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Abstract. Advanced applications of multi-fidelity surrogate modelling techniques provide sig-
nificant improvements in optimization and uncertainty quantification studies in many engineer-
ing fields. Multi-fidelity surrogate modelling can efficiently save the design process from the
computational time burden caused by the need for numerous computationally expensive simu-
lations. However, no consensus exists about which multi-fidelity surrogate modelling technique
usually exhibits superiority over the other methods given for certain conditions. Therefore, the
present paper focuses on assessing the performances of the Gaussian Process-based multi-fidelity
methods across selected benchmark problems, especially chosen to capture diverse mathematical
characteristics, by experimenting with their learning processes concerning different performance
criteria. In this study, a comparison of Linear-Autoregressive Gaussian Process and Nonlinear-
Autoregressive Gaussian Process methods is presented by using benchmark problems that mimic
the behaviour of real engineering problems such as localized behaviours, multi-modality, noise,
discontinuous response, and different discrepancy types. Our results indicate that the consid-
ered methodologies were able to capture the behaviour of the actual function sufficiently within
the limited amount of budget for 1-D cases. As the problem dimension increases, the required
number of training data increases exponentially to construct an acceptable surrogate model. Es-
pecially in higher dimensions, i.e. more than 5-D, local error metrics reveal that more training
data is needed to attain an efficient surrogate for Gaussian Process based strategies.

1 INTRODUCTION

The exploration of multi-fidelity design methods by the North Atlantic Treaty Organization
(NATO) Science and Technology Organization (STO) AVT-331 Research Task Group (RTG)
on “Goal-Driven, Multi-Fidelity Approaches for Military Vehicle System-Level Design” [1] has
motivated the development of benchmark problems with varying levels of complex problems.
AVT 331-Level 1 (L1) subgroup has focused on the development of simplified analytical bench-
mark problems to explore multi-fidelity methods [2]. This paper presents Gaussian Process
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(GP) based multi-fidelity methods comparison using “Level 1” benchmark problems following
the terminology of Beran et al.[1].

In recent years, there has been a significant development in data-based modelling approaches
and as a result of this, surrogate modelling studies gained importance. Among these devel-
opments, the concept of multi-fidelity modelling is of great interest to the computational sci-
ence and engineering communities. Multi-fidelity methods rely on mathematical algorithms to
combine the responses obtained from different fidelity levels to reduce the computational load.
Several survey studies were conducted for multi-fidelity methods [3, 4] to assess their advantages
and disadvantages for diverse problems. However, the capabilities of multi-fidelity methods are
still under discussion and their potential is being explored. In addition, no consensus exists
about which multi-fidelity surrogate modelling technique usually exhibits superiority over the
other methods given for certain conditions. This situation raises interest in benchmark problems
that can support the comparative and rigorous evaluation of the methods and in sharing the
application of methods to these benchmark problems.

The GP method is one of the popular surrogate modelling methods used in different engi-
neering fields due to its predictive capability and the predicted variance estimation. Because of
their similar advantages, GP-based multi-fidelity methods are popular methods used for data
fusion between different fidelities. Many GP-based multi-fidelity applications are based on the
linear-autoregressive data fusion scheme proposed by Kennedy and O’Hagan [5]. As observed
in many studies in the literature, the study of Forrester et al. [6] and Perdikaris et al. [7]
presents the success of the linear-autoregressive scheme-based multi-fidelity GP (ARGP) meth-
ods for low- and high-fidelity model outputs that exhibit strong linear correlation across the
input domain. Recently, nonlinear fusion schemes based on GP (NARGP) have been introduced
[8] to improve their prediction capabilities. These approaches can offer alternatives to standard
ARGP methods and capture nonlinear relationships between fidelity models.

This paper explores GP-based multi-fidelity methods on ”Level 1” benchmark functions that
mimic features of real-world engineering problems. The aim of the paper is to present the
advantages and disadvantages of GP-based multi-fidelity methods depending on the diverse
mathematical characteristics of the selected benchmark functions. In addition, we would like
to shed light on the cases for which GP-based multi-fidelity methods will give better results
depending on the mathematical characteristics of the implemented case.

The remaining of the paper is as follows. In Section 2, Gaussian Process and multi-fidelity
implementations are explained. In Section 3, benchmark problems are introduced and then sur-
rogate model assessment metrics and experimental setups used for comparisons are explained. In
Section 4, the surrogate model metrics obtained for different benchmark problems are presented.
In the final section, the results are discussed.

2 METHODOLOGY

In this section, the concepts and basic terminology of a Gaussian Process are explained and
then the multi-fidelity implementations, Linear-Autoregressive and Nonlinear-Autoregressive
Gaussian Processes, are presented. For a more detailed introduction and description of the
models, the following references can be consulted [6, 8, 9].
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2.1 Gaussian Process

The Gaussian process regression is used to approximate a latent function f(x) with compro-
mising input-output pairs D = {xi, yi} (i = 1, ..., N). Modelling the latent function with the
Gaussian process instead of an analysis program can be expressed as in Eq. (1).

y = f(x) + ϵ, ϵ ∼ N
(
0, σ2I

)
(1)

The latent function f(x) is modeled by a Gaussian process equation with 0 mean and specific
r variances and can be expressed as in Eq. (2).

f(x) ∼ GP
(
0, r

(
x,x′;θ

))
(2)

In Eq. (2), r is the covariance function while typically the squared exponential kernel covariance
function is expressed as in Eq. (3), where θ = (α,β) are the hyper-parameters.

r
(
x,x′;θ

)
= α2 exp

(
−1

2

D∑
d=1

(xd − x′d)
2

β2
d

)
(3)

The hyper-parameter, θ, and noise variance, σ2, are obtained by minimizing the negative log
marginal likelihood equation given in Eq. (4), where R = r(x,x;θ) + σ2I .

NLML(θ) = 1

2
yTR−1y +

1

2
log |R|+ N

2
log(2π) (4)

It is difficult to find optimum hyper-parameters by taking the partial derivative of Eq. (4), so
the study finds optimum hyper-parameters using an optimization algorithm. With the obtained
optimum hyper-parameters, the predictive value and variance value at a new test point (x∗) are
obtained using Eq. (5) and (6).

f (x∗) = r (x∗,x)R−1y (5)

σ2(x∗) = r (x∗,x∗)− r (x∗,x)R−1k (x,x∗) (6)

2.2 Linear-Autoregressive Gaussian Process

The Gaussian Process can be further constructed to enable systematic combination of variable
fidelity models. The Linear-Autoregressive method is the most widely used in engineering design
problems for multi-fidelity modelling of GP. It is based on a Linear-Autoregressive information
fusion scheme introduced by Kennedy and O’Hagan [5], assuming a linear dependence between
different model fidelities. According to this approach, the prediction in the highest fidelity model
can be written as in Eq. (7).

fhf (x) = ρflf (x) + fd(x) (7)

In this equation, fhf (x) and flf (x) denote the high- and low-fidelity models at multi- and low-
fidelity levels, ρ is a scaling constant that measures the correlation between different fidelity
responses. Next, fd(x) is the GP model that represent discrepancy between fhf (x) and ρflf (x).
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2.3 Nonlinear-Autoregressive Gaussian Process

The linear mapping between different fidelities may not be appropriate for some engineering
design problems. In order to generalize the linear-autoregressive approach, Perdikaris et al. [8]
proposed a non-linear mapping between the fidelities called NARGP. According to this approach,
the prediction in the highest fidelity model can be written as in Eq. (8).

fhf (x) = z(flf (x)) + fd(x) (8)

where, fhf (x) and flf (x) denote the high- and low-fidelity models and fd(x) is the GP model
that represents the discrepancy between fhf (x) and z(flf (x)). Unlike the linear model, in this
method, a mapping is applied with the low-fidelity model with the stochastic GP method (z())
to capture the nonlinear relationships between the models.

3 NUMERICAL EXPERIMENT SETUP

This chapter covers the recommended setup for the experiments to assess and compare the
considered multi-fidelity methods for the selected set of benchmark functions. The following
sections provide an overview of assessment criteria, introducing benchmark set and associated
mathematical characteristics, experimental setup such as; computational budget and fidelity
cost assignment, sampling, termination criteria and test data set.

3.1 Assessment Metrics

In order to compare the accuracy of the surrogate models, some error metrics are calculated.
The proposed metrics are selected to offer a comprehensive assessment of the surrogates in
terms of local, global and goal-sensitive characteristics of the surrogate modelling ability. These
accuracy metrics used in the presented study are root-mean-square error (εRMSE), maximum
absolute error (εMAE) and goal-sensitive error (εt) (optimization accuracy metric).

• Root-Mean Square Error
The root-mean square error is a global error metric that is used to measure the global
success of surrogate models. The formulation can be expressed for the test data-set as
follows,

εRMSE =

√√√√ 1

Ntest

Ntest∑
i=1

(
f(xi)− f̂(xi)

)2
εNRMSE =

εRMSE

(fmax − fmin)

(9)

where f(xi) is the exact value of the function and f̂(xi) represents the surrogate model
prediction. fmin and fmax represent the minimum and maximum values of the analytical
function, respectively.

• Maximum Absolute Error
The maximum absolute error is a local error metric that is used to measure the maximum
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approximation error of surrogate models. The formulation can be expressed for the test
data-set as follows,

εMAE = max
(∣∣∣f(xi)− f̂(xi)

∣∣∣) , i = 1, 2, ..., Ntest

εNMAE =
εMAE

(fmax − fmin)

(10)

• Goal Sensitive Error
The distance-based metric (εt) defined by Serani et al. [10] is used to evaluate the opti-
mization performance of the methods.

εt ≡

√
ε2x + ε2f

2
where εx ≡

√√√√ 1

D

D∑
j=1

(
gj − x∗j,min

Zj

)
and εf ≡ f(g)− fmin

fmax − fmin
(11)

where εx is the normalized distance between the point representing the optimization vari-
ables at the global minimum found by the surrogate model (g) and the point representing
the optimization variables at the global minimum found by the analytical function (x∗min).
εf is the normalized difference between the analytical function evaluated at the optimum
value of the design variables found by the surrogate model (f(g)) and the minimum of the
analytical function (fmin). Zj = |uj − lj | is the range of jth design variable.

3.2 Benchmark Problems

The multi-fidelity benchmark functions are selected to capture fundamental mathematical
characteristics and properties which mimic real-world engineering problems. The distinctive
mathematical features of the selected benchmark problems can be listed as; multi-modality,
localized behaviours, scalability, discrepancy type and noise. The multi-modality behaviour of
the considered benchmark function represents, whether it is uni/multi-modal, or shows localized
behaviour and having discontinuity within its domain. If a function has multi-modality prop-
erty, then the surrogate representation of the function becomes more challenging in terms of
exploration of multi-modal regions. The discrepancy feature identifies the linear and nonlinear
analytical correlation between the fidelity levels. Noise distribution is also taken into consid-
eration within the scope of this study. Noise is expected in any kind of engineering response
within a wide range of distribution due to reasons such as multiple physical models and solvers,
space/time discretizations, levels of physical coupling to construct multi-fidelity approximations.
For this reason, relative noise terms are added to both low and high-fidelity models. Considering
all these mathematical characteristics over the benchmark problems will allow users to assess
superiorities and weaknesses of GP-based multi-fidelity methods depending on the main math-
ematical characteristics of the problem. The benchmark functions determined by the AVT-331
RTG [2] and their main features are presented in Table 1.

The low-dimensional versions of the benchmark problems are represented in Figure 1. See
[2] for the analytical definitions of the benchmark problems and for more detailed information.
The fidelity number and the problem dimension of the benchmark problems used in this study
are presented in Table 2.
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Table 1: Main features of benchmark problems

Function Behaviours Scalability Discrepancy Noise

Forrester
Local /
(Dis)continous

- linear no

Rosenbrock Local Parametric nonlinear no

Shifted-rotated
Rastrigin

Multi-modal
Parametric /
Fidelity

nonlinear no

Heterogeneous
Local /
Multi-modal

Parametric nonlinear no

Spring-Mass
system

Multi-modal
Parametric /
Fidelity

nonlinear no

Paciorek Multi-modal Fidelity nonlinear yes

Figure 1: Benchmark problems.

3.3 Experimental Setup

Other experimental setups used in the comparison study are presented below.

• Budget: The maximum total budget is determined depending on the dimension of the
selected benchmark function. It is given in terms of the highest fidelity simulation cost.
The assigned budget values for the benchmark functions are presented in Table 2.

• Fidelity cost assignment: Fidelity cost assignment criteria are described as follows;
high fidelity equations are considered as the unitary cost and lower fidelity models are
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assigned as fractions of high fidelity costs. The cost for different fidelity of the benchmark
functions is presented in Table 2.

• Sampling method: The Halton sequence distributes the samples homogeneously over
the design area. As the number of samples increases, Halton sampling adds new sample
points homogeneously distributed in the vacant regions of the design area while keeping
the previous sample set the same [11]. For this reason, the Halton sampling method is
used due to the success in filling the experimental space in the presented study.

• Termination criteria: Termination criteria is attained as the experiments are reached
at the maximum assigned budget.

• Surrogate model performance evaluation: Fixed test points are determined by the
Halton sampling method to assess the surrogate models. The number of test points used
to test the surrogate models depends on the dimension, and the number of test points is
determined as Ntest = 10000×D.

Table 2: Summary of multi-fidelity benchmark problems.

Function D Budget
Fidelity cost

f1 f2 f3 f4
Forrester 1 100 1.00000E-0 5.00000E-1 1.00000E-1 5.0000E-2
Dis. Forrester 1 100 1.00000E-0 2.00000E-1 - -

Rosenbrock
2 200 1.00000E-0 5.00000E-1 1.00000E-1 -
5 500 1.00000E-0 5.00000E-1 1.00000E-1 -
10 1000 1.00000E-0 5.00000E-1 1.00000E-1 -

Shifted-rotated
Rastrigin

2 200 1.00000E-0 6.25000E-2 3.90625E-3 -
5 500 1.00000E-0 6.25000E-2 3.90625E-3 -
10 1000 1.00000E-0 6.25000E-2 3.90625E-3 -

Heterogeneous
1 100 1.00000E-0 2.00000E-1 - -
2 200 1.00000E-0 2.00000E-1 - -
3 300 1.00000E-0 2.00000E-1 - -

Springs 2 200 1.00000E-0 1.66667E-2 - -
Springs-masses 4 400 1.00000E-0 1.66667E-2 - -

Paciorek 2 200 1.00000E-0 2.00000E-1 - -

4 Results

The surrogate modelling performance of the GP method is assessed over a selected set of
benchmark functions which covers quite challenging diverse mathematical characteristics. In
order to give more precise comparison in terms of the advantages/disadvantages of the multi-
fidelity strategies, GP methods are also compared with the single-fidelity versions. Error metrics
are presented for variable computational budget values.

Among others, here, Forrester function is selected to present the results more explicitly with
respect to the increasing computational budget. The surrogate model performance metrics
obtained for the Forrester equation are presented in Figure 2. In this figure, multi-fidelity appli-
cations are performed using two fidelities, such that; MF2 shows surrogate model performance
where f1 is used as high fidelity and f2 is used as low fidelity. MF3 shows surrogate model
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performance where f1 is used as high fidelity and f3 is used as low fidelity. MF4 shows surrogate
model performance where f1 is used as high fidelity and f4 is used as low fidelity. Here, it should
be noted that MF2 will employ less number of LF samples when compared to MF3 and MF4
since its LF samples are still expensive compared to MF3 and MF4 ones. In Figure 2; in plot
(f), the number of high fidelity samples with respect to the total number of samples is depicted
in order to discriminate the ratio of the used high- and low-fidelity training data among the
total computational budget for different multi-fidelity cases. It is clearly seen that the number
of HF data used in MF2 case is much less compared to the other multi-fidelity cases and this
dampens the advantage of flexible budget allocation between two fidelities. Plots (a), (b) and
(c) stand for optimization accuracies (εx, εf εt), whereas plots (d) and (e) represent global
error metrics lastly. In Figure 2, for MF3 and MF4, it is seen that as a higher computational
budget is employed, the accuracy of the multi-fidelity approximation increases very sharply in
the beginning as compared to the single-fidelity surrogate model and all models saturate at the
very high computational budgets. In most of the multi-fidelity cases for the Forrester function,
an accurate multi-fidelity surrogate is achieved even for low computational costs for MF3 and
MF4. This shows the benefit of establishing a multi-fidelity surrogate model instead of a SF
model when the computational budget is very limited.

Figure 2: ARGP result for Forrester function.

The rest of the implementations are presented in tabulated form in Figure 3 and 4 covering
all the individual applications within the study. Since the plots shared in Figure 2 are difficult
to interpret, error metrics are tabulated for certain budget values such as; 5, 15, 25, 50, 75 and
100 with different colors.
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Figure 3: Comparison of surrogate model local/global modeling performances.
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Figure 4: Comparison of surrogate model local/global modeling performances.

As seen in Figure 3, the Forrester function has linear discrepancy among different fidelity
levels, which makes ARGP more appropriate to model with. Especially in Forrester 12 case,
ARGP outperforms when it is compared to NARGP even though very little computational
budget is used (see Figure 1 to evaluate the similarity between fidelity levels visually).

As seen from Figure 3, the Forrester function is approximated well with both single- and
multi-fidelity GP whereas for the discontinuous case; optimization accuracy and global error
metrics are reduced. This result shows that discontinuity could not be explored within the
assigned computational budget. Moreover, as known from the related literature the recognition
of a discontinuity strictly depends on the relevance of sampling locations and the location of the
discontinuity. Therefore, the discontinuity topic will be further investigated comprehensively
within a future study for different sampling types to exclude sampling dependency from the
learning process. All in all, NARGP better performs in capturing the behaviour of discontinuity
in the response of the function for all computational budget values compared to ARGP or
single-fidelity GP.

For Rosenbrock, the challenge in constructing an approximation function is quite different
because of modality. Here, when the dimension of the benchmark problem increases mathemat-
ical characteristics differ with the problem dimension where the problem shifts from uni-modal
to multi-modal behavior. Accordingly, this characteristic difference has a major impact on the
surrogate performance and it is seen from the results that are presented for different dimensions
of Rosenbrock function. It is seen from Figure 3, 2-D and 5-D performance results are quite
different due to the change in mathematical behaviour. In addition, for all multi-fidelity cases
when an easier/cheaper function is used as low-fidelity (see Figure 1 to compare 2nd and 3rd

fidelity levels) more accurate metrics are accomplished. As 3rd fidelity is easier to approximate,
the multi-fidelity implementations with this fidelity level attain more accurate metrics compared
to 2nd fidelity level. Moreover, the Rosenbrock function has localized behaviours, therefore the
optimum location can be explored more easily as seen from the optimization metric εx. On the
other hand, the optimum value of the function is not estimated sufficiently since the function has
a valley-type optimum range (see Figure 1 for the function behaviour). According to the results,
as the dimension increases both optimization accuracy and global error metrics are reduced.
In addition, for an overall evaluation of the considered methods for the Rosenbrock function,
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NARGP produces more accurate performance metrics due to the non-linear discrepancy between
the fidelity levels.

Rastrigin function is very challenging to approximate with any kind of surrogate since it is
multi-modal and has steep changes in its domain. Accordingly, it is very difficult to conclude
that one surrogate is more successful than the others, however, it can be concluded that NARGP
performs slightly better in capturing the global behaviour of the function. In addition, opti-
mization accuracy metric in terms of the optimum value of the function (εf ) is approximated
sufficiently, whereas the optimum location of the function (represented by metric εx) is not
resolved well except in some minor cases.

Heterogenous function results show that as the dimension increases optimization accuracy is
reduced but further increase in dimension has no effect on capturing the optimum value of the
function. For the global error metrics, it is very difficult to interpret a comprehensive evaluation.
Since the function has steep changes in its domain, all performance results are similar.

The Springs function is a 2-D benchmark that is comparatively easy to model with surrogate
approaches compared to the springs-masses version. On the one hand, the springs benchmark
function is mostly well approximated both single- and multi-fidelity GP surrogates, on the other
hand, the springs-masses version could not be modelled as in 2-D case. Even in the case of the
whole computational budget is attained for springs-masses the performance metrics may not
regard as acceptable to be represented as a successful surrogate.

Paciorek function has a non-linear discrepancy, therefore the results show that NARGP ap-
proximated it more accurately. Global error metrics produce similar performances for both
ARGP and NARGP methods. The artificial noise has an effect on both the optimum location
and the value of the function, whereas global accuracy metrics are not changed. The noise
distribution change will be varied within a future study in order to present the noise-capturing
performance of considered surrogates.

5 Conclusion

A comprehensive assessment of multi-fidelity strategies over selected set of benchmark prob-
lems, in parallel with the efforts in NATO STO AVT-331 Subgroup L1, is presented and dis-
cussed. Multi-fidelity implementations of GP which are called ARGP and NARGP are taken
into consideration and their comparative performances are presented and discussed in terms of
local, global, and optimization accuracy metrics. The results show that, when different fidelity
levels have linear-discrepancy ARGP performs better in terms of both optimization and global
error metrics. In addition, when the function has multi-modal property, it is difficult to general-
ize which method outperforms over another. The effect of artificial noise could not be sufficiently
explored over a wide range of benchmark problems, this needs to be further studied in future
research.
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