos de referencia q ~ ,  que da magnitudes características del modelo. En el 
apéndice A-1 proponemos una forma de evaluar este vector de referencia para modelos 
de mecanismos. De aquí en más denominaremos I al valor de referencia dado por 
I = ( q f f ~ q ~ ) ; .  El vector de desplazamientos de referencia para la estructura en 
consideración - q ~ -  es calculado una única vez al comienzo de la integración. 

En consecuencia, definimos una función error relativo e,,[ en la forma 

y basamos nuestra estrategia de selección del paso de integración en adoptar un paso 
tal que dicho error relativo sea inferior a una tolerancia T O L  fijada por el usuario. El 
desarrollo realizado anteriormente nos asegurar que el paso de integración que 
adoptará el algoritmo hará que la energía disipada se vea acotada indirectamente por 
T O L :  la suma de amplitudes modales de componentes superiores a la frecuencia de 
corte está limitada por el valor de tolerancia fijado: 

De esta manera, se logra una regulación automática del paso de tiempo, el cual se 
adapta naturalmente a circunstancias cambiantes en el curso del análisis. 

Debe destacarse que la tolerancia T O L  resulta totalmente independiente del 
problema. En los ejemplos analizados, un valor T O L  = 1 x entregó resultados 
correctos desde un punto de vista ingenieril, con pasos de integración apropiados para 
el problema tratado. Todo el análisis precedente es'tá realizado considerando que h es 
aproximadamente constante y los sistemas a integrar son lineales. Es posible extender lo 
visto a casos no-lineales basados en una linealización del problema. Entre los ejemplos 
numéricos tratados presentamos un ejemplo con marcada no linealidad, obteniendo 
excelentes resultados. 
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ESTRATEGIA DE CAMBIO DE PASO 

En la sección anterior hemos desarrollado una forma de estimar un error relativo, 
que depende de las características del sistema y del paso de tiempo usado. Buscaremos 
ahora fijar una estrategia de variación del paso de tiempo h tal que lleve y mantenga 
-durante el cálculo- al error local medido por la ecuación (32) a valores inferiores a 
la tolerancia TOL. Para ser coherentes con la teoría expuesta, y mantener válidos los 
criterios de precisión y estabilidad del algoritmo de integración, el paso de tiempo se 
deberá mantener constante durante lapsos prolongados. En consecuencia, la estrategia 
a seguir debe asegurar que éste no cambie a menos que sea estrictamente necesario, 
evitando caer en una modificación permanente del incremento de tiempo que degradaría 
el algoritmo. 

Analizando la ecuación (13), podemos estimar el efecto producido sobre la 
magnitud del error al variar el paso de tiempo. Llamando T = h1/h2 al cociente 
entre dos pasos de tiempo hl y h2, podemos ver que 

siendo q un coeficiente que varía entre 2 y 3, en la forma 

Vemos que la variación del error depende del contenido frecuencia1 del sistema en 
análisis. En lo que sigue adoptaremos (en forma un tanto arbitraria) q = 3, aunque la 
estrategia a seguir nos independizará en parte de esta decisión. 

Decidiremos el nuevo paso de integración de acuerdo a la relación entre el error 
relativo calculado y la tolerancia fijada por el usuario, basados en ideas expuestas en 
la referencia7. Siguiendo un criterio conservativo, buscaremos que en todo momento el 
error se ubique en torno a un valor igual a la mitad de la tolerancia. Diferenciaremos 
cuatro casos: 

i. Si el error supera la tolerancia, rechazamos el paso anterior y lo recalculamos usando 
un incremento de tiempo igual a la mitad del valor anterior. 

ii. Si el error es inferior a la tolerancia, pero mayor que la mitad de ésta, aceptamos 
el paso calculado pero el próximo incremento de tiempo lo disminuimos tratando 
de llevar el error a un valor TOL/2, siguiendo la ecuación (34) (ver Figura 3). 

iii. Si el error es inferior a la mitad de la tolerancia, pero superior a un octavo de 
TOL/2, mantendremos el valor del paso. Este criterio se basa en que, de acuerdo a 
lo indicado por la ecuación (34), de aumentarse el paso al doble del valor anterior 
el error pasaría a superar la cota deseada (la mitad de la tolerancia). 

iv. Si el error es inferior a un dieciseisavo de la tolerancia, aceptamos el paso de tiempo 
anterior y aumentamos el nuevo incremento al doble del valor precedente. 

La Figura 3 presenta un diagrama de flujo, en donde se aprecian claramente las 
distintas acciones a seguir para la selección del nuevo paso de tiempo. 
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ERL .TOL . h 

Step rejected 

0.5 5 RAT 5 0.9 

RAT= 1 

h e  RAT X h a 
Figura 3. Estrategia de selección del paso. 

EJEMPLOS NUMERICOS 

En esta sección presentamos diversos ejemplos de aplicación. Las pruebas fueron 
realizadas utilizando el programa de análisis de mecanismos, MECANO 3,  al cual se 
incorporó el algoritmo. 

Comenzamos mostrando casos sencillos (sistemas de un grado de libertad), 
realizando un estudio paramétrico que permite verificar la validez de las ecuaciones 
(14,15). 

Luego calculamos la respuesta en un problema dinámico lineal multidimensional, 
poniendo de manifiesto la capacidad del algoritmo de adaptar el paso e integrar 
adecuadamente las componentes del sistema efectivamente excitadas. Los resultados 
son usados para verificar las predicciones de la teoría para casos multidimensionales. 

Por último presentamos dos ejemplos de mecanismos con alta no-linealidad e 
impacto. Se aprecia en estos casos la capacidad del método de asegurar, en un primer 
y único análisis, resultados de muy buena calidad en problemas de difícil solución. 

Oscilador lineal de un grado de libertad 

Analizamos un sistema de un grado de libertad (como el planteado en la ecuación 
(7) ) para dos valores distintos de rigidez: w; = 1000 y W; = 100; la excitación inicial 
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fue en ambos casos yo = 0.01. El análisis se repitió para distintos valores de tolerancia 
del algoritmo de control del paso: 

- -  - h2 
[Ay[ T O L  

Kn 6 I(Q l ~ o l  

(comparar con la ecuación (14)), y en cada'caso se determinó el paso de integración' 
promedio escogido por el algoritmo. 

En la Figura 4 representamos en ordenadas la tolerancia impuesta y en abscisas la 
frecuencia adimensional calculada como el producto de la frecuencia del oscilador por 
el paso promedio que determina el algoritmo. Puede observarse además en la misma 
figura la función &(S2)/Kn calculada por la ecuación (13). La distancia entre ésta última 
y los valores medidos se debe al criterio seguido de mantener el error en un valor igual 
a la mitad de la tolerancia impuesta. 

Figura 4. Oscilador lineal de un grado de libertad. 
Análisis paramétrico variando la tolerancia de integración. 

1 8  4 
_/--- ___-- 

10' . 
,- 2 lo0 

lo.' 

' 

K, 

Debemos notar que para una tolerancia T O L  = 1, el algoritmo encuentra un paso 
de integración tal que la frecuencia adimensional toma el valor 0 = 0.4 en ambos 
casos, próximo a la frecuencia de corte QK = 0.6. Esto coincide plenamente con las 
predicciones de la teoría. 

La Figura 5 muestra finalmente la variación del paso de tiempo para el caso 
T O L  = 1, w2 = 100, en el curso de la integración. 

lo-2 

10-3 

Estructura aporticada 

E,,,*' 

Con este ejemplo pretendemos corroborar la teoría para casos multidimensionales. 
La estructura estudiada es mostrada en la Figura 6, y posee las siguientes características 
físicas: área normal A = 3.2 x low3, momento de inercia I = 1.707 x densidad 
p = 7800, módulo de elasticidad E = 206.01 x lo9, coeficiente de Poisson u = 0.3. El 
valor de referencia y el parámetro cu del algoritmo valen en este caso: 1 = 34.0412 , a = 
-0.05. 

lo.' R, loo 10' 

ii 
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Figura 5. Oscilador lineal de un grado de libertad. 
Evolución del paso de tiempo; TOL = 1; w 2  = 100. 

Figura 6. Estructura aporticada. 

MODO 

Tabla 1. 

PULSACION [ ~ a d l s ]  MODO 

9 

10 

11 

12 

13 

14 

15 

16 

PULSACION [radls ]  

2.7930583+03 

3.5413983+03 

4.4155713+03 

5.9879483+03 

8.1826473+03 

9.4288623+03 

1.4563973+04 

1.6620693+04 
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La Tabla 1 muestra las frecuencias. características de la estructura. Para mantener 
una relación con lo expueito en la teoría, la excitación fue del tipo "desplazamientos 
iniciales". Se analizaron dos casos: uno, en que la excitación es tal que excita 
esencialmente las componentes de baja frecuencia del sistema; y un segundo, en donde 
se buscó excitar frecuencias más elevadas. 

a) Excitación predominante en las componentes de baja frecuencia 

Se impuso un desplazamiento inicial en la componente vertical del nodo 1 igual 
a 0.006, y se pidió que el resto de los desplazamientos fuera tal que la estructura se 
encuentre en equilibrio. Esto indujo una excitación esencialmente en modos de baja 
frecuencia, como veremos luego. Se realizaron dos análisis de la respuesta, para dos 
valores de tolerancia diferentes: TOLl  = 1. x y T O L 2  = 1. x Denominamos 
a estos casos PMBl y PMB2 respectivamente. 

En las Figuras 7 y 8 se pueden ver las posiciones y aceleraciones calculadas para 
ambas opciones en la componente vertical del nodo 1. En la Figura 9 es mostrada 

\ 
la evolución de los respectivos pasos de integración, pudiéndose determinar un paso 
promedio hl = 0.26 x lod2 en el primer caso y h2 = 0.1 x en el segundo. 

l Figura 7. Pórtico, casos PMBl y PMB2. Evolución de la posición vertical del nodo 1. 

Para validar las predicciones de la teoría, se calculó la proyección de los 
desplazamientos iniciales en la base modal, y se representaron éstos en términos de 
la frecuencia adimensional promedio (calculada usando el paso de tiempo medio dado 
por el algoritmo). La Figura 10 muestra la distribución de desplazamientos modales 
iniciales (en valor absoluto), en función de la frecuencia adimensional. En la misma 
figura se puede comprobar, combinando los valores vistos en la Tabla 1 con un paso 
medio hi = 0.26 x que para una tolerancia de integración igual a TOLi = l. x 
se integra correctamente un sólo modo (línea continua). Para una tolerancia de 
TOL2  = 1. x lov4, que lleva a un paso medio de h2 = 0.1 x (Figura 9), vemos que 
son tres las componentes que poseen frecuencia adimensional Q menor que la frecuencia 
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Figura 8. Pórtico, casos PMBl y PMB2. Evolución de la aceleración vertical del nodo 1. 

Figura 9. Pórtico, casos PMBl y PMB2. Evolución del paso de integración. 

n 
Figura 10. Pórtico, casos PMBl y PMB2. 

Desplazamientos modales iniciales en función de la frecuencia adimensional. 
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de corte $lK (línea de trazos). Es posible igualmente comprobar el cumplimiento del 
acotamiento mencionado en la ecuación (33). Además podemos ver en la figura la 
traslación que sufre el espectro por variación de la tolerancia del integrador. 

b) Excitación de modos intermedios 

Para excitar componentes modales de mayor frecuencia se impusieron los siguientes 
desplazamientos iniciales: la componente vertical del nodo 1 igual a 0.006, la 
componente horizontal del nodo 5 igual a 0.01, y el resto de los desplazamientos tal 
que la estructura se encuentre en equilibrio. Se realizaron dos análisis de respuesta 
transitoria, para distintas tolerancias: casos PMMl (TOLi = 1. x y PMM2 
(TOLI = 1. x En la Figura 11 graficamos la variación en el tiempo de las 
aceleraciones verticales del nodo 1; elegimos representar las aceleraciones, ya que 
permiten apreciar mejor la inclusión de componentes de alta frecuencia en la respuesta 
dinámica. 

Figura 11. Pórtico, casos PMMl y PMM2. Evolución de la aceleración vertical del 
nodo 1. 

Como se puede ver en la Figura 13, para los mismos valores de tolerancia exigidas 
que en los casos PMBl y PMB2, el algoritmo detecta la existencia de componentes 
de frecuencia más alta con peso en la respuesta y produce una reducción general del 
paso de tiempo. Se aprecia que para el caso PMMl (TOLl = 1. x y con un 
paso promedio hl = 0.67 x (Figura 12), se incluyen por debajo de la frecuencia de 
corte los cuatro primeros modos. Para el caso PMM2 (TOLI = 1. x el integrador 
incluye nueve componentes modales (hi = 0.18 x debajo de la frecuencia de corte. 
Igual que en el ejemplo anterior, aquí es posible verificar que la norma de las amplitudes 
de los desplazamientos modales iniciales que se ubican por encima de la frecuencia de 
corte, es menor que la tolerancia exigida. 
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Figura .12. Pórtico, casos PMMl y PMM2. Evolución del paso de integración. 

Figura 13. Pórtico, casos PMMl y PMM2 
Desplazamientos modales iniciales en función de la frecuencia 
adimensional. 

Casos n o  lineales - mecanismos 

En esta sección pretendemos mostrar ejemplos con alta no-linealidad en el sistema a 
resolver. Fueron estudiados dos casos: un péndulo doble como el mostrado en la Figura 
14 y un mecanismo de barras articuladas con bloqueo; ambos involucran ecuaciones de 
restricción de tipo algebraico. 

Péndu lo  doble  

Los elementos de unión fueron considerados como cuerpos rígidos y las masas 
concentradas en los nodos: mi = 5 y m;! = 2 (ver Figura 14). La excitación impuesta 
fue una fuerza horizontal en el nodo 2 con la variación temporal indicada en la misma 
figura. La tolerancia adoptada fue TOL = 1. x y el parámetro de integración del 
algoritmo: a = -0.15. 
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Figura 14. Péndulo doble. 

- NOOE 1 

-- 

L A  0.00 0 . 8 0  1 .SO 2 .40  T IME 3 - 2 0  4 -00  4 - 8 0  5.60 0 6 . 4 0  

Figura 15. Péndulo doble. Evolución de la posición horizontal de los nodos 1 y 2. 

Figura 16. Péndulo doble. Evolución del paso de integración. 
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En las Figuras 15 y 16 se muestra'la variación de la posición horizontal de los 
nodos 1 y 2 en el tiempo, así como la evolución del paso de integración. La integración 
fue realizada correctamente y puede apreciarse cómo el paso de tiempo se ajusta 
automáticamente en el transcurso de la simulación (Figura 16). 

Mecanismo de barras articuladas con bloqueo 

Consideramos este caso como el ejemplo más exigente. El mecanismo consta de 
dos vigas, articuladas entre sí y vinculadas, una de ellas a una articulación fija y la otra 
a un apoyo deslizante sobre el eje x (Figura 17). Se simuló la apertura del mecanismo 
hasta llegar a una posición completamente extendida, donde el ángulo formado por las 
barras es 0 = n y la rótula B es bloqueada. El modelado de este fenómeno se logra 
introduciendo la ley de variación del momento en B indicada en la misma figura. . 

Las características estructurales del sistema son: área normal A = 4.8 x 
momento de inercia I,, = 4.5 x densidad p = 7800, módulo de elasticidad 
E = 2.101 x lo", coeficiente de Poisson u = 0.3; y los parámetros de integración: 
TOL = 1. x lov4 y cw = -0.15. 

Figura 17. Mecanismo de barras con bloqueo. 

T I M E  4 D*I.$o ' 3 A0 $0 ' 5 $0 ' 6 . 0 0  ? - O 0  

Figura 18. Mecanismo de barras con bloqueo. Evolución del ángulo de apertura de 
barras en el tiempo 
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T l f l E  

Figura 19. Mecanismo de barras con bloqueo. Evolución del paso de integración. 

En la Figura 18 se muestra la variación del ángulo 0 con el tiempo y en la Figura 
19 la evolución del paso de integración h. Debe destacarse la capacidad del algoritmo 
de disminuir el paso en los momentos de impacto y aumentarlo cuando es posible, 
lográndose de esta forma una integración económica y muy precisa. 

CONCLUSIONES 

Hemos presentado un algoritmo de integración temporal a paso variable sumamente 
robusto y eficiente. La estrategia de variación del paso se basó en mantener el error 
local (calculado en base a derivadas de orden superior), por debajo de una tolerancia 
especificada al comienzo de la integración. Se estableció una correlación adecuada 
entre esta medida y el paso de integración, de forma de mantener el mismo en valores 
apropiados. Se desarrollaron varios ejemplos numéricos, encontrándose una total 
concordancia con las predicciones teóricas y mostrando la potencialidad del método 
propuesto. 

La metodología desarrollada es altamente original y absolutamente general. Dicho 
en otras palabras, si bien en este trabajo aplicamos la misma al algoritmo integrador 
de Hilber, Hughes y Taylor (HHT), es posible emplear ésta en cualquier integrador 
implícito para formular una estrategia de variación del paso. Mencionamos igualmente 
que, bajo la óptica desarrollada, no estamos limitados a utilizar la función E vista. Bien 
podrían concebirse otras combinaciones de aceleraciones, velocidades y desplazamientos 
que den lugar a funciones error (o "filtro") que aseguren un mejor funcionamiento del 
algoritmo. Dicho tema será objeto de próximas investigaciones. 

En la implementación actual de MECANO, el método mostró excelentes resultados, 
permitiendo resolver en forma directa problemas con alta no linealidad e impacto. 
La resolución de estos casos resulta excesivamente cara, o bien casi imposible por la 
dificultad para lograr convergencia, usando algoritmos a paso constante. 
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APENDICE A-1: CALCULO DE LOS VALORES DE REFERENCIA 

Para calcular el valor de referencia t, se hace necesario fijar valores característicos 
en el vector q ~ :  

En nuestro caso, el algoritmo fue usado para analizar mecanismos, e implementado 
en el programa MECAN03. Se hicieron, en consecuencia las siguientes consideraciones 

i) Para los GDL de rotación, el programa maneja valores de ángulos comprendidos 
entre O y Inl; luego adoptamos como referencia para dichas componentes en q~ una 
décima parte del máximo 

ii) Con respecto a los GDL de traslación, MECANO trabaja con "posiciones7' en lugar 
de "desplazamientos"; para tener un valor que corresponda a las dimensiones del 
problema elegimos dichas componentes en la forma 

donde Ld es la longitud de la diagonal del prisma rectangular que encierra al modelo 
en su configuración inicial, y NEL es el número total de elementos. 

iii) Finalmente, para realizar el producto (A-1), se utilizó la matriz de masas 
concentradas. 
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