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Abstract. The goal of our research is the construction of efficient Jacobian-free preconditioners for
high order Discontinuous Galerkin (DG) discretizations with implicit time integration. We are motivated
by three-dimensional unsteady compressible flow applications, which often result in large stiff systems.
Implicit time integrators overcome the impact upon restrictive CFL conditions on explicit ones but leave
the problem to solve huge nonlinear systems. In this paper we consider a multigrid preconditioning
strategy for Jacobian-free Newton-Krylov (JFNK) methods for the solution of algebraic equation systems
arising from implicit Discontinuous Galerkin (DG) discretizations. The preconditioner is defined by an
auxiliary first order Finite Volume (FV) discretization that refines the original DG mesh, but can still be
implemented algebraically. Different options exist to define the grid transfer between DG and FV. We
suggest an ad hoc assignment of the unknowns as well as L2 projections. We present new numerical
results for the two-dimensional convection-diffusion equation in combination with the different transfer
options, which demonstrate the quality and efficiency of the suggested preconditioner with regards to
convergence speed up and CPU time. The suggested L2 projection from this paper result in the best
convergence speed up.

1 INTRODUCTION

In our research we are motivated by three-dimensional unsteady compressible flow applications. Our
goal is the construction of efficient Jacobian-free preconditioners for high order Discontinuous Galerkin
(DG) discretizations with implicit time integration. High order methods such as DG or Flux Recon-
struction discretizations offer great potential for Large Eddy Simulation (LES) of turbulent flows with
complex geometries, e.g. jet engines. The idea of these discretizations is an element-wise polynomial
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approximation, with possible discontinuities across element interfaces [1, 2]. The degrees of freedom
are coupled across faces and inside each element, resulting in dense element-wise computation. Thus,
these methods are very well suited for high performance computing [3, 4]. We consider a specific DG
variant, the DG Spectral Element Method (DG-SEM), see e.g. [5]. This discretization is based on a
Lagrange type (nodal) basis with Legendre-Gauss-Lobatto (LGL) quadrature nodes, with collocation of
the discrete integration. Moreover, the same Lagrange basis is used for ansatz and test space. These
choices yield DG operators that satisfy the summation-by-parts (SBP) property [6], which is the discrete
analogue to integration-by-parts. This property is key to construct methods that are discretely entropy
stable and/or kinetic energy preserving.

Discontinuous Galerkin discretization in space results in a big system of ODEs. In a lot of challenging
compressible turbulent flow applications as e.g. the design of jet engines, airplanes and windturbines,
these systems are stiff due to geometry features and thin boundary layers. It is therefore of advantage to
use implicit time integrators to overcome the deficiency of explicit ones with restrictive CFL conditions.
However, this causes challenges in terms of CPU time and memory consumption. In [7], Vincent and
Jameson mention that solvers for linear and nonlinear equation systems are severely lacking for 3D DG
applications, and are therefore one of four major obstacles that need to be solved if high order methods
are to be widely adopted by e.g. industry. Full-Approximation multigrid (FAS-Multigrid) schemes and
preconditioned Jacobian-Free Newton-Krylov methods (JFNK) combined with multigrid preconditioners
are candidates for such efficients solvers [8, 9]. We focus on the latter one and the construction of efficient
preconditioners. DG systems have a block structure with weakly coupled blocks at the faces. The blocks
can be of very large size depending on the order of the DG method: the number of unknowns per element
increases dramatically with increasing polynomial degree and dimension, leading to large dense Jacobian
blocks [10, 11]. While for Euler or Navier-Stokes equations the block size of a Finite Volume method is
2+d with dimension d, it is (d+2)(p+1)d for DG-SEM with p-th degree polynomials on quadrilateral
grids. For degree 2 polynomials in 3D this results in dense blocks of size 135×135. Thus, the favorable
memory consumption of the JFNK approach is obsolete if the preconditioner requires the storage of the
DG system Jacobian.

In this article we extend the idea for the construction of a well-performing low storage precondi-
tioner for the JFNK approach, i.e. a Jacobian-free preconditioner as suggested in [12, 13], to the two-
dimensional case and consider a convection-diffusion problem. This extension is straightforward using
a tensor product ansatz for the DG-SEM discretization. The main ingredient is the construction of a sim-
plified replacement operator. While it is possible to choose a different polynomial order in the element
to generate a replacement operator as in [14, 10], we aim to retain the number of DOFs in our replace-
ment operator by introducing subcells in each element, namely p+1 in each spatial direction. A related
approach was proposed in [15] for spectral difference (SD) methods. The simplest replacement operator
is a first order Finite Volume (FV) discretization defined on this subcell grid. To do so, the nodal DOFs
from the DG method need to be reinterpreted as unknowns for the FV method. In extension to previous
work, we consider different transfer operators between the DG-SEM and FV discretization based on L2
projections.

We measure the quality and efficiency of the suggested preconditioners by considering the conver-
gence rate of the Krylov subsolver as well as the CPU time. Moreover, the FV discretization itself can be
interpreted as a reference preconditioner. This is motivated by the fact that a well constructed multigrid
method should approximate the FV method as well as possible. All results presented in this paper are
produced using the Python bindings in the Distributed and Unified Numerics Environment (DUNE) [16].
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This is a modular toolbox for solving partial differential equations with grid-based methods, ensuring ef-
ficiency in scientific computations and supporting high-performance computing applications. Numerical
methods can be developed and tested in Python, before they are transferred to C++ to improve perfor-
mance efficiency.

In the remainder of this paper, we first describe the here considered problem, the two-dimensional
convection diffusion-equation. We then present the DG-SEM discretization and the FV subcell dis-
cretization. In section 3 we describe how to construct an agglomeration multigrid preconditioner and
present the different transfer operators between DG and FV. In the last part of the paper, we show nu-
merical experiments to validate the approach and draw our conclusions.

2 PROBLEM DESCRIPTION AND DISCRETIZATION

In this paper we consider the two-dimensional linear convection-diffusion equation

ut +b ·∇u− ε∆u = g(u), (1)

uy|ΩSN = 0, u|∂ΩWE = 0,
u(X,0) = exp(−10‖x‖2),

with (X, t) ∈Ω× [0,T ], Ω = [−1,1]2, b = 1
2(
√

3,1) and ε ∈ R+.

2.1 Discontinuous Galerkin Spectral Element Method

We discretize the spatial components of (1) using a discontinuous Galerkin method and rewrite prob-
lem (1) as

ut +∇ · f(u,∇u) = 0, (X, t) ∈Ω× [0,T ] with Ω⊂ Rd . (2)

To derive the discretization we consider the weak form of the conservation law∫
Ω

utψdΩ+
∫

Ω

∇ · fψdΩ = 0, (3)

using test functions ψ from some test space. Integration by parts yields∫
Ω

utψdΩ+
∫

∂Ω

f ·nψds−
∫

Ω

f ·∇ψdΩ = 0. (4)

In the next step, the domain Ω is subdivided into cells Ωi. In each cell the solution u and the flux
function f(u,∇u) are approximated by a polynomial. In the following we assume that Ω ⊂ R2, which
simplifies the notation. Moreover, we map all cells Ωi onto the unit cell Ω̂ := [−1,1]2 as described in
[1, 17]. Then the numerical approximation on the unit cell is given by

u(x, t)|
Ω̂
≈ uP(x, t) = ∑

Nx
j=1 ∑

Ny
k=1 u jk(t)ϕ jk(x). (5)

The choice of the basis functions gives rise to different DG methods. We consider here the DG
spectral element method (DG-SEM), where the same Lagrange basis is used for ansatz and test space.
Moreover, the flux function is approximated by

f(u,∇u)|
Ω̂
≈ fP(u,x, t) =

Nx

∑
j=1

Ny

∑
k=1

f jk(t)ϕ jk(x), (6)
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with polynomial basis functions ϕ jk(x) = ϕ j(x)ϕk(y) of degree p and f jk(t) = f(u jk(t),∇u jk(t)). The
global solution is then approximated by a piecewise polynomial. We only have continuity inside the
elements, but not on the interfaces, i.e. we allow for discontinuous polynomial approximations. The test
functions are also chosen to be polynomials of degree up to p. Then (4) becomes on the reference cell

J
∫

Ω̂

uP
t ϕ jk dΩ̂+

∫
∂Ω̂

fP ·nϕ jk ds−
∫

Ω̂

fP ·∇ϕ jk dΩ̂ = 0, j = 1, . . . ,Nx,k = 1, . . . ,Ny, (7)

with J = ∆x∆y
4 . As polynomial basis for the DG-SEM method we choose a Lagrange basis with a nodal

basis based on Legendre-Gauss-Lobatto (LGL) nodes, which are defined on the unit cell Ω̂. Next we
apply a Gaussian quadrature to approximate the integrals. For the DG-SEM method, interpolation and
quadrature are collocated. Thus polynomials up to degree 2p−1 can be approximated exactly.

This gives for the mass integral

J
∫

Ω̂

uP
t ϕ jk dΩ̂ = J

Nx

∑
l=1

Ny

∑
m=1

u̇lm(t)
∫

Ω̂

ϕlmϕ jk dΩ̂≈ Ju̇ jk(t)ω jωk, j = 1, . . . ,Nx,k = 1, . . . ,Ny. (8)

Defining a vector of coefficients ũ and a diagonal mass matrix M with diagonal elements given by the
quadrature weights, equation (8) can be written more compactly as JMũ.

Applying Gaussian quadrature to the volume integral yields∫
Ω̂

fP ·∇ϕ jk dΩ̂ =
∫

Ω̂

Nx

∑
l=1

Ny

∑
m=1

flm(t)ϕlm ·∇ϕ jk dΩ̂ (9)

≈
Nx

∑
l=1

ωlωk(flk)1ϕ
′
j(xl)+

Ny

∑
m=1

ω jωm(f jm)2ϕ
′
k(xm), j = 1, . . . ,Nx,k = 1, . . . ,Ny.

With f̃ the vector of evaluations at the quadrature nodes and S such that

(S jk)1 = ωlωkϕ
′
j(xl), j = 1, . . . ,Nx,k = 1, . . . ,Ny, (10)

(S jk)2 = ω jωmϕ
′
k(xm), j = 1, . . . ,Nx,k = 1, . . . ,Ny,

equation (9) can be written compactly as ∑
2
i=1 Si(f̃)i.

The boundary integral is the sum of the four integrals on the edges of the reference cell. Then the
integral can be calculated as∫

∂Ωi

fP ·nϕ jk ds ≈ ωk(fP(u,(1,yk), t))1ϕ j(1)−ωk(fP(u,(−1,yk), t))1ϕ j(−1) (11)

+ ω j(fP(u,(x j,1), t))2ϕk(1)−ω j(fP(u,(x j,−1), t))2ϕk(−1),

j = 1, . . . ,Nx,k = 1, . . . ,Ny.

We define the vector of function evaluations at the quadrature nodes on the surface as f̂ and Ms
jk =

ω jϕk(x f ace), then equation (11) can be written compactly as ∑
4
i=1(Ms

jk)i(f̂)i. Next, the boundary terms
need to be coupled with the neighboring cells and since we allow for discontinuities at the cell boundaries
for numerical solution, numerical flux functions are needed. We approximate

fP(x, t) ≈ fN
c (u

P(x, t), ûP(x, t);n)+ fN
d (u

P(x, t),∇uP(x, t), ûP(x, t),∇ûP(x, t);n), (12)
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where we write the numerical flux as a sum of the convective and the diffusive numerical fluxes, ûP is
the polynomial in the neighboring cell and n the normal.

In this paper we use the upwind flux for the convective numerical fluxes and an interior penalty
Galerkin flux in the diffusive part, see [18]:

fN
IP(u

P(x, t),∇uP(x, t); ûP(x, t),∇ûP(x, t);n) := {{ε∇uP}}− η

h
εJuPK, (13)

with the classic average {{·}} and jump J·K, local mesh width h and a stability coefficient η which we set

η =

{
10×order2, if order > 0,
1, else.

(14)

On the reference cell we obtain a system of ordinary differential equations:

JMũt +
4

∑
j=1

MS
j(f

N) j−
2

∑
i=1

Si(f̃) j = 0. (15)

Collecting the equations for all elements in one big system with vector of unknowns u and applying
implicit Euler time stepping gives

un+1−un−∆tGun+1 = 0, (16)

⇔ (I−∆tG)un+1 = un,

where G is a matrix since we have a linear problem. This linear system of equations can be solved using
a preconditioned Jacobian-free GMRES method. Matrix-vector products with the Jacobian are replaced
by a finite difference approximation to get a Jacobian-free variant.

In the next section we describe how to construct a preconditioner for this linear system based on a
multigrid (MG) method for a Finite Volume replacement operator.

3 MULTIGRID BASED PRECONDITIONER

In order to construct a preconditioner for the linear system (16), we replace the DG-SEM problem
by a lower order FV problem. This ansatz should not be confused with a p-multigrid method. It is mo-
tivated by the equivalence of the DG-SEM discretization to specific FV discretizations [19]. Instead of
constructing the equivalent FV operator, we construct a first order FV replacement operator. This sim-
plifies the construction of the Jacobian and allows us to use the available knowledge about fast multigrid
methods for FV discretizations. The question arises how to transfer the degrees of freedom (DOFs) back
and forth in these two discretizations inside each DG element. We present different transfer strategies
later in this section and explain first the construction of FV agglomeration multigrid preconditioners.

In the multigrid method considered in this paper, the coarse grid problems are given by the FV dis-
cretization on the corresponding grid. The grid transfer is based on agglomeration: to restrict fine grid
values, they are summed, weighted by the volumes of the respective cells and divided by the total vol-
ume. This is denoted by the restriction operator Rl

l−1, where l indicates the grid level s.t. l = 0 is the
coarsest level. The corresponding prolongation operator Pl−1

l is defined via injection, where the value in
the coarse cell is taken for all corresponding fine cells.

A generic smoother is an iterative method for the solution of a linear system Alxl = bl given by

xk+1
l = MS,lxk

l +N−1
S,l bl, (17)
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with an iteration matrix MS,l and a nonsingular matrix N−1
S,l . As before, the index l specifies the multigrid

level and S denotes that this iterative method represents a smoother. It is possible to construct an MG
preconditioner based on a V- or a W-cycle, as well as several consecutive cycles. The number of pre-
and postsmoothing steps is also flexible. A multigrid algorithm to solve the linear problem Ax = b is
presented in the following pseudo-code:

function MG(xl,bl, l):
if(l = 0) solve Alxl = bl
else:
• for pre = 1, . . . ,Npre: xl = MS,lxl +N−1

S,l bl (presmoothing)
if(l > 0)
• rl−1 = Rl

l−1(Alxl−bl) (restriction)
• vl−1 = 0

– for j = 1, . . . ,γ : vl−1 = MG(vl−1,rl−1, l−1)
• sl = sl−Pl−1

l vl−1 (fine grid correction)
• for post = 1, . . . ,Npost : sl = MS,lxl +N−1

S,l bl (postsmoothing)

This gives rise to an iterative method of the form

xk+1
l = MMGxk

l +N−1
MGbl. (18)

The multigrid preconditioner is then given by N−1
MG.

3.1 Smoothers: Pseudo time stepping methods

As smoothers for the multigrid preconditioner we consider Runge-Kutta schemes. Adding a pseudo
time derivative to an initial value problem Ax = b, x(0) = x0 yields

∂x
∂t∗

+Ax−b = 0. (19)

Then any time-stepping method becomes a smoother. In this paper we consider low storage explicit
s-stage Runge-Kutta schemes of the form

x j = xn +∆t∗α jc(b−Axn), j = 1, . . . ,s (20)

xn+1 = xn +∆t∗c∗(b−Axs),

with ∆t∗ = c∗
CFLadv+CFLdi f f

, CFLadv =:= |b|∆t∗
∆x , CFLdi f f := 2ε∆t∗

∆x2 and parameters α j and c∗.

3.2 Transfer between DG and FV discretizations

In order to construct an FV replacement operator, the DG-SEM DOFs need to be reinterpreted as FV
DOFs. In the following we discuss three different options to transfer the vector of unknowns between
these two discretizations inside each DG element. The vector of unknowns in the DG-SEM discretization
in one element is given by ũ and we define the corresponding vector in the FV discretization by û, where
the number of volumes corresponds to the number of LGL nodes.

The first transfer option is referred to as ad hoc assignment of LGL nodes and FV cells in this paper
and corresponds to the grid transfer presented in [13]. The idea is to assign the values of ũ to the values
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Figure 1: Two DG-SEM grid reference elements with LGL nodes (blue nodes), and an inlaid finite volume subgrid
(black lines)

of û based on the location of the DOF, i.e. each DG-SEM DOF is assigned to the closest FV DOF. A
permutation matrix might be needed to take care of possible differences in the ordering of the DOFs. The
distribution of 4 respective 8 LGL nodes and an overlaid equidistant FV grid is visualized in Figure 1. If
every subgrid volume contains exactly one LGL node, a sufficient ad hoc assignment of DOFs between
the two discretizations is provided, while for high order DG-SEM discretizations the FV subgrid may
have volumes which do not contain any LGL node. Thus, some FV DOFs are assigned wrong values
for their location. This could be improved by modifying the FV subgrid such that each volume contains
exactly one LGL node.

Since the natural norm for DG methods is the L2 norm, another idea for the space transfer is to
consider an L2 projection. To define it, either the basis functions of the FV space or the DG-SEM space
can be used.

The basis functions in the FV space are already orthonormalized, and we define a projection matrix
via PFV ũ= û, defined as the inner L2 product of the DG-SEM Lagrange basis and the FV basis functions.
To transfer the DOFs from the FV grid to the DG grid, the reconstruction P−1

FV can be used. This is not
an L2 projection, but gives good results in the numerical tests presented in the next section.

Another option is to define the L2 projection matrix based on the DG-SEM space. To this end, the
LGL basis has to be orthonormalized. Then the projection PDGû = ũ can be defined as PDG := M−1PT

FV
with the DG mass matrix M and the reverse transfer as P−1

DG.

4 NUMERICAL RESULTS

We test the efficiency of the presented preconditioner for the two-dimensional convection diffusion
equation with b = 1

2(
√

3,1) and ε = 1.e− 4. We show 40 iterations of the GMRES convergence rate
using different FV based multigrid preconditioners. The number of multigrid levels is chosen such
that the coarsest grid in the FV space corresponds to one DG cell. On the coarsest grid, the system is
solved exactly using the sparse python solver spsolve which is based on an LU decomposition. For
smoothing we use a 3-stage Runge-Kutta scheme with parameters α = [0.145,0.395] and c∗ = 1.1 [20].
We discretized the convection diffusion problem with a 4th and 8th order DG discretization and consider
a 27×27 grid on the finest level. The time stepping width is set to be ∆t = 0.75, which gives a hyperbolic
CFL-like ratio of ∆t/∆x = 48.

As a first numerical test we examine how accurate the replacement operator approximates the original
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problem and how efficient the different transfer operators are. The convergence results for the reference
preconditioner based on the replacement first order FV operator can be seen in Figure 2, on the left side
for a 4th order DG method, in the following referred to as DG4, and on the right side for a 8th order DG
method referred to as DG8. In both cases, L2 projection gives better results than the ad hoc assignment.
Since the L2 norm is used for DG discretizations, these are the results we expected. L2 projection on
the FV space gives slightly better results, with a difference in residual of approximately 1.e−1 after 40
GMRES iterations both for DG4 and DG8. Increasing the order of the DG method gives results with
a more similar convergence rate for all transfer options while the overall quality of the FV reference
preconditioner decreases from between 1e− 7 and 1e− 11 to between 1e− 3 and 1e− 5. Since the
reference operator is of first order, it had to be expected that the reference preconditioner works better
for lower DG discretizations.

Next, we test the suggested multigrid preconditioners. A good multigrid method should approximate
the reference operator as good as possible. We construct a 3-level preconditioner based on the FV
replacement operator and test different combinations of pre- and postsmoothing for one V-cycle for DG4
and a 4-level preconditioner for DG8. In the legend of the plots, the first two numbers specify the pre-
and postsmoothing steps on the finest grid and the last two numbers the pre- and postsmoothing steps
on the coarser grids. On the coarsest grid we solve the system directly without any smoothing steps.
As before, on the left side we show the results for the 4th and on the right side for the 8th order DG
discretization.

In Figure 3 the convergence results can be seen using the ad hoc transfer between the DG and FV
space. We notice that the suggested multigrid preconditioners give convergence rates which mimic the
FV reference preconditioner to some extent and the preconditioner works better than an RK3 precon-
ditioner. Nevertheless, the overall convergence improvement is not very good when increasing the DG
order, for the reference preconditioner we decrease the relative residual by 1e− 7 in 40 iterations for a
4th order method compared to decreasing the relative residual by 1e− 3 in 40 iterations for a 8th order
method. Moreover, the efficiency of the multigrid preconditioner is highly influenced by the number of
smoothing steps on the finer grid levels.

In Figure 4 we consider interpolation by an L2 projection on the FV grid. This transfer gives overall
better results than the previous one, for the reference preconditioner we get a decrease the relative residual
by 1e− 11 in 40 iterations for a 4th order method compared to decreasing the in relative residual by
1e−5 for a 8th order method. With the suggested multigrid preconditioners we can decrease the relative
residual between 1e−5 and 1e−9 for the 4th order DG method and between 1e−1 and 1e−4 for the
8th order DG method. Again it is of benefit to apply the smoother several times on the finest grid in order
to get a convergence rate close to the one of the reference preconditioner. Moreover, postsmoothing on
the finest grid improves the convergence rate. In comparison to the ad hoc transfer, the influence of the
smoother on the multigrid preconditioner is more visible in this case and results in convergence rates
with a difference of approximately one order of magnitude. The RK3 preconditioner does not perform
well.

The results using an L2 projection on the DG grid can be seen in Figure 5. The overall convergence
improvement is about one order of magnitude worse than for the other L2 projection both for the 4th
and 8th order method. But we notice that the reference preconditioner is better approximated by the
suggested multigrid preconditioners and the difference between the tested smoothing strategies in the
multigrid preconditioners decreases. For the 4th order method, the relative residual can be decreased
between 1e−7 and 1e−9 and for the 8th order method between 1e−3 and 1e−3. Again, presmoothing
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Figure 2: GMRES convergence rate for the reference FV preconditioner for different transfer strategies, 16384
DOFs for DG4 (left) and DG8 (right)

on the finest grid results in the best preconditioner. As before, the RK3 preconditioner is beaten by the
multigrid preconditioners.

4.1 CPU time

Since the efficiency of the preconditioners is also influenced by their computational effort, we con-
sider the corresponding CPU times. The results can be seen in Tables 1 and 2. As expected, applying
the smoother on different levels has a direct impact on the CPU time. The multigrid based precondition-
ers are of very similar cost for different pre- and postsmoothing strategies, with more smoothing on the
finest grid being more expensive. While the convergence rates are highly influenced by the choice of the
transfer functions, this has not a huge impact on the measured CPU time. The same holds for increasing
the order of the DG method. Setting the CPU times in relation to the convergence plots discussed before
shows that the multigrid based preconditioner with L2 projection on DG-SEM is most efficient.

Table 1: CPU time in seconds for 40 GMRES iterations, DG4 and 16384 DOFs

ad hoc assignment L2 on DG-SEM L2 on FV
no prec. 6.39e-1 5.74e-1 6.69e-1

4× smoother 6.66e0 6.99e0 6.72e0
10,11 1.08e1 1.10e1 1.12e1
01, 11 1.13e1 1.11e1 1.09e1
22, 11 3.10e1 2.78e1 2.72e1

exact FV 4.90e0 4.82e0 5.06e0

5 CONCLUSIONS

In this paper we extended a multigrid preconditioning strategy for use in Jacobian-free Newton-
Krylov methods for the solution of equation systems arising from implicit DG discretizations as pre-
sented in [13] to the two-dimensional case. The core idea is to make use of an auxiliary first order
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Figure 3: GMRES convergence rate for transfer via ad hoc assignment, 16384 DOFs for DG4 (left) and DG8
(right)

Table 2: CPU time in seconds for 40 GMRES iterations, DG8 and 16384 DOFs

ad hoc assignment L2 on DG-SEM L2 on FV
no prec. 5.11e-1 5.47e-1 5.78e-1

4× smoother 6.22e0 6.82e0 7.17e0
10,11 1.48e1 1.52e1 1.53e1
01, 11 1.49e1 1.48e1 1.62e1
22, 11 3.27e1 3.17e1 3.32e1

exact FV 5.14e0 5.51e0 5.10e0

FV discretization that refines the original DG mesh, but can still be implemented algebraically. As
smoother, we considered a 3-stage Runge-Kutta method. Numerical results for the two-dimensional
convection-diffusion equation were presented. The convergence results of the proposed preconditioner
are promising, being close to a quasi-exact preconditioner. Our results indicate that the performance of
the preconditioner is highly influenced by the choice of grid transfer between DG and FV as well as
on the order of the DG method. An L2 projection improves the convergence rate compared to a simple
ad hoc assignment. The projection can be precomputed for a given DG order, either based on the DG
space or the FV space. For the presented problem, the L2 projection on the FV grid is slightly more
efficient than an L2 projection on the DG-SEM grid. With both strategies we can decrease the GMRES
residual from not even 1.e−1 without preconditioner to approximately 1.e−5-1.e−11 for a 4th order
DG method and approximately 1.e−1-1.e−5 for a 8th order DG method with the suggested multigrid
preconditioners for the here presented L2 grid transfer operators. Furthermore, our numerical experi-
ments show the importance of the smoothing strategy in the multigrid method, both for the convergence
rate and the CPU time. In order to improve the convergence results without increasing the CPU time
drastically, more efficient and advanced smoothers can be used, for example a W3 smoother as presented
in [13].
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Figure 4: GMRES convergence rate for transfer via L2 projection on FV grid, 16384 DOFs for DG4 (left) and
DG8 (right)
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