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Abstract

External corrosion is commonly mitigated by coating the structure with a high
resistance film and by employing cathodic protection (CP) to protect regions that
are inadequately coated or where the coating has degraded. Defects in the coating
are termed holidays, and such holidays can expose bare steel. The objective of this
paper is to explore the state-of-the-art in computer models for cathodic protection.
The emphasis is placed here on mitigation of corrosion of underground pipelines,
but the concepts, models, and techniques described are sufficiently general to be
applied to mitigation of corrosion of any structure.

1 Introduction

Since the beginning of the 20th century, petroleum products and natural gas have
been transported over long distances by buried steel pipelines. Over 1.3 million
miles of buried steel main-line pipe are used to transport natural gas within the
United States [1]. An additional 170,000 miles of pipeline are used to transport
crude oil and refined petroleum products [2].

The limited availability of right-of-way corridors requires that new pipelines be
located next to existing pipelines. Placement of pipelines in close proximity intro-
duces the potential for interference between systems providing cathodic protection
to the respective pipelines. In addition, the modern use of coatings, introduced to
lower the current requirement for cathodic protection of pipelines, introduces as
well the potential for localized failure of pipes at discrete coating defects. The pre-
diction of the performance of cathodic protection systems under these conditions
requires a mathematical model that can account for current and potential distribu-
tions in both angular and axial directions.
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The objective of this work is to describe a mathematical model that has been
developed for cathodic protection of a arbitrary number of pipelines linked to an
arbitrary number of cathodic protection systems. The Boundary Element Method
was used in the model formulation. In order to achieve the desired calculation
accuracy and speed, the development required significant refinement to algorithms
available in the literature.

2 Mathematical development

The model for cathodic protection of pipelines must account for the flow of cur-
rent in the soil, in the pipes, and in the circuitry. Until recently, most models of
cathodic protection of pipelines assumed that the potential of the pipe steel was
uniform. The assumption of a uniform steel potential enabled solution for current
and potential distributions without consideration of the passage of current through
the pipe. Long pipes, however, exhibit a non-negligible potential difference along
the steel [3, 4, 5].

In the context of the present work, there exist two separate domains for the
flow of current. The first is the soil (or outer) domain, bounded by the surfaces
of the pipes and anodes, the interface between the soil and air, and, if present,
the interface between the soil and any buried insulating layers. The second (inner)
domain comprises the metallic wall of the pipe, the volume of the anode, and
connecting wires and resistors for the return path of the protective current. The
two domains are linked by the electrochemical reactions described in section 2.3.

2.1 Soil (or outer) domain

The soil domain comprises the material in which the pipes and anodes are buried.
From the perspective of the pipe, this domain can be considered to be an outer
domain. This designation contrasts the soil domain from the domain which includes
the interior volume of pipeline steel.

In principle, the treatment of concentrations and potential within the soil requires
solution of a coupled set of equations, including conservation of each individual
solute species [6], i.e., ,

∂ci

∂t
=−(∇ ·NNNi)+Ri (1)

and an expression of electroneutrality

∑
i

zici = 0 (2)

where ci is the concentration of species i, Ri is the rate of generation of species i
due to homogeneous reactions, and NNNi is the net flux vector for species i. In a dilute
electrolytic solution, the flux NNNi includes contributions from convection, diffusion,
and migration as

NNNi = vvvc−Di

[
∇ci−

ziciF
RT

∇Φ

]
(3)



where vvv is the fluid velocity, Di is the diffusion coefficient for species i, zi is the
charge associated with species i, F is Faraday’s constant, and Φ is the potential.

Under the assumption of a steady-state and a uniform concentration of ionic
species, the current density, expressed in terms of contributions from the motion
of each ionic species, can be given in terms of potential by Ohm’s law. Thus,

iii = F ∑
i

ziNNNi =−κ∇Φ (4)

where the conductivity κ, expressed in terms of contributions from individual
species as

κ = F2
∑

i
z2

i uici (5)

has a uniform value because the concentration is uniform. The assumption that
concentrations are uniform yields

∇
2
Φ = 0. (6)

Thus, potential is governed by Laplace’s equation.
Equation (6) is commonly used without explanation in cathodic protection mod-

els. The development presented above can be used to emphasize some important
points.

• The assumption that concentrations are uniform means that concentration
gradients associated with reactions on the pipe and anode surface are assumed
to occur within a thin layer adjacent to the pipe and anode surfaces. The con-
centration gradients within this narrow layer can be incorporated into the
boundary condition which describes the electrochemical reactions.

• While changes in soil resistivity can be treated within Boundary Element
models by creating coupled soil domains, the variation of potential across
the boundaries between domains must include the contribution of a diffusion
potential associated with concentration gradients.

The resistivity of the soil domain was assumed to be uniform in the present model.

2.2 Pipe metal (or inner) domain

The potential drop within the pipeline steel can be very significant when the cur-
rent level is large and the pipelines are long. The Ohmic resistance of a ANSI Stan-
dard 18-inch (0.457 m) diameter steel pipe with a wall thickness of 0.375 inches
(0.95 cm) is 7.2× 10−3 Ω/km. The potential drop along a 100 km length of this
pipe would be 720 mV for passage of a relatively modest 1 A of CP current. The
assumption that the potential drop in the pipe steel can be neglected, made, for
example, by Esteban et al [7] for their treatment of coating holidays in a short
length of pipe, cannot be made for longer stretches of pipeline networks.



The flow of current through the pipe steel, anodes, and connecting wires is
strictly governed by the Laplace’s equation

∇ · (κ∇V ) = 0 (7)

where V is the departure of the potential of the metal from an uniform value and
κ is the material conductivity. The conductivity of the pipe-metal domain κ is
not necessarily uniform. For example, the copper wires connecting the pipe to
the anode has a different conductivity than does pipeline steel or the anode or
groundbed material. A simplified version of equation (7)

∆V = IR = Iρ
L
A

(8)

can be used to account for the potential drop across connecting wires, where R is
the resistance of the wire, ρ is the electrical resistivity, L is the length, and A is the
cross-sectional area of wire.

2.3 Domain coupling through boundary conditions

The inner and outer domains described in sections 2.1 and 2.2, respectively, are
linked by boundary conditions which relate the current density on metal surfaces
to values of local potential. The type of surface governs the specific form of the
relationship required. Bare steel, coated steel, galvanic anodes, and impressed cur-
rent anodes are considered in the following sections.

2.3.1 Bare steel
While the surface of modern pipelines are generally covered by a protective coat-
ing, bare metal can be exposed by coating defects caused by mechanical damage
or long-term degradation mechanisms. For steel in soil, the electrochemical reac-
tions include corrosion, oxygen reduction, and, at sufficiently cathodic potentials,
hydrogen evolution. One common form of the boundary condition, adapted for
steady-state soil systems by Yan et al [8] and Kennelly et al [9], takes the form

i = 10(V−Φ−EFe)/βFe −
(

1
ilim,O2

−10(V−Φ−EO2 )/βO2

)−1

−10−(V−Φ−EH2 )/βH2 (9)

where V is the potential of the steel, obtained from solution of the inner domain,
and Φ is the potential of the soil adjacent to the steel, obtained from solution
of the outer domain. The term βFe represents the Tafel slope for the corrosion
reaction, and EFe represents the equilibrium potential for the corrosion reaction.
Similar terms are used for the oxygen reduction and hydrogen evolution reactions.
The mass transfer of oxygen is taken into account by including the mass transfer
limited current density for oxygen reduction ilim,O2 .

The influence of calcareous and corrosion-product films on the bare surface
can be taken into account by adjusting the kinetic parameter values. Nisançiöglu
[10, 11, 12] showed how the parameters of polarization curves can be adjusted in
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Figure 1: Schematic representation of two models for coating behavior: a) coating
allowing uniformly distributed transport of species, and b) coating with discrete
pores through which transport can take place.

CP models to account for the influence of polarization history in transient mod-
els. Carson and Orazem suggested a refined regression approach to obtain time-
dependent polarization parameters [13]. Polarization curves can be obtained for
specific chemical compositions through predictive mathematical models such as
that given by Anderko et al [14, 15]. The principle is that the current contributions
for individual reactions are summed to yield a relationship between local current
density, the potential of the steel, and the potential of the soil adjacent to the steel.

2.3.2 Coated steel
Application of coatings to steel before burial reduces the amount of current required
to provide cathodic protection. These coatings are usually polymeric but can some-
times be cement-based products.

Cathodic protection must nevertheless be used for coated pipes. Isolated faults in
the coating (termed holidays) can form galvanic couples with the coated portion;
thereby accelerating the corrosion of the bare steel exposed by the holiday. The
pipeline will experience failure due to corrosion in a far shorter time than would
be experienced if the pipe were left bare [3].

The coated portion of steel is often treated as an insulator or as a simple high-
resistance electronic conductor. To explore the role of galvanic coupling, however,
the electrochemical reactions on the coated steel must be treated explicitly. It has
been reported that a small current will pass through some coatings after they have
absorbed sufficient amounts of water [16, 17, 18, 19, 20]. Corfias et al have shown
that the pore structure expands as the coating absorbs water [17]. They also shown
that the coating conductivity increases significantly with immersion time.

Two possible modes for transport through a coating are illustrated schematically
in figure 1. Figure 1(a) represents a uniform barrier in which ionic species enter
a polymeric phase. The electrochemical reaction is assumed to take place at the
metal-coating interface, driven by the potential difference V −Φin. Figure 1(b) rep-
resents a metal covered by an insulating coating perforated by pores through which
ionic species may move. The effective resistivity of the coating then depends on
the number of pores per unit area. Again, the electrochemical reaction is assumed



to take place at the metal-coating interface and is driven by the potential difference
V −Φin. The view of a coated steel represented in figure 1 is supported by results
reported by NOVA Gas [21] and CC Technologies [19, 22, 23], which showed that
coatings on steel pipe formed a diffusion barrier when placed in aqueous environ-
ments, that the coating absorbs water, and that it is possible to polarize slightly the
steel under a disbonded coating.

The modification of equation (9) by Riemer and Orazem [24, 25] can address
either mode of transport illustrated in figure 1. The potential drop through the film
or coating can be expressed as [7]

i =
Φ−Φin

ρδ
(10)

where Φ is the potential in the electrolyte next to the coating, Φin is the potential
at the underside of the coating just above the steel, ρ is the effective resistivity of
the coating and δ is the thickness of the coating. The current density can also be
written in terms of the electrochemical reactions as

i =
Apore

A

[
10(V−Φin−EFe)/βFe −

(
1

(1−αblk) ilim,O2

−10(V−Φin−EO2 )/βO2

)−1

−10−(V−Φin−EH2)/βH2

] (11)

where Apore/A is the effective surface area available for reactions, and αblk is the
reduction to the transport of oxygen through the barrier. It is also assumed that
the coating has absorbed enough water that the hydrogen evolution reaction is
not mass-transfer limited. Equations (10) and (11) are solved simultaneously by a
Newton-Ralphson method to get values for the current density and Φin.

By eliminating the current density in equations (10) and (11), a particularly
useful equation is obtained as

A(Φ−Φin)
Aporeρfilmδfilm

= 10(V−Φin−EFe)/βFe

−
(

1
(1−αblk) ilim,O2

−10(V−Φin−EO2 )/βO2

)−1

−10−(V−Φin−EH2)/βH2

(12)

which links V , Φ, and Φin. Equation (12) can be solved by a Newton-Ralphson
method to get Φin for given values of V and Φ. The current density can subse-
quently be calculated from equation (10).

The corrosion potential of the coated steel can be calculated from equation (11)
under the assumption that no current flows through the coating. If (1−αblk) is
smaller than the pore ratio, then the metal will be more active than bare steel. If
they are the same, then the coated pipe and bare steel will have the same corrosion
potential. If (1−αblk) is larger than the pore ratio, the metal under the coating will



Table 1: Parameters for common galvanic anodes. [4]

Anode Type Eeql (mV CSE) β (mV/decade) iO2 (µA/cm2)

Al −1.0 60 1.0
Zn −1.1 60 1.0

Mg (Standard) −1.5 60 1.0
Mg (High Potential) −1.75 60 1.0

be more noble than the bare steel and will contribute to a galvanic couple that, in
the absence of CP, will enhance the corrosion rate at the holiday.

2.3.3 Galvanic anodes
The treatment of electrochemical processes at galvanic or impressed-current anodes
is similar to that used in section 2.3.1 for bare steel. A galvanic anode is selected
to be anodic to the metal to be protected. Zinc and magnesium are used to protect
carbon steel in soil environments, and aluminum and magnesium are used in sea
water. The aluminum-steel couple does not provide a sufficient driving force to
be effective in soil where the resistivity is typically much higher than that of sea
water.

The electrochemical reactions at the galvanic anode typically consist of oxygen
reduction, assumed to take place at the mass-transfer-limited rate, and corrosion.
The resulting expression is given as

i = iO2

(
10(V−Φ−Ecorr)/βanode −1

)
(13)

where iO2 is the mass-transfer-limited current density for oxygen reduction, Ecorr
is the free corrosion (equilibrium) potential of the anode, and β is the Tafel slope
for the anode corrosion reaction. The assumption that oxygen reduction is mass-
transfer-controlled is justified at the potentials typically seen for galvanic anodes.
Hydrogen evolution was ignored for galvanic anodes because it only makes a small
contribution to the net current at operating potentials. Some typical values reported
in the literature for the model parameters used in equation (13) are given in table
1. The value for the mass-transfer-limited current density must be obtained for
specific soil conditions.

2.3.4 Impressed-current anodes
Impressed-current systems consist of a dimensionally stable (non-corroding) anode
connected to the positive terminal of a direct-current (DC) rectifier. The negative
terminal of the rectifier is connected to the pipe. The rectifier can then be used to
push the potential of the anode to any desired potential that is more negative than



Table 2: Parameters for the oxygen and chlorine evolution reactions [26].

Reaction Equilibrium Potential (E) Tafel Slope (β)

O2 evolution −172 mV (CSE) 100 mV/decade
Cl2 evolution 50 mV (CSE) 100 mV/decade

that of the pipe. Because the driving potential for impressed-current anodes is pro-
vided by an outside current source, the current densities obtainable on impressed-
current systems are usually an order of magnitude larger than can be obtained with
galvanic anodes. Impressed-current systems can therefore protect a much longer
section of pipe and can be used to greater effect in highly resistive soils.

The anodic reaction at an impressed-current anode is typically water oxidation
(evolution of oxygen)

2H2O → O2 +4H+ +4e− (14)

and, at more anodic potentials, chloride oxidation (evolution of chlorine)

2Cl− → Cl2 +2e−. (15)

The cathodic reaction would be the reduction of oxygen, just as was seen in equa-
tion (13) for galvanic anodes. Thus, the polarization model for an impressed-
current anode resembles that for galvanic anodes with the exception that an addi-
tional term is added to account for the potential setting of the rectifier, i.e.,

i = iO2

(
10(V−Φ−4Vrect−EO2)/βO2 −1

)
(16)

where 4Vrect is the potential added by the rectifier, V is the voltage of the anode,
Φ is the voltage just outside the surface of the anode, EO2 is the equilibrium poten-
tial for the oxygen evolution reaction, and βO2 is the tafel slope for the oxygen
evolution reaction.

If chloride ions are present, equation (16) must be modified to account for the
contribution of the chlorine evolution reaction (15). Reaction (15) takes place in
environments such as salt marshes and estuaries which can contain significant
amounts of salt.

Kinetic parameters for reactions (14) and (15) are given in table 2. Again, the
mass-transfer-limited current density for oxygen reduction iO2 must be determined
experimentally for a specific location.

3 Numerical development

Laplace’s equation has been solved for many boundary conditions and domains
[27]. Analytic and semi-analytic formulations can be used for specific geometries.



For example, Moulton first applied the Schwartz-Christoffel transformation to cal-
culate analytically the conduction of current through a two-dimensional rectangu-
lar geometry with arbitrarily placed electrodes [28]. Bowman supplies details for
analytic solutions using the Schwartz-Christoffel transformation [29]. Orazem and
Newman provide a semi-analytical implementation of the Schwartz-Christoffel
transformation for the more complicated structure of a slotted electrode [30]. Orazem
used the technique for a compact tension fracture specimen [31] which was later
further refined [32]. Diem et al take the semi-analytical technique a step further by
allowing for insulating surfaces to form an arbitrary angle with the electrode [33].

Unfortunately, such analytic and semi-analytic approaches are not sufficiently
general to allow all the possible configurations of pipes within a domain, the
detailed treatment of potential variation within the pipes, and the polarization
behavior of the metal surfaces. Thus, numerical techniques are required. Of the
available techniques, the boundary element method is particularly attractive because
it can provide accurate calculations for arbitrary geometry. The method only solves
the governing equation on the boundaries, which is ideal for corrosion problems
where all the activity takes place at the boundaries. Brebbia first applied the bound-
ary element method for potential problems governed by Laplace’s equation [34].
Aoki [35] and Telles [36] reported the first practical utilization of the boundary
element method with simple nonlinear boundary conditions. Zamani and Chuang
demonstrated optimization of cathodic current through adjustment of anode lo-
cation [37].

The pipe steel domain is solved using the finite element method. Brichau first
demonstrated the technique of coupling a finite element solution for pipe steel to
a boundary element solution for the soil [38]. He also demonstrated stray cur-
rent effects from electric railroad interference utilizing the same solution form-
ulation [39]. However, Brichau’s method was limited in that it assumed that the
potential and current distributions on the pipes and anodes were axisymmetric
allowing only axial variations. Aoki presented a technique similar to Brichau’s that
included optimization of anode locations and several soil conductivity changes for
the case of a single pipe with no angular variations in potential and current distri-
butions [40, 41].

Since it is desired to have a solution for the current and potential distributions
both around the circumference and along the length of the pipe, Brichau’s method
must be modified. These modifications are described in the following sections.
The elements of the BEM and FEM techniques which are well established in the
literature are summarized here for completeness.

3.1 Outer domain: boundary element method

The boundary element method can be derived from the same technique used to
obtain the classical finite element method. One starts by writing a variational or
weighted residual of the governing differential equation. If the PDE takes the form

∇
2u− f = 0 (17)



where f is a forcing term that is a function of position only, then one would write
the weighted residual as

Z
Ω

w
(
∇

2u− f
)

dΩ = 0,∀w (18)

where Ω is the domain and w is any weighting function. In the case of Laplace’s
equation, f = 0 and u = Φ; thus

Z
Ω

w∇
2
ΦdΩ = 0,∀w. (19)

This equation holds for all weighting functions w. Equation (19) is integrated ana-
lytically by using the divergence theorem

Z
Ω

∇w∇ΦdΩ−
Z

Γ

w(~n ·∇Φ)dΓ = 0,∀w (20)

with Γ being the boundary of the domain. Equation (20) is the classical weak form
of the finite element method for Laplace’s equation. At this stage, the boundary
element method development departs from the finite element method by using
a second application of the divergence theorem. The highest order derivative is
thereby moved to the weighting function, i.e.,

Z
Ω

Φ∇
2wdΩ−

Z
Γ

w(~n ·∇Φ)dΓ+
Z

Γ

Φ(~n ·∇w)dΓ = 0,∀w. (21)

At this point the weighting function needs to be specified to show why the second
application of the divergence theorem was done. If one observes that the solution
to the equation

∇
2Gi, j +δi = 0 (22)

is the Greens function for Laplace’s equation, one can simplify equation (21) by
picking the weighting function to be the Green’s function. [42] The first integral
in equation (21) becomes

Z
Ω

Φ(−δi)dΩ =−Φi. (23)

Substitution of equation (23) into equation (21) yields a simpler equation valid
within the domain

Φi +
Z

Γ

Φ(~n ·∇Gi, j)dΓ =
Z

Γ

Gi, j (~n ·∇Φ)dΓ (24)

where the highest order derivative has been removed and all the integrals are along
the boundaries only. Equation (24) is still exact in so far as the Green’s function
is known and is valid for determining the values of the potential at any interior
point in the domain given that the potential and current density distributions on the
boundary are known. This implies that, for Laplace’s equation, values of interior
points are fully specified by integrals along the boundary only.



The last step in deriving the Boundary Element method is to take Φi to the
boundary. A Cauchy principle value is introduced in the integral on the left side of
equation (24). It is usually represented by a constant appearing in front of the first
term in equation (24)

ciΦi +
Z

Γ

Φ(~n ·∇Gi, j)dΓ =
Z

Γ

Gi, j (~n ·∇Φ)dΓ. (25)

For a smooth surface at the point i, the constant ci is equal to π [43].

3.1.1 Infinite domains
Everything done to this point has been done under the assumption that the bound-
ary encloses the domain. In many situations, the domain lies outside the boundary.
In order to get a solution for this situation, it is necessary to introduce a second
boundary, Γ̄, placed around the surface of interest and centered on the source point
on that surface. Adding the enclosing boundary to equation (25), one obtains

ciΦi +
Z

Γ

Φ(~n ·∇Gi, j)dΓ+
Z

Γ̄

Φ(~n ·∇Gi, j)dΓ̄

=
Z

Γ

Gi, j (~n ·∇Φ)dΓ+
Z

Γ̄

Gi, j (~n ·∇Φ)dΓ̄.
(26)

If the radius of the new boundary is taken to infinity then the limit of the integrals
over the external boundary, Γ̄, go to infinity

lim
R→∞

(Z
Γ̄

Φ(~n ·∇Gi, j)dΓ̄−
Z

Γ̄

Gi, j (~n ·∇Φ)dΓ̄

)
= Hi,∞. (27)

The value of equation (27) can be found analytically

−
Z

Γ∞

Φ(~n ·∇Gi, j)dΓ∞ = Hi,∞ = 4πΦ (28)

where the minus sign indicates the direction of the normal vector. The second term
in equation (27) vanishes as the limit is taken. The value of integral in (28) can be
more easily seen if it is transformed to spherical coordinates

lim
r→∞

(
−
Z

π

0

Z 2π

0

Φ

r2

(
r2 sinφ

)
dθdφ

)
= 4πΦ (29)

where r is also the normal vector since the surface is a sphere centered at a source
point. Φ at infinity is often assumed to be zero; thus satisfying the zero radiation
condition at infinity exactly.

3.1.2 Half spaces
A half space is simply an infinite domain split by a plane. The half space is the
space lying on one side of the plane. If either the Dirichlet or Neumann condition
vanishes at the plane, the Green’s function presents an interesting opportunity to



satisfy that condition exactly with a very small additional computation when eval-
uating the kernels of the integrals. This is done by making use of the reflection
properties of Green’s functions [43, 44, 45, 46]. In the case of buried pipelines, the
Neumann condition vanishes at the plane boundary, i.e., there is no current flowing
out of the soil into the air, and none is flowing from the air into the soil.

If one starts with the boundary condition on the plane being zero normal current
and places a source at x and its reflection about the plane at x′ [46],

σ(x)(~n ·∇G(x,ξ))+σ
(
x′

)(
~n ·∇G

(
x′,ξ

))
= 0 (30)

which implies that the two source intensities σ(x), and σ(x′) are equal and have the
same sign. The sign is the same because the outward normal vectors have opposite
signs for the z component for the reflections. The final form of the Green’s function
is

Gi, j =
1

4πr(xi,x j)
+

1
4πr(xi,x′j)

(31)

where x′j is the reflected source point.

3.1.3 Layers
Layers are created using the same types of Green’s function reflections as described
above. The only restriction is that one of the two boundary conditions at the inter-
face between the two layers must be equal to zero (i.e., either Φ = 0 or~n ·∇Φ = 0)
[46]. In the context of cathodic protection of buried pipelines, the only boundary
condition that has physical meaning is a zero normal current condition since there
is no easy way to have an arbitrary plane within the electrolyte that has a potential
equal to zero. Including a plane with a zero Neumann (natural) condition implies
that there is one region in which current may flow that is bounded by regions of
zero conductivity whose boundaries are defined by the Green’s function reflec-
tions. An example would be an underlying rock layer which has zero conductivity.

The resulting functions can be obtained by using equations of the form of equa-
tion (30). The Green’s function in three dimensions would then be of the form

Gi, j =
Reflections+1

∑
k

1
4πr(xi,x j,k)

(32)

where the index k > 1 refers to the reflection about some plane k. For k = 1, x j,k is
the field point on the real object. If the soil surface is the only reflection used, the
result is the same as equation (31).

An example of a pipeline in a halfspace with an underlying rock layer is shown
in figure 2. Two reflections were used. The first accounts for the zero normal cur-
rent at the air-soil interface which is represented by the pipe in the air. The second
reflection accounts for the zero normal current at the rock soil interface and is
represented by the lower pipe.

The influence of the nonconducting layer on the current delivered to a pipe is
seen in figure 3 for a sequence of calculations for which the distance r between the



Figure 2: Reflections of Green’s function to account for boundaries with zero nor-
mal current.
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Figure 3: Total calculated current, normalized by the result from Dwight’s formula
for an infinite soil domain [3, 47], as a function of the separation r between the
pipe and an underlying (insulating) rock layer.



horizontal pipe and a non-conducting layer placed below the pipe was varied. For
these calculations, the anode was placed far from the pipe such that the current dis-
tribution around the circumference of the pipe was affected only by the screening
of the insulating ledge. The current increased with the distance according to

I
Ir→∞

= 1− a√
r

(33)

where a is a fitted parameter that depends on the geometry and soil resistance and
Ir→∞ is the value obtained from Dwight’s formula [3, 47] which does not account
for the presence of a nonconducting layer. The total current tended toward that
predicted by Dwight’s formula as the distance between the ledge and the pipe
increased.

3.2 Inner domain: finite element method

The Finite Element Method was used for the domain consisting of the pipe-line
steel, copper connection wires, and anode material. The Finite Element Method is
ideal for completely bounded domains where the material properties may change
from one location to another, i.e., current flow from the pipe to the copper wire
connecting the pipe to the anode. A significant advantage of the formulation was
that the same discretization could be employed as was used for the Boundary Ele-
ment Method solution of the outer domain.

The development of the finite element method for the pipe steel domain starts
by writing a weighted residual for the strong form of Laplace’s equation given in
equation (7) Z

Ω

w∇ ·~~κ ·∇V dΩ = 0 (34)

where w is any weighting function. For pipe steel, κ is just a constant times an
identity matrix

~~κ = κ

 1 0 0
0 1 0
0 0 1

 (35)

with step changes in κ when the type of metal changes. After substituting the
material properties into equation (34) and integrating by parts using the divergence
theorem, the following Weak Form is obtainedZ Z Z

Ω

κ∇w ·∇V dxdydz =−
ZZ
	wκ(~n ·∇V )ds (36)

where ~n is the outward normal vector from the boundary of the domain. The
domain is divided into elements using piecewise continuous polynomial isopara-
metric shape functions. The shape functions approximate the geometry and solu-
tion, V , over the elements. The discretized form of equation (36) is

n

∑
j=1

[Z Z Z
(e)

κ∇φ
(e)
i ·∇φ

(e)
j dxdydz

]
Vj =−

ZZ
	κφ

(e)
i (~n ·∇V )(e)i ds (37)



Figure 4: Diagram of the shell element used to calculate the potential drop within
the pipe steel. The element is assumed to have no variation in the ζ direction. The
curvilinear coordinate system is displayed on top of the element.

where κ is the scalar component of the property tensor, φi is a shape function and
the sum goes from 1 to the total of all the shape functions of all the elements.

3.2.1 Pipe shell elements
A special type of thin shell elements is introduced here and shown in figure 4.
These elements are specifically designed for potential problems on shells where
the absolute value of the material property (κ in equation (37)) is large.

The elements are defined in orthonormal curvilinear coordinates, ξ, η, and ζ

where ξ and η define the outside surface of the pipe and ζ is the outwardly directed
normal vector. ζ is obtained through the cross product ξ×η.

Variations of the potential in the ζ direction were assumed to be negligible
because the scale of the problem is many orders of magnitude greater in the ξ

and η directions. Variations of the potential parallel to the surface were allowed
to vary in a piece-wise continuous way using bi-quadratic shape functions for the
elements. These functions were obtained through the product of two Lagrange
interpolating polynomials of the same order, one in ξ and one in η. The result is a
family of elements with square parent elements which include the four-node linear,
the nine-node quadratic, and the 16 node cubic elements.

3.2.2 Applying elements to the FEM
The integral (37) must be transformed to the curvilinear coordinate system of the
parent elements. A differential volume, dxdydz can be transformed to the curvi-
linear system by the determinate of the Jacobian of the coordinate transformation

dxdydz = |J|dξdηdζ (38)

where J is the Jacobian.



The Jacobian is composed of the partial derivatives of the coordinates x, y and z
with respect to each of the curvilinear coordinates

J =


∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ

 . (39)

Integral (37) is transformed to the curvilinear coordinate system to yield

∑
i

[Z Z Z
Ω(e) ∑

k

∂φi

∂xk
κ ·

∂φ j

∂xk
|J|dξdηdζ

]
=−

ZZ
	

Γ(e)

wκ(~n ·∇V )ds (40)

where xk is one of the cartesian coordinates, |J| is the determinate of the Jacobian,
s is the surface of the element~n is the outward normal vector from the surface, and
Ω(e) is the domain of the parent element. The limits of integration in the parent
element are from −1 to +1 for all three of the coordinates. For the special shell
elements used for pipes, the integral is only performed numerically over the surface
dξdη which is then scaled by the physical thickness of the shell h, the result of
the integral over ζ. This requires the Jacobian to be modified to a surface Jacobian
which, in this case, is simply the square root of the magnitude of the Jacobian.
Rewriting equation (40), the two dimensional integral over the surfaces of the pipes
is obtained as

∑
i

[
h
Z Z

Ω(e) ∑
k

∂φi

∂xk
κ ·

∂φ j

∂xk

√
|J|dξdη

]
=−

ZZ
	

Γ(e)

wκ(~n ·∇V )ds (41)

with the thickness of the steel, h, a parameter. The normal vector has the same
direction as the one from the boundary element method.

Partial derivatives in equation (41) with respect to cartesian coordinates need
to be expressed in terms of the curvilinear coordinates. Using the chain rule, but
starting from the derivatives in cartesian coordinates, one writes

∂φ

∂x
∂x
∂ξ

+ ∂φ

∂y
∂y
∂ξ

+ ∂φ

∂z
∂z
∂ξ

∂φ

∂x
∂x
∂η

+ ∂φ

∂y
∂y
∂η

+ ∂φ

∂z
∂z
∂η

∂φ

∂x
∂x
∂ζ

+ ∂φ

∂y
∂y
∂ζ

+ ∂φ

∂z
∂z
∂ζ

 =


∂φ

∂ξ

∂φ

∂η

∂φ

∂ζ

 (42)

or, in terms of the Jacobian

J


∂φ

∂x
∂φ

∂y
∂φ

∂z

 =


∂φ

∂ξ

∂φ

∂η

∂φ

∂ζ

 . (43)



Since φ is a function of ξ, η, and ζ, the partial derivatives of φ with respect to the
cartesian coordinates can be found by inverting the Jacobian.


∂φ

∂x
∂φ

∂y
∂φ

∂z

 = J−1


∂φ

∂ξ

∂φ

∂η

∂φ

∂ζ

 . (44)

If J−1
i, j is the element from the ith row and the jth column of the inverse of the

Jacobian, then the partial derivatives defined in equation (44) can be expanded to
yield

∂φi

∂x
= (J−1)11

∂φi

∂ξ
+(J−1)12

∂φi

∂η
+(J−1)13

∂φi

∂ζ

∂φi

∂y
= (J−1)21

∂φi

∂ξ
+(J−1)22

∂φi

∂η
+(J−1)23

∂φi

∂ζ

∂φi

∂z
= (J−1)31

∂φi

∂ξ
+(J−1)32

∂φi

∂η
+(J−1)33

∂φi

∂ζ
.

(45)

The assumption that the thickness of the shell is small with respect to the radius
and length of the shell means that there is negligible variation in the potential in
the ζ direction. Therefore, all terms in equation (45) that involve partial derivatives
with respect to ζ can be assumed to be equal to zero. All of the terms in equation
(41) can be evaluated numerically. Since the shape functions for the geometry and
solution vary quadratically in the ξ and η directions, a nine-point Gauss rule (3×3)
applied in both directions will give an exact (to machine precision) result.

3.2.3 Bonds and resistors
Bonds and resistors are used to provide paths for flow of electrical current between
pipes or between pipes and anodes. Bonds were implemented as a linear 1D ele-
ment between the connection node on one pipe or anode to the connection node on
the second pipe or anode. This formulation requires introduction of no additional
nodes. The material property is set by accounting for the real length and gauge of
the wire that ties the pipes together. If a resistor is specified within the wire, it is
added to the total resistance of the bond. An illustration of a bond is given in fig-
ure 5. The lines connecting the pipes to each other and to the anode are bonds. The
cylinder on the line connecting the two pipes represents a resistor that is sometimes
added in series with the bond to adjust the current load applied to the pipelines.
They are modeled as 1D finite elements that connect to the bond connection points.
The value of the resistor is set to zero if a resistor is not used in the calculation.

A one-dimensional version of Laplace’s equation is used for the 1D elements.
The development for the linear 1D element follows that presented in section 3.2.



Figure 5: A representation of two horizontal pipes connected to each other and
to a vertical anode or ground bed. The lines connecting the pipes to each other
and to the anode are bonds. The cylinder on the line connecting the two pipes
represents a resistor. They are modeled as 1D finite elements that connect to the
bond connection points.

The result of the integration over the bond is the total conductance of the bond or

Ke =

[
1
R

−1
R

−1
R

1
R

]
(46)

where R is the total resistance of the bond.

3.3 Coupling BEM to FEM

The finite-element model for the inner domain is coupled to the boundary-element
for the outer domain at the interface between the two domains. Ohm’s Law holds
within each domain as stated in section 2.1. Therefore, at any arbitrary surface that
forms a boundary between two domains it can be shown that the flux on either side
of the boundary is related by the material property,

κ1~n ·∇Φ1 = κ2~n ·∇Φ2 (47)

which is a balance on charge at the pipe/soil interface, where κ is the material
property. For potential problems, κ is the conductivity of the material in Mho/m.



Using the variables for potential in the pipe, V , and potential in the soil, Φ, the
interface condition is written as

(~n ·∇V ) =
κsoil

κsteel
(~n ·∇Φ) (48)

where the quantity ~n ·∇V is used in the finite element load integral in equation
(41). Equation (48) can be inserted into equation (41) to obtain

∑
i

[
h
Z Z

Ω(e) ∑
k

∂φi

∂xk
κ ·

∂φ j

∂xk

√
|J|dξdη

]
=−

ZZ
	

Γ(e)

wκsoil (~n ·∇Φ)ds. (49)

The right side of equation (49) links the soil domain to the steel domain through
the current density generated by the kinetics of the corrosion reaction at the steel
surface given by equations (9) and (12).

3.4 Discretization of the boundary elements

Equation (25) may now be applied to a surface that has its boundaries broken up
into individual finite elements. The solution to the differential equation can be rep-
resented by approximate functions on each individual element. Example functions
may be 0th order or constant value, 1st order or linear, etc. The simplest case is the
constant element. The value of Φ is assumed to be constant across each element.
Then one can write an equation of the form of (25) for each degree of freedom
that makes up the surface and where the subscript i refers to the element number.
The integrals are broken up into N sub-intervals corresponding to N elements that
when summed together form the complete integral over the entire boundary

ciφi +∑
j

Z
Γ j

Φ(~n ·∇Gi, j)dΓ j = ∑
j

Z
Γ j

Gi, j (~n ·∇Φ)dΓ j. (50)

When constant element are used, the unknown element potentials and normal cur-
rent densities can be brought outside the integrals. Since a well-posed problem has
one half of the boundary conditions specified, the result is N equations with N
unknowns.

Since it is desired to be able to change the boundary condition type as well as
value, the notation used here will denote the matrix resulting from the left hand
integral as HHH and the right side as GGG

HHHΦ = GGG(~n ·∇Φ) (51)

where ~n ·∇Φ is the normal current density divided by the conductivity at the
boundary.



3.5 Self-Equilibration

Cathodic protection systems are constrained by the requirement that charge is con-
served. The boundary element formulation developed in section 2.1 requires modi-
fication to satisfy the constraint that charge is conserved. Instead of having a speci-
fied potential at infinity (most often set to zero) which serves as a source or sink for
charge, an unknown value of potential at infinity is used such that no current enters
or leaves through that boundary. To implement this condition, an extra equation is
added to the system [36, 48]

∑
i

Z
Γi

κ~̂n ·∇ΦdΓi = 0. (52)

Equation (52) simply states that all currents entering the boundaries of the domain
sum to zero, or, in other words, no current is lost to or gained from infinity. The
left hand side is added as a new row at the bottom of the GGG matrix of equation
(51), while the matrix HHH in (51) receives a row of zeros. A column is added to the
HHH matrix which corresponds to the unknown potential at infinity. The values that
are placed in this column come from equation (28) and are all 4π or 1 depend-
ing on where the 4π from the Green’s function is placed. This would make the HHH
matrix singular because there is still a row of zeros in it. However, that would only
be the case if Neumann type boundary conditions are specified everywhere. The
Neumann problem results in an infinite number of solutions that differ by a con-
stant. Therefore, at least one element in the system must have a Dirichlet boundary
condition to make the HHH matrix nonsingular and result in a unique solution.

3.6 Multiple CP systems

Riemer and Orazem describe in detail the development needed to model interac-
tions among CP systems [25]. To allow stray current between separate CP systems,
additional rows can be added of the type introduced in equation (52) [49]. For each
separate CP system, one extra column in the HHH matrix is also added. The appear-
ance of the matrices for 2 CP systems in the same domain will be

GGG =


G1,1 G1,2 G1,3 G1,4

G2,1 G2,2 G2,3 G2,4

0 0 A3 A4

A1 A2 0 0

 (53)

HHH =


H1,1 H1,2 0 1
H2,1 H2,2 1 0

0 0 0 0
0 0 0 0

 (54)



with the column matrix uuu given by

uuu =


u1

u2

u∞,System2

u∞,System1

 (55)

and the column matrix qqq defined in the usual way. When there are two or more
CP systems within a domain, a Dirichlet condition on at least one element in each
CP system must be specified to prevent the HHH matrix from being singular. The
added equations and unknown potentials at infinity are sufficient to allow several
CP systems to interact with each other while enforcing that the total current on
each CP system sum to zero.

3.7 Nonlinear boundary conditions with attenuation in the pipe steel

The external load integral from the finite-element solution to the inner domain can
be written for each node as a sum of contributions from each element that has that
node in common

fi =
nce

∑
`=1

−
ZZ
	

Γ(e)

w`,iκsoil (~n ·∇Φ)ds (56)

where fi is the load for node i and nce is the number of contributing elements to the
load at node i. This integral must be evaluated across all nodes on all surfaces of
all structures in the model. Since the value of~n ·∇Φ is either a known or unknown
boundary condition from the boundary element method, it must be factored out of
the integral. Using the shape functions that describe the values of ~n ·∇Φ across
each element in terms of the nodal values~n ·∇Φ and the weights, one can rewrite
equation (56) as

fi =
nce

∑
`=1

−
ZZ
	

Γ(e)

w`,iκsoil

nen

∑
k=1

φ`,k(s)(~n ·∇Φ)`,k ds (57)

where nen is the number of nodes in the element, (~n ·∇Φ)k is the nodal value of the
normal electric field within the element n, and φ(s)k is the shape function whose
value is one at node k. Using the property of integrals that an integral of a sum is
the sum of integrals, equation (57) can be rewritten as

fi =
nce

∑
`=1

nen

∑
k=1

−
ZZ
	

Γ(e)

w`,iκsoilφ`,k(s)(~n ·∇Φ)`,k ds. (58)

Equation (58) can then be written in matrix form as

fi =

[
. . .−

ZZ
	

Γ(e)

w`,iκsoilφ`,k(s)ds . . .

]
(~n ·∇Φ)1,1

...
(~n ·∇Φ)ne,nen

 (59)



or
fi = F̂FF i [~n ·∇Φ] . (60)

These sub-matrices are then assembled with the right hand column matrix from
equation (51) to form the global finite element system

KKK [V ] = F̂FF [~n ·∇Φ] (61)

where F̂FF is a matrix formed from the assembly of equation (60) such that the
column matrix corresponding to the Boundary Element Method is formed on the
right hand side. F̂FF is not symmetric.

4 Method for solution of systems of nonlinear equations

The set of variables that appear in the combined soil domain metal domain problem
are potentials outside the surface of all pipes or tanks (Φ), unknown normal electric
field on anodes (~n ·∇Φ), and unknown potential difference (V −Φ) for coated and
bare protected structures. Introduction of the attenuation code from equation (61)
to the problem introduces n more equations and n more unknowns where n is the
number of nodes used to describe the boundary mesh for the problem. The total
number of algebraic equations to be solved is now 2n + k, where k is the number
of separate CP systems.

4.1 Global matrix

The coefficients obtained from the coupled methods are placed into a global matrix
system and one instance of equation (52) is added for self-equilibriation of each
CP system 

HHHc,c HHHa,c 0 0 −4π

HHHc,a HHHa,a 0 0 −4π

0 0 KKKc 0 0
0 0 0 KKKa 0
0 0 0 0 0




Φc

Φa

Vp

Va

Φ∞



=


GGGc,c GGGa,c

GGGc,a GGGa,a

F̂FFc 0
0 F̂FFa

Ac Aa


[

~n ·∇Φc

~n ·∇Φa

]
(62)

where the subscripts a and c refer to anodes and cathodes (pipes) respectively,
double subscripts are from the boundary element method and refer to where the
source point and field point lie respectively, and A is the area of each section.



The columns of equation (62) are sorted such that all of the unknown variables
are on the left hand side. For anodes, the unknown variable is the current density
(~n ·∇Φ), and for all other structures it is the potential (Φ). The reordered system
then looks like

HHHc,c −GGGa,c 0 0 −4π

HHHc,a −GGGa,a 0 0 −4π

0 0 KKKc 0 0
0 −F̂FFa 0 KKKa 0
0 −Aa 0 0 0




Φc

~n ·∇Φa

Vc

Va

Φ∞



=


GGGc,c −HHHa,c

GGGc,a −HHHa,a

F̂FFc 0
0 0
Ac 0


[

~n ·∇Φc

Φa

]
(63)

where the column matrix on the left hand side is the set of unknown variables
and the column matrix on the right side is the set of known boundary conditions.
Equation (63) can be rewritten as

[AAA]


Φc

~n ·∇Φa

Vc

Va

Φ∞

 = [BBB]

[
~n ·∇Φc

Φa

]
(64)

where AAA and BBB correspond to the matrices in equation (63).
If the boundary conditions are constant, the unknown variables can be obtained

by a simple matrix inversion. For problems in electrochemistry, the set of known
boundary conditions are given as a set of nonlinear functions of the unknown vari-
ables. Therefore, the solution must be obtained using a technique for coupled sets
of nonlinear algebraic equations. This is done by rewriting equation (64) as a func-
tion that is equal to zero

[AAA]


Φc

~n ·∇Φa

Vc

Va

Φ∞

− [BBB]

[
~n ·∇Φc = f (V,Φc)
Φa = f (V,~n ·∇Φa)

]
=


0
0
0
0
0

 . (65)

Since one of the column matrices contains unknown variables, a guess for the
values must be made. Since the guess will not be the correct solution to equation



(65), the right hand column vector will not be equal to zero, but a residual

[AAA]


Φc

~n ·∇Φa

Vc

Va

Φ∞

− [BBB]

[
f (V,Φc)

f (V,~n ·∇Φa)

]
=

[
R

]
. (66)

Rewriting equation (65) as a general set of equations of an unknown vector xxx

FFF(xxx) = 000 (67)

a Jacobian JJJ, of the set of equations can be written where an element in the Jaco-
bian is given by

JJJi, j =
∂FFF i

∂xxx j

∣∣∣∣
xxx 6̀= j

. (68)

Then the Newton-Raphson iteration can be performed to obtain the solution vector
xxx such that equation (67) holds. Again the line search is necessary for the the
method to work. However, in most non-trivial cases, even the line searches fail.

In order to get the method to converge to a solution, many techniques were tried
including the minimal residual techniques such as the modified Powell method
[50], Levenberg-Marquort techniques and other methods such as the conjugate
gradient method. These techniques would converge sometimes if the guess was
nearly the correct value. However, in general, the convergence behavior was very
poor.

4.2 Variable transformation to stabilize convergence

The system of equation that result from Φ,V, i as the set of variables for the solu-
tion has very poor convergence characteristics. Great effort was required to bring
the system to convergence. Standard line searches and even minimal residual tech-
niques failed to converge.

A simple variable transformation was developed that enables good convergence
properties using the simple line search method. The variable transformation needed
can be readily identified from the equations such as (9) used to describe the reac-
tion kinetics. In equation (9), the difference V −Φ appears many times. A simple
transformation can be written

Ψ = V −Φ (69)

where Ψ represents the driving force for the electrochemical kinetics. The variable
V is then chosen as the dependent variable and rewritten as

V = Ψ+Φ. (70)

All of the equations used for the kinetics, i.e., equation (9) for bare metal, equation
(12) for coated metal, equation (13) for galvanic anodes, and equation (16) for



impressed current anodes, can be rewritten in terms of the new variable. For bare
metal, one obtains

i = 10(Ψ−EFe)/βFe −
(

1
ilim,O2

+10(Ψ−EO2 )/βO2

)−1

−10−(Ψ−EH2 )/βH2 (71)

For coated metal, two simultaneous equations in two unknowns describe the cur-
rent density, i.e.,

i =
−(Φ−Φin)

ρfilmδfilm
(72)

and

i =
Apore

A

[
10(Ψ+Φ−Φin−EFe)/βFe

−
(

1
(1−αblk) ilim,O2

−10(Ψ+Φ−Φin−EO2 )/βO2

)−1

−10−(Ψ+Φ−Φin−EH2)/βH2

]
.

(73)

For galvanic anodes,

Ψ = Eanode +βanode log(i/icorr +1) (74)

and for impressed current anodes,

Ψ =4Vrectifier +EO2 +βO2 log(i/icorr +1) (75)

where 4Vrectifier is the known setting for the rectifier.
The set of equations for the finite element method must also be rewritten as

KKK [Ψ+Φ] = [ f ] (76)

where f and KKK do not change. The boundary element method is not changed. The
set of equations that is solved becomes:




0 0 HHHc,c HHHa,c −4π

0 0 HHHc,a HHHa,a −4π

KKKc 0 KKKc 0 0
0 KKKa 0 KKKa 0
0 0 0 0 0




Ψc

Ψa

Φc

Φa

Φ∞



=


GGGc,c GGGa,c

GGGc,a GGGa,a

F̂FFc 0
0 F̂FFa

Ac Aa


[

~n ·∇Φc

~n ·∇Φa

]
.

(77)

At this point the essential boundary condition for V (Ψ + Φ) is applied. There is
one degree of freedom in the problem for this potential so one node on one pipe is
selected to have a 0 potential. This is done by replacing the FEM equation for the
single selected node in the system given by equation (77) with

Ψ+Φ = 0. (78)

The FEM equation (lower half of the system) is replaced because that is where the
degree of freedom in the reference potential is. If there are multiple CP systems,
then there must be an equal number of essential boundary conditions on Ψ + Φ.
Once the equations are set up, all unknown variables are placed on the left-hand-
side, which are Φ and Ψ for cathodes (pipes, tank bottoms, ship hulls, etc.) and
~n ·∇Φ and Φ for anodes. The reordered system of equations is

0 −GGGa,c HHHc,c HHHa,c −4π

0 −GGGa,a HHHc,a HHHa,a −4π

KKKc 0 KKKc 0 0
0 −F̂FFa 0 KKKa 0
0 −Aa 0 0 0




Ψc

~n ·∇Φa

Φc

Φa

Φ∞



=


GGGc,p 0
GGGc,a 0
F̂FFc 0
0 −KKKa

Ac 0


[

~n ·∇Φc

Ψa

]
.

(79)

This system has excellent convergence characteristics and uses about the same
number of iterations as a system without the effects of the pipe metal included.



Figure 6: Portion of the configuration of 2 pipes plus 1 of the anodes providing
protective current. The display includes an optional resistor in the connecting bond.

5 Examples

The above development provides a foundation for modeling cathodic protection
of long stretches of multiple pipelines, including interaction among cathodic pro-
tection networks, while retaining the flexibility to account for the role of discrete
coating holidays. Care must be taken in the implementation of the approach pre-
sented above. Adaptive integration techniques are needed to generate values of
sufficient accuracy for the terms appearing in the coefficient matrices. An efficient
nonuniform meshing algorithm is needed to avoid numerical errors associated with
abrupt changes in mesh size while minimizing the computational cost of the pro-
gram.

Two examples are included here to show the potential of the model described
above. The first shows the calculation of multiple CP systems for two closely
spaced pipes in a right-of-way with coating holidays. The second shows how the
electrical midpoint may be found.

5.1 Multiple CP Systems

The following example concerns 2 pipelines in a right-of-way protected by sepa-
rate cathodic protection systems. Three miles of pipe are modeled with both pipes
exhibiting several coating holidays. A portion of the model is shown in figure 6.
The smaller pipe is assumed to be older and to have a poor quality coating, while
the larger was assumed to have the better coating. No bonds connect the two CP
systems.

When the complete system is modeled using the methods given in section 3.6,
the current density integrated across the surface of each object (anode or pipe) sum
to zero for each CP system, as demonstrated in table 3. As indicated in table 3, Pipe
1, Anode 1, and Anode 3 comprise CP System 1; and Pipe 2 and Anode 2 comprise
CP System 2. The amount of current drawn from Anodes 1 and 3 depends on the
potential applied and on the quality of the coating on adjacent portions of the pipe.

Even though the two pipelines were electrically isolated from each other, they
still influenced the respective level of cathodic protection through the influence of



Table 3: Current density integrated over the surface of objects.

Object CP System 1 CP System 2

Pipe 1 −0.40180 A 0 A
Pipe 2 0 A −0.26287 A

Anode 1 0.35655 A 0 A
Anode 2 0 A 0.26287 A
Anode 3 0.04525 A 0 A

Total 0 A 0 A
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Figure 7: Calculated current density as a function of axial position for Pipe 1. The
current density was obtained for the section of pipe directly facing the other pipe.

potential gradients in the soil. A plot of current density along the length of one of
the two pipes is shown in figure 7. It is interesting to note that the pipe presented
in figure 7 does not have a holiday at position 1.61 km, but the adjacent pipe does.
A sharp decrease in the cathodic current (seen as a spike due to the scale used)
appears on the pipe due to the large current demand associated with the coating
defect on the adjacent pipe. The same area is shown in a false color plot in figure
8. A shadow effect is seen on both objects due to the larger current density drawn
to the coating defect as compared to that required by the coated regions.



Figure 8: False color image of current density. The lighter color indicates lower
current density.

Figure 9: False color image of current flow through the pipe metal. The flow vec-
tors indicate that the current entering the pipe metal through the holiday spreads
within the pipe steel.

The solution to the potential distribution within the pipe steel allows investiga-
tion of the flow of current back to the anodes. The current vectors in the pipe steel
in the vicinity of a large coating holiday are presented in figure 9. The dark rec-
tangle represents a large coating defect which exposes bare steel. The surrounding
area is covered by intact coating. The vectors drawn show how the current entering
the pipe metal through the holiday spreads within the pipe steel.
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Figure 10: Potential in the steel as a function of axial position. The electrical mid-
point can be identified by the maxima between cusps associated with connections
to the anodes.

5.2 Electrical midpoint

Electrical midpoints can also be determined from the steel voltage solution. To
demonstrate, a 4-mile long pipeline is modeled with three anodes placed along its
length. The anodes are set to different driving potentials. The potential in the steel,
referenced to the potential at the start of the pipe, is presented in figure 10. The
reference location is given by the node for which equation (78) applies. The sharp
minima or cusps shown in figure 10 are associated with connections to anodes,
ground beds, or other pipes. The electrical midpoints can be identified by the max-
ima between cusps. As seen in figure 10, there are two maxima along the length
which indicate the locations of the electrical midpoints.

6 Conclusions

This chapter shows how a rigorous first-principles-based model for cathodic pro-
tection of multiple pipelines in a right-of-way with coating holidays can be devel-
oped which accounts for all effects associated with the interaction of the pipes,
anodes and other parts of the CP system. Large shadow effects are seen when
coating holidays are included or when two pipes have different coating qualities.



It should be noted the cathodic protection model requires locally valid polariza-
tion curves which describe the chemistry at the pipe-soil interface. The polarization
curves account for the local soil conditions such as chemistry, coating condition,
and anode performance.
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