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Abstract: Additive Manufacturing (AM) has been a subject of significant attention from
both industrial manufacturers and research communities. However, several challenges hin-
der the widespread implementation of this technology in the industry. Powder recoating
is a crucial step in powder-bed AM process that involves achieving a uniformly packed
bed of powder particles that are later melted by an energy source, such as a laser or
electron beam. One of the main challenges is calibrating the contact model parameters
accurately to match the flowability and spreadability of specific powder alloys. This pa-
per proposes a Discrete Element Method (DEM) model calibration framework based on
surrogate model optimisation. The study utilises a Revolution Powder Analyser (RPA) as
the experimental reference system. The proposed method is demonstrated with two AM
powder samples, Ti64 and Inconel 718. The results indicate that particle-particle friction,
rolling resistance, and van der Waals (vdW) surface energy significantly affect the sys-
tem responses. Furthermore, the validation results show good correspondence between
the simulation with calibrated parameters and experimental data. Overall, proposed cal-
ibration framework has the potential to optimise powder recoating and to improve the
accuracy and effectiveness of the additive manufacturing.

Keywords. Additive Manufacturing (AM), Discrete Element Method (DEM), Revolu-
tion Powder Analyzer (RPA), Model calibration, Powder characterization

1 INTRODUCTION

Additive manufacturing (AM) is rapidly gaining recognition and interest among both
industrial manufacturers and research communities. The technology offers several remark-
able benefits such as the ability to produce intricate geometries with fine details, as well
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as economic advantages and flexibility in both design and production. Nevertheless, there
are several challenges hindering wide implementation of the technology in the industry,
for example, process control, reliability and repeatability [1]. The main reason for this
is relatively low maturity of the technology, which implies that the essential protocols
and methods for process control and material and product characterization are still being
developed.

A large portion of metal AM systems are powder bed based [2,3]. In powder bed based
technologies, parts are built up by depositing powder layers and solidifying them by an
energy source, such as laser or electron beam, progressively. Powder layer deposition or
recoating is the process where a new layer of powder is spread over the powder bed with
a recoater. This is a crucial step determining the profile of the powder layer such as
packing and thickness and consequently the properties of the solidified layer and the final
product [4]. Process parameters should be optimised to obtain the desired recoated layer
profile. However, the optimum point is dependent on the powder properties and must
be identified for each powder separately. A pure experiment based method to determine
the process parameters can be time and cost extensive, therefore, simulation is a more
efficient way for investigating the effect of process parameters.

The most common method for simulation of granular material is discrete element
method (DEM). In DEM the granular material is modelled as individual particles in-
teracting with each other and the objects in the environment. The simulation is divided
to time steps where the forces applied to the particles at each step are integrated to obtain
their velocity, position and orientation in the subsequent step. The models used in DEM
are mostly based on a theory developed by Hertz in 1881 [5]. Mindlin and later Mindlin
and Deresiewicz modified the theory by adding an elastic tangential force to establish the
Hertz-Mindlin-Deresiewicz (HMD) model [6, 7]. HMD model is adopted since to enable
different types of interaction such as adhesion and rolling resistance [8]. The bottleneck
in DEM simulation is the computational cost that is mainly determined by simulation
time-step and the number of particles in the simulation setup. The usual approach to run
the simulations within a reasonable cost is reducing the number of particles compared to
the realistic systems by scaling up the particle size [9, 10]. This results in an unrealistic
estimate of the the model parameters since critical forces in the particle interaction, such
as adhesion, are strongly size dependent [11].

Here we have implemented a GPU based DEM solver to simulate the behaviour of the
powder in an RPA setup with the actual size distribution of the powder that falls within
45-130µm [12]. The RPA consist of a drum with transparent walls which is set to rotate
with a certain angular velocity after being partially filled by the powder under study.
Our DEM model includes both rolling resistance and adhesion. An approach is presented
to identify and calibrate the parameters in the model that have a significant effect on
the behavior of the powder (i.e. active factors). The model is then calibrated with an
experimental data set to find the values of the active factors. The process is applied to
calibrate the DEM model for two commonly used AM powders, namely Inconel 718 and
Ti64.
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2 METHOD

The rheological behavior of the powders is studied by a Revolution Powder Analyzer
(RPA) (Mercury Scientific Inc, Newtown, CT, USA). Equal sample size of 66 g in case
of Ti64 and 110 g in case of Inconel 718 powder materials are freely loaded in the drum.
For the flowability measurements, a constant speed of 0.6RPM is selected in which 150
powder avalanches were analysed. In an avalanche motion regime as the drum rotates,
the powder is carried up along the side of the drum, causing it to collapse or avalanche
due to its weight. The test is aimed to extract powder energy as a time series and identify
the avalanche events. The energy before and after the avalanche event and the difference
between them are called break, rest and avalanche energy, respectively.

The AM powders used in the calibration process are Inconel 718 and Ti64, typically
employed in Powder Bed Fusion - Laser Beam (PBF-LB), often referred to as Electron
Beam Melting (EBM). The particle size distribution is measured by laser diffraction us-
ing a Mastersizer 3000 instrument (Malvern Panalytical, UK). The size distributions of
powders are stated in Table 1.

Table 1: Particle size distribution for Inconel 718 and Ti64

Powder D10 (µm) D50 (µm) D90 (µm)
Inconel 718 51.73 78.32 113.9

Ti64 50.1 69.8 97.1

DEM simulations are performed via the Python API of the GPU DEM solver Demify®

[12]. Within the scale of this work simulations involving over 100,000 particles have been
run, however Demify® is able to handle quantities reaching several millions of particles.

3 CONTACT MODEL

The DEM model is based on step wise identification of the position and orientation of
the particles according to their properties and interactions with each other. For particle
i interacting with particle j the following classical physics equations apply:

(mr̈)i = mig +
∑
j

f ijtot , (1)

(Iω̇)i =
∑
j

mij
tot , (2)

where m, I, r and ω are particle mass, momentum, position and angular velocity, respec-
tively. g is the gravitational acceleration and f and m are force and momentum. ( ˙ ) and
(¨) denote first and second derivatives. The total force f ijtot is the sum of the normal and
tangential contact forces (f ijCN and f ijCT ) and the normal adhesion component (f ijAN). The
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total momentum is the sum of particle momentum as the effect of the tangential force
and rolling resistance (mij

R):

f ijtot = f ijCN + f ijCT + f ijAN , (3)

mij
tot = mij

R + rijCG × f ijCT . (4)

Normal and tangential forces are calculated based on the HMD contact model and in-
clude elastic and dissipative components. The contact model implementation in Demify®

that is utilised in this work is thoroughly explained by Ullrich [13].

3.1 Rolling resistance

The dissipative tangential force in the original HMD model does not account for the
energy dissipated during the rolling motion, mainly due to surface roughness and satel-
lite particles. The rolling resistance component in eq. (4) is added to encounter for this
phenomenon. Rolling resistance torque in the DEM model is derived according to the
momentum of the interacting particles through [11,14]:

mij
R = dR

∥∥f ijCN

∥∥ reff∆ω⊥ with ∆ω⊥ = (I− n⊗ nT )(ωi − ωj) , (5)

where dR is rolling resistance coefficient and reff is a value calculated based on the radius
of the two colliding particles (r1 and r2) through 1/reff = 1/r1 + 1/r2. An approach to
determine the rolling resistance coefficient based on the particle properties is suggested
by Brilliantov et al. [11, 15]:

dR ≈ 1− CCOR

1.153

(
1− ν2

VrefE
√
reff/2

)1/5

, (6)

where CCOR is the restitution coefficient, Vref is the reference velocity, E is the Young’s
modulus, ν is the Poisson’s ratio.

3.2 Adhesion

The adhesion force between the surfaces can be safely neglected in many cases with
large and dense particles where other forces such as gravity are orders of magnitude
larger. However, for particles with the size in range of tens of microns, adhesion remains
a significant factor, even in case of metallic particles [11]. The most important source of
adhesion in AM powders is vdW interaction. The vdW force is strongly dependent on
the distance between the surfaces in the contact area. For two surfaces separated by the
distance δ the surface energy can be written as [8]:

γ =
A

24πδ2
, (7)
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where A is the Hamaker constant. The normal adhesion force (f ijAN) is the vdW interaction
force between the particles in normal direction (FS(gN)n) and is obtained through [11]:

FS(gN)=


FS0 = −4πγreff , gN ≤ g0
Areff
6g2N

, g0 < gN < g∗ ,

0, gN > g∗
(8)

with g0 :=

√
Areff
6FS0

and g∗ :=
g0√
CFS0

,

where gN is the normal gap between the two surfaces. CFS0 determines the transition
area between adhesion force in short range (FS0) and long range (0) and is considered to
be 1%.

4 SCALING

One solution to reduce the computational cost of running DEM simulation is to scale
up the particle size to lower the number of particles while having the same volume of
material. This leads to an unrealistic estimate of the the model parameters since critical
forces in the particle interaction, such as adhesion, are strongly size dependent [11].

(a) (b)

Figure 1: Down-scaled geometry of the RPA drum in the simulation filled with (a) In-
conel 718 and (b) Ti64 powders.

Here a size distribution similar to the real powder is used. To ensure a feasible com-
putational cost for the simulation, the number of particles is reduced by scaling down
the geometry of the RPA, while preserving a substantially large ratio between the RPA
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dimensions and the largest particle size. The drum width and radius are reduced from
35mm and 25mm in the experimental setup to 1mm and 5mm, respectively, in simu-
lation. These dimensions are still considerably larger than the maximum particle size
(diametermax=65µm in case of Inconel 718 and 55µm in case of Ti64) as shown in Fig. 1.

Behavior of the powder in a rotating drum is strongly dependent on two dimensionless
parameters; filling degree (f) and Froude number (Fr). Filling degree is the fraction of
the cross-sectional area of the cylinder that is filled by the powder and Froude number is
the ratio between the centrifugal and gravitational forces [16]:

Fr =
ω2R

g
, (9)

where ω and R are the angular velocity and radius of the drum respectively and g is the
gravitational acceleration. The bulk weight of the powder and the angular velocity in the
simulation setup are tuned to achieve matching Fr and f values with the experimental
setup.

5 CALIBRATION STRATEGY

The contact models in DEM include a set of parameters determined by the properties
of the materials and the types of interactions. A number of methods are suggested to
extract the values of these parameters via the physical models. These values are also often
measured or predicted and tabulated [9]. However, for most of these parameters there
is a range of suggested values in the literature and a universally accepted constant value
does not exist. The process of determining parameter values within the DEM model to
achieve simulation results that closely represent experimental outcomes is referred to as
calibration. A variety of calibration methods are developed among which the surrogate
model based method is widely accepted in DEM [17]. The surrogate model is a function of
the model parameters that estimates the simulation responses. It is developed by running
a set of simulations using different values for the model parameters to investigate how
each parameter affects the responses.

In this study a response surface methodology is applied to calibrate the parameters
within the surrogate models. The simulation results used in objective functions dur-
ing calibration, also referred to as responses, are the break, rest and avalanche energy
and avalanche period. A schematic representation of the calibration approach is shown
in Fig. 2. The process starts with finding the active factors i.e. the parameters that
significantly affect the responses through Analysis of Variances (ANOVA). A set of sim-
ulations are run with parameter combinations drafted by Design of Experiment (DOE)
with the fractional factorial design method. The DOE includes combinations of 6 variable
simulation parameters i.e. friction and rolling friction coefficients and surface energy in
particle-particle as well as particle-tool interaction. Once the active factors are deter-
mined another DOE is generated with Central Composite Design (CCD) involving only
the active factors. The results of this set of simulations lead to development of a surrogate
model for each response via ANOVA analysis followed by a response surface modeling and
evaluation.
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With a surrogate model in hand, that predicts the simulation results, the final step is
to run an optimisation to find the set of parameters that produces the responses obtained
in the experimental setup. The results of the optimisation are evaluated by running a
simulation with the obtained optimum parameters and comparing the responses with the
expected values. If the simulation responses lay within the margins of the standard devia-
tion of the corresponding experimental values, the optimisation is terminated successfully.
Obtaining results that significantly diverge from the expected values often indicates that
the surrogate model has not been able to predict the results of the simulation accurately.
Therefore, the surrogate model development step is repeated starting with generating a
new DOE.

Figure 2: Calibration process steps to obtain the values of the active factors within the
DEM model.
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6 RESULTS AND DISCUSSION

A set of simulations are performed according to the DOE #1 (see Fig. 2), as the first
step in the calibration, to identify the active factors in the model. The ANOVA analysis
of the results show that particle-particle friction, rolling resistance and surface energy
are the active factors, and that variation of the particle-tool interaction parameters does
not significantly affect the results. The values of the particle-tool interaction parameters
are selected according to the literature while the active factors are obtained through the
calibration process. The values for the surface energy and friction coefficient in particle-
particle interaction model are expected to be around 0.1 mJ/m2 and 0.4, respectively,
as suggested by Meier et al. [11]. A theoretical expected value for the particle-particle
rolling resistance coefficient is calculated according to eq. (6). Vref is selected to be in the
range of the highest impact velocities and reff is set to half of the mean particle radius
assuming r1 = r2 = rmean. The calculated rolling resistance coefficient is about 4.8×10−2

for both Inconel 718 and Ti64. The stated theoretical expected values are used to set the
upper and lower limits of the calibration parameters during optimisation.

The experimental data from RPA for energy of both Ti64 and Inconel 718 is shown in
Fig. 3(a). The inset of Fig. 3(a) illustrates images captured from the Inconel 718 powder
during experiment just before and after an avalanche event. Since the energy is normalised
by the material weight, its average throughout the experiment is mainly determined by
the filling factor, which is slightly higher for the Ti64 compared to Inconel 718. How-
ever, the energy upper and lower peaks and avalanche period are strongly dependent on
powder properties including particle size distribution, shape, density and particle-particle
and particle-tool interactions. Therefore, they are used as the reference in the objective
function in the optimisation to extract the values of the active factors. The values of the
active factors achieved through the calibration process are listed in Table 2.

Table 2: Values of the active factors in the DEM model obtained via the calibration
process.

P-P Friction
coefficient

P-P Rolling resistance
coefficient

P-P Surface energy
(mJ/m2)

Inconel 718 0.465 1.35× 10−2 0.1918
Ti 64 0.651 7.26× 10−2 0.0557

The simulation results are shown in Fig. 3(b). Similar to the experimental results in
Fig. 3(a), the Ti64 has a slightly higher average energy compared to Inconel 718. How-
ever, the average energy and avalanche period for both powders are significantly lower
in simulation compared to the experimental results. This is due to down-scaling of the
RPA geometry in the simulation. With a constant filling factor, the center of mass, which
determines the energy, is lower in the simulation compared to the experiment. As men-
tioned in section 4, angular velocity of the RPA is increased to keep the Froude number
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(a) (b)

Figure 3: The plots of energy time series of the Inconel 718 and Ti64 powders in RPA in
(a) experimental and (b) simulation setup.

constant, which leads to a shorter avalanche period.
Fig. 4 illustrates a better comparison between the simulation and experimental results

where the energy is normalised by the RPA device radius, and time is normalised by the
period of the rotation of the RPA drum. The simulation results show a good agreement
with experiment. The slight offset between the simulation and experiment is probably
due to the implementation of the size distribution in the simulation which leads to a small
variation from the packing density and consequently volume of the powder compared to
the experiment.

(a) (b)

Figure 4: Comparison between the measured and simulated response of (a) Inconel 718
and (b) Ti64 powder in RPA. The time in x-axis is normalised by the rotation period and
the energy in y-axis is normalised by drum radius for simplicity of comparison.

7 CONCLUSIONS

A method is developed to calibrate a complementary DEM model including adhesion
and rolling resistance. The method is implemented to calibrate Inconel 718 and Ti64
AM powders using RPA as characterization tool. The calibration process starts with
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identification of the model active factors and proceeds with development of surrogate
models for system responses. The surrogate models are optimised with response surface
fitting based on the experimental data to determine the values of the active factors.

A geometry scaling approach is presented to reduce the computational cost of the
simulations with the original powder size distribution. The simulations are performed by
the GPU based DEM solver Demify®.

The results of the simulation with the calibrated model show a good correspondence
with the experimental data.
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