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Abstract: Compared with the traditional slow charging loads, random integration of large scale fast
charging loads will exert more serious impacts on the security of power network operation. Besides,
to maximize social benefits, effective scheduling strategies guiding fast charging behaviors should
be formulated rather than simply increasing infrastructure construction investments on the power
grid. This paper first analyzes the charging users’ various responses to an elastic charging service fee,
and introduces the index of charging balance degree to a target region by considering the influence
of fast charging loads on the power grid. Then, a multi-objective optimization model of the fast
charging service fee is constructed, whose service fee can be further optimized by employing a fuzzy
programming method. Therefore, both users’ satisfaction degree and the equilibrium of charging
loads can be maintained simultaneously by reasonably guiding electric vehicles (EVs) to different
fast charging stations. The simulation results demonstrate the effectiveness of the proposed dynamic
charging service pricing and the corresponding fast charging load guidance strategy.

Keywords: electric vehicles; fast charging; real-time pricing; charging station selection; navigation
strategy

1. Introduction

With the adjustment of global energy strategies, the energy transition and comprehensive social
benefits generated by the electric vehicle (EV) industry has attracted significant attention. As the
penetration rate of EVs has gradually increased, the traditional time-oriented slow-charging mode
can hardly meet the urgent and efficient charging demands for a myriad of EVs within a short
time. Fast charging, a novel technology to replenish EVs in the short-run, is the future development
orientation. However, the access to large-scale, disordered and random fast-charging loads will
generate uncertainties in both time and space dimensions, which will exert unpredictable negative
effects on the safe and stable operation of the grid [1–7]. Thus, EVs’ fast charging behaviors should be
orderly coordinated.

EV users’ charging charge location selection and path planning behaviors are mainly affected by
four factors: the geographic location of charging stations, charging service fees, user types and their
travel characteristics. Recent years have witnessed a lot of studies conducted by scholars concerning
price-guided orderly charging strategies. In [8], an optimization model where the objective was to
minimize the peak-valley slip ratio, and formulate peak-valley time-of-use pricing was put forward to
achieve peak-load shifting. In [9], a multi-objective control method was proposed, which was based
on time-of-use (TOU) pricing and regarded the minimal charging fees and the earliest initial charging
time as the objective of two-stage control, and the effect of “peak-load shifting” and users’ economical
charging were achieved. In [10], a coordinated charging control method for EV charging stations was
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put forward based on dynamic TOU prices, which reduced the operational cost and achieved the
desired “peak-load shifting” effect.

The above studies have effectively achieved coordinated charging “peak-load shifting” effects
toward the gird by regulating EV’s initial charging time through “TOU prices” and “peak-valley prices”
and have demonstrated the feasibility of guidance of charging behaviors by modulating charging
service fees. However, the price above was still fixed and cannot be changed in real-time. In the future,
the construction of charging stations will open the gate for the entry of social capital. Under such
circumstances, power grids and charging stations will have the decision-making ability of allowing
their charging service fees to fluctuate within a reasonable range. On the other hand, the current
research focuses mainly on the slow charging users, without considering their fast charging demands
dispatching power randomly along the road. Secondly, the guidance of charging service fees focuses
primarily on regulating charging time, neglecting its effect on the space dimension, which leads to
the imbalanced distribution of charging loads. Moreover, current research on the guidance effects of
charging service fees based on “peak-valley price” only considers the perspective of the safe operation
of grid, while neglecting different types of users’ response to the charging fees. The calculation of
users’ own benefits also needs to be improved.

On the other hand, there are several studies in the field of charging behavior guidance and
charging station operation. In [11], an optimal EV charging scheduling problem for a load aggregator
(LA) was developed on the consideration of its revenue and EV owner’s demands and costs. The paper
proposed an adaptive charging rate for each vehicle in order to support gird stability. In [12], a scheduling
model for EV charging stations was proposed to minimize the total charging costs and energy costs from
the substation. In [13], a novel load management solution for coordinating the charging of multiple
plug-in electric vehicles (PEVs) in a smart grid system was proposed. The approach enables EVs to
begin charging as soon as possible considering priority-charging time zones while complying with
network operation criteria. In [14], a real-time price based automatic demand response strategy for
EV charging stations was proposed, which aims at reducing electricity costs, and mitigating peak
charging demand.

In this paper, we first analyze the responses of different types of users toward the selection of
charging location and charging service fee, and then we construct a multi-objective decision model
based on the optimization goal of achieving both a degree of regional charging balance and user
satisfaction. An intelligent algorithm is utilized to calculate the charging service fee at each fast
charging station (FCS) in the target region. Finally, we verify the guidance effects of charging service
fee and charging loads by using integrated simulation system of IEEE 33-node distribution network
and its corresponding road network. The results demonstrate that, by regulating the charging service
fees of different FCSs while ensuring the user satisfaction, EVs can be reasonably coordinated at every
FCS, thus the charging loads are evenly distributed in the area.

2. Analysis of Charging Location Selection and Charging Service Fee Response Based on
User Classification

2.1. Standard Classification of EV Fast Charging Users’ Charging Location

The initial charging time and the selection of charging location vary with different EV users.
The initial time of fast charging cannot be arbitrarily changed due to the urgent need and rigid demands
of charging time. Therefore, this section will mainly focus on the charging location selection criteria.

At present, research on intelligent transport systems (ITSs) has developed dramatically [15], and is
able to estimate the time to reach a target location by considering the traffic flow. In the future, with its
integration with the intelligent charging navigation system, by using an ITS, every travelling EV user
can not only estimate in real-time the time needed to reach FCSs, but also get access to the occupancy
rate at each FCS based on the current dynamic traffic flow.

Based on such a tendency, it is assumed that all users are rational and there can be differences
among the charging service fees for each FCS. An EV user’s choice of FCS can be generally divided
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into three categories under the condition that the remaining state of charge (SOC) is enough to reach
his or her destination:

• Class I: In the absence of an ITS, users will choose the nearest FCS;
• Class II: With access to an ITS, cost-insensitive users’ general choice will be the FCS where they

can finish the charging process in the shortest time;
• Class III: With access to an ITS, cost-sensitive users will generally consider both the charging time

and charging cost. When the charging time is within the affordable range, their priority will be
the one where the charging cost is relatively low.

When the charging demand is generated, the total charging time can be expressed using Equation (1):

Td = Ta + Tq + Tc (1)

where Td is the total charging time (hours); Ta is the arrival time (hours), namely the time needed to
travel to the FCS; Tq is the queuing time (hours), and the detailed deduction is given in the Appendix A;
Tc is the charging time (hours)—the time from the start of charging to the end of charging.

The overall charging cost is shown in Equation (2):

Cd = Ca + Cs = Ct + Cc + Cs (2)

where Cd is the total charging cost (China Yuan, CNY); Ca is the arrival charging cost (CNY), that is,
the charging cost when the vehicle reaches a charging station considering the electricity consumption
during the driving process. Cs is the cost of the charging service fee (CNY); Ct is the cost of travel
(CNY), which is the charging cost of the amount of electricity consumed by the vehicle in the process of
traveling to the corresponding fast charge station; Cc is the charging cost (CNY) in the charging station.

According to the above user classification, the selection of charging location for Class I users and
Class II users depends on the location of the vehicle, the road traffic condition and the charging waiting
time. It is difficult to alter the charging behaviors of these two types of users by merely adjusting the
charging service fee. The Class III users are sensitive to the price, so their charging behaviors can be
guided by setting different charging prices or charging different service fees for different FCSs.

Since the grid behavior can affect the profit of charging stations by adjusting the charging fees
and returning a rebate to charging stations, therefore, from the perspective of the charging stations, it’s
beneficial to participate in the charging fee adjustment strategies. Also, the power flow of the grid,
transmission losses, power quality and other indexes can be optimized in this process, so this strategy
is a win-win situation, and it’s reasonable to assume that all the charging stations will participate in
this regulation.

2.2. User Charging Location Selection Probability Based on a MNL Model

Firstly, the user proportion adopting different charging location selection strategies has to be
determined, i.e., we need to determine the probability of each strategy that EV users will employ in
selecting a charging location as mentioned in Section 2.1. Since nowadays the EV penetration rate is
relative low, ITS is in a theoretical stage, and the relevant statistical data is insufficient, so this paper
adopts the multinomial logit model (MNL) [16], and obtains an actual distribution of the various types
of users through questionnaires, thus determining the users’ selection probability.

The MNL is a probabilistic selection model that has been widely used in traffic demand side
management strategies [16,17], and it is particularly suitable for predicting user’s travel behavior.
Naturally, this model can also be employed for the prediction of decision-making processes concerning
the selection of charging locations.

According to the MNL, let Pi be the probability for i-th selection criteria of a charging location.
For the Class I, II and III charging location selection criteria described in Section 2.1, the probability



Energies 2017, 10, 672 4 of 21

are PI, PII and PIII respectively, where the PI can be obtained directly by calculating the probability of
installing ITS. If Class III is viewed as a reference, PII can be described according to a logistic formula:

ln
(

Pi
PI I I

)
= αi +

K

∑
k=1

βi
kxi

k (i = I, I I) (3)

where i is the selection criteria, except for Class II users; αi is the constant term for i-th option; xi
k is k-th

variable of i-th option is used; βi
k is the corresponding coefficient of xi

k.
It can be derived from (3) that:

pI = 1− pITS
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e
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k

1+e
α2+
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k x2
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· pITS
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1
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k x2
k
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(4)

In order to obtain the probability of the users’ adopting different types of criteria, the MNL model
was calibrated by analyzing targeted statistical data, adopting data analysis software such as Statistical
Product and Service Solutions (SPSS), and using a polynomial logistic regression to calculate constant
α and the corresponding coefficient β of the variables. However, due to the lack of relevant statistical
data, it is necessary to collect samples. We set the personal attributes of EV users and the vehicle
attributes as variables for charging location selection criteria, and we made a summary table as shown
in Table 1. Through sufficient data collection and the regression analysis of the sample statistics to get
MNL model parameters, if the owner’ sex, age and vehicle type are known, the probability of adopting
different selection criteria can be obtained.

Table 1. Standard statistics summary table for the fast charging location selection of EV users.

EV Users’ Personal Attributes
and Vehicle Types

Is ITS
Installed?

Cost Per Unit Charge
(CNY/kWh)

Affordable Charging
Time Range

Maximum
Affordability

Charging Option
Change Price

Remaining
Capacity (%)

Maximum
Charging
Time (h)

Gender
Male
Female

Age
Youth (18–38)
Middle-aged (38–58)
Elderly (>58)

EV type

Small car
Medium-large car
Small SUV
Medium-large SUV
Others

2.3. Cost-Sensitive User’s Response to Charging Service Fees

Since charging a service fee is irrelevant to the charging behaviors of Class I, II users, we will not
discuss such cases in detail. For the Class III users who are sensitive to the cost, for them, it is necessary
to balance the total charging time and total charging cost, and finally come to the decision of an optimal
charging location for their own needs. Rational users will always pursue benefit maximization, so this
paper analyzes this type of user by using the weighted decision model, and their charging location
decision can be described as:
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XWs = min{XWi|i = 1, 2, · · · , n}
= min{ωTXTi + ωCXCi|i = 1, 2, · · · , n}

(5)

where XWs is the weighted attribute value of s-th scheme chosen by the user after the trade-off; XWi is
the weighted attribute value of i-th scheme; XTi is the total charging time attribute value of i-th scheme;
ωT is the weight of time attribute; XCi is the total charging cost of i-th scheme; ωC is the weight of cost
attribute; n is the number of options for EV users.

Time and cost are two different dimensional, irrelevant attributes, so it is hard to directly weigh
them. Considering that weighted attribute value XWi makes sense only when the schemes are
compared, the enlargement and shrinkage of XWi will not affect the decision result. Therefore, the XWi
time will be changed as the cost of time shown in Equation (6):

XWi
′ =

XWi
ωC

=

(
ωT
ωC

)
XTi + XCi = αXTi + XCi (6)

where α is the unit time value (CNY/hour); αXTi is time cost (CNY).
For EV users, the cost of time in the entire fast charging process means the total time from the

time when demand is generated to when the charging process is finished. The key to determining the
cost of time lies in the quantification of unit time value.

In present days, the time value for travelers is mainly determined by the production method,
income method [18], etc. The former assumes that a traveler’s travel time is used for production, so
the increment is to be added to the national income or national production value. This method is used
for assessing the working time value. The latter targets the traveler himself, and the value of time
is measured according to certain percentage (time value coefficient) of the traveler’s income. This
method is generally used for assessing the leisure time value. Here, the income method is used to
quantify the cost of time. The formula is:

αL = k
Pp

Tp
(7)

where αL is the unit travel time value corresponding to leisure time (CNY/hour); k is the time value
coefficient; Pp is laborers’ annual income (CNY); Tp is laborers’ annual working time (hours).

The time value coefficient in the income method is closely related to the national economic
level, which is set at 20–25% by UK scholars, and is advised to be set as 25% by a French research
report [19,20]. Due to way the Chinese market economy is constituted, the wage distribution system is
incomplete, and some Chinese scholars believe that it should be set as 50% [21].

When users judge among these schemes, they actually compare the difference among the weighted
attribute values. Take case i and case j for instance, according to Equation (6), we have:

∆XW
′ = XWi

′ − XWj
′

= (αXTi + XCi)−
(
αXTj + XCj

)
= α

(
XTi − XTj

)
+
(
XCi − XCj

)
= α

(
XTi − XTj

)
+ (δse + δsi)Ccap(1− SOCi)− (δse + δsi)Ccap

(
1− SOCj

)
≈ α

(
XTi − XTj

)
+
(
δsi − δsj

)
Ccap(1− SOCi)

(8)

where δse is the unit price (CNY/kWh); δsi, δsj is the charging service fee of the fast charge stations
i and j, respectively (CNY/kWh); Ccap is the battery capacity of vehicle (kWh). When the difference
∆XW

′ is greater than zero, the j-th scheme is the best solution. Otherwise, the i-th scheme is better.
As can be seen from Equation (8), regardless of the SOC when the vehicle arrives at the station by

using different strategies, the user’s response to charging service fees is the response to the service
fee difference among charging stations. The higher the difference, the more likely that the user will
abandon a shorter time strategy to pursue a more advantageous strategy in terms of price.
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For users who are in different locations, have different vehicle status and unit time value, their
responses to the adjustment of charging service fee may not be the same. Therefore, it is necessary to
carry out a personalized analysis. To be more specific, the coordinated guidance strategy based on the
adjustment of charging service fees needs to be formulated in combination with specific fast charging
demand distributions.

3. Pricing Strategy of Charging Service Fees Based on Grid Benefits and Customer Satisfaction

3.1. The Adjustment of Charging Power Based on the Acceptable Node Voltage of FCS

Considering the voltage variation characteristics of the distribution system, the PV curve can be
drawn by using the continuous power flow method [22] to obtain the load power limit Pm. However,
the power limit is often used to analyze the system’s voltage stability margin, and the system’s normal
operation point is very far from the critical point of the PV curve, thus, the power limit Pm cannot
reflect the possible load access in the FCS. On the other hand, the normal operation of the distribution
system needs to meets the constraints of power quality, and the load power corresponding to voltage
amplitude limit (power quality constraint) can be obtained by PV curve, which is more stringent
compared to the power limit Pm and is more likely to reflect the actual access of loads in the FCS.
Therefore, the upper limit power Pssm constrained by the power quality of distribution system can be
defined as the node tolerability D of the node where the FCS is located:

D = Pssm (9)

the tolerability D reflects the ability of FCS’s receiving the fast charging loads.
Since charging piles are fixed, to take advantage of charging facilities and avoid EV users’ waiting

for too long, users’ needs should be satisfied as much as possible. If the node voltage tolerability in
distribution system during certain period is low, then the charging piles cannot provide full power
charging for the EV users, but rather be reduced to avoid the bad effect on the distribution network.

According to the principle of equal distribution of the charging power, the charging power of
each fast charging pile is shown in Equation (10):

Pi = min
{

D
n

, Pmax

}
(10)

where n is the number of fast piles that are being charged; Pmax is the maximum fast charge power
that can be provided by fast filling piles.

3.2. Analysis of Grid Benefit and Customer Satisfaction Under Coordinated Fast Charging

In this paper, the goal of coordinated fast charging is to equilibrate the charging loads in the region.
Hence, the equilibrium degree of FCSs is used to evaluate the coordinated fast charging effectiveness.
The charging capacity A of the FCS is defined as:

A = min{D, nPmax} (11)

It can be seen that the charging capacity of the FCS A is different from the voltage tolerability D of
the power distribution system at the node where the FCS is located. After the completion of the FCS,
the maximum access power of the fast charging loads is a rigid limit. The charging capacity A of the
FCS means the maximum access power of fast charging loads considering this rigid limit.

On this basis, the occupancy U of the FCS is defined as:

U =

M
∑

i=1
Ccapi(1− SOCi)

A
(12)
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In Equation (12),
M
∑

i=1
Ccapi(1− SOCi) indicates the sum of the charging demands of M vehicles

that need to be charged in the target period, and A is the charging capacity of FCS. The occupancy U
reflects the charging density of FCS in the target period, indirectly reflecting the pressure of charging
at this station. That is to say, the higher the occupancy U, the more the charging users and the higher
the occupancy of charging piles, and the FCS is more likely to encounter queuing situation.

On the basis of occupancy U, the charging balance degree E of each FCS is defined as (13):

E = min(U1, U2, · · · , Ui, · · · , UL)/max(U1, U2, · · · , Ui, · · · , UL) (13)

where L is the number of fast-charge stations within the target area; Ui represents the occupancy of i-th
fast-charge station.

The charging balance degree E represents the difference of the access pressure at each FCS
concerning the charging loads. The smaller the value of E, the more unbalanced the distribution of
charging loads, and those stations with higher occupancy U are more likely to be confronted with
higher queuing risk, which is detrimental for both users and traffic. On the other hand, the greater the
value of E, the more balanced the distribution of the charging loads, and the FCSs could satisfy the
charging demands of the users and utilize the charging resources more effectively.

The charging balance degree E can reflect the positive benefit obtained by the power grid at
different degrees of coordinated fast charging. Therefore, this paper adopts this index to quantify and
analyze the positive effect of coordinated fast charging.

From the perspective of users, the satisfaction degree is directly related to the users’ charging cost
and charging time. In this paper, the overall charging satisfaction degree is measured by the relative
values of user’s charging cost and the overall charging time. The calculation formulas are separately:

C∗i =
M

∑
i=1

Ci/
M

∑
i=1

Ci0 (14)

T∗i =
M

∑
i=1

Ti/
M

∑
i=1

Ti0 (15)

where C∗i , T∗i are the relative value of the overall charging cost and overall charging time, respectively;
Ci0, Ci, Ti0, Ti are the total cost of charging and the total charging time of user i before and after
charging service fee adjustment; m is the total number of fast charging EV users.

The guidance effect of coordinated fast charging based on the adjustment of charging service
fees can be evaluated by the above charging balance degree E, the user’s overall charging cost Ct and
the user’s overall charging time Lt. Theoretically, the optimal scheme should maximize the charge
balance degree E, minimize the relative value of user’s overall charging time T∗i , and the relative
value of user’s overall charging cost C∗i should be reduced due to the reimbursement of FCSs. Taking
into account the profitability and the enthusiasm of the user response, the benefits obtained from
charging balance degree are quantified and parts of the benefits are returned to the users proportionally.
The benefits mainly come from the reduced network loss, power expansion cost and reactive power
compensation costs.

Obviously, to increase the charge balance degree E, more users have to change their original
charging locations, so it is necessary to set larger range of charging service fee within the scope
permitted by the policy to attract users to abandon the shorter time scheme but charge in the FCS
with lowest fee. This process will in turn lead to the increase of user’s overall charging time Tt, thus,
the relative value of user’s overall charging time T∗i increases.

It can be seen that the charging service fee is set as a multi-objective decision-making process when
adjusting the charging service fee to coordinate fast charging demands. There exist conflicts among
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different targets, so the decision-maker needs to coordinate several indices to make comprehensive
decisions when setting charging service fees.

3.3. The Charging Service Fee Pricing Mechanism Considering the Equilibrium of FCS Loads Access and
User Satisfaction

From the analysis of Section 2.3, the selection of charging location for the price-sensitive users
is largely dependent on the difference of charging service fees among FCSs. Therefore, the pricing
mechanism of charging service fee can be divided into two steps: (1) coordinating the two objectives,
namely the one that maximizes the charging balance degree E and the one minimizes the relative
value of overall charging time T∗i , and determining the difference of service fees among various FCSs;
(2) determining the service fees at each FCS based on the principle that the relative value of overall
charging cost C∗i will be slightly reduced due to the reimbursement from the grid. The flow chart is
shown as Figure 1.
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In this paper, we use Equations (16)–(18) to describe the multi-objective optimization model of
the charging fees at each station:

max E =
min(U1, U2, · · ·, UL)

max(U1, U2, · · ·, UL)
(16)

min T∗t =
M

∑
i=1

Ti

/ M

∑
i=1

Ti0 (17)

s.t.

{
Ti = fi(x) i = 1, 2, · · ·, m
Uj = gj(x) j = 1, 2, · · ·, n

(18)

where x is decision variable vector, namely the price difference between each two charging stations,
x =

[
∆Cs(1,2), ∆Cs(2,3), · · ·, ∆Cs(n−1,n)

]
, fi(x) is the total charging time function of user i when the price

difference is x, and this function correlates with the charging location selection with users, which can
be calculated by Equation (1); gj(x) is the occupancy rate of station j when the price difference is x,
which can be calculated by Equation (12).
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It should be noticed that there exists a limit for the charging time Ti of each EV to be charged:
Ti = [Ti0, ∆Tset], which means that we have Ti = Ti0 when ∆Tset = 0 (ordinary constraint), and the
value of Ti varies from (Ti0 − ∆Tset) to (Ti0 + ∆Tset) when ∆Tset > 0 (fuzzy constraint).

The scenario in this paper is not a multi-objective linear programming problem but a
multi-objective fuzzy programming problem, since the constraint condition of the total charging
time is flexible. To this end, we first split the multi-objective programming into two single-objective
programming problems. Take the process of setting the price differences between charging stations as
example to illustrate the fuzzy programming [23].

Firstly, we fuzzify the constraints and the objective functions according to the fuzzy programming
theory, then we construct the membership function of flexible constraint (∆Tset > 0):

Ai(x) = 1− |Ti − Ti0|
∆Tset

, Ti0 − ∆Tset ≤ Ti ≤ Ti0 + ∆Tset (19)

where Ti is a function that depends on decision variable x. We define the membership function of the
ordinary constraint (∆Tset = 0) as:

Ai(x) = 1, Ti = Ti0 (20)

According to the definition of Ai(x), ∀λ ∈ [0, 1], Ai(x) ≥ λ is equivalent to:

∆Tsetλ− ∆Tset ≤ Ti − Ti0 ≤ ∆Tset − λ∆Tset, i = 1, 2, . . . , m (21)

Assuming that the optimal value of the ordinary linear programming maxE = min(U1,U2,···,Un)
max(U1,U2,···,Un)

,

Ti = Ti0 is f0. The optimal value of maxE = min(U1,U2,···,Un)
max(U1,U2,···,Un)

, Ti0 − ∆Tset ≤ Ti ≤ Ti0 + ∆Tset is f1.
We define ∆E0 = f0 − f1, thus, the membership function of the objective function in this fuzzy
programming is:

Gi(x) =
f0 − E
∆E0

, f0 − ∆E0 ≤ E ≤ f0 (22)

According to the definition of Gi(x), ∀λ ∈ [0, 1], Gi(x) ≥ λ is equivalent to:

E + ∆E0λ ≤ f0 (23)

Therefore, the fuzzy programming of maxE = min(U1,U2,···,Un)
max(U1,U2,···,Un)

, Ti = [Ti0, ∆Tset] can be transformed
into ordinary linear programming problems:

maxλ

s.t.


E + ∆E0λ ≤ f0

∆Tsetλ− ∆Tset ≤ Ti − Ti0 ≤ ∆Tset − λ∆Tset

i = 1, 2, . . . , m

(24)

The solution obtained by fuzzy programming is a perfect solution of the multi-objective
programming model.

The abovementioned single-objective programming problem, which contains multiple abstract
functions, is difficult to solve with the analytical method. Therefore, a genetic algorithm is adopted to
solve the above programming problem, whose solution steps are shown in Figure 2.
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Combining the genetic algorithm and the fuzzy programming method, the satisfactory solution
of the service fee differences can be obtained by fuzzy programming.

According to a user’s overall charging cost, the calculation of the service fees of charging stations
can be completed then. The corresponding single-objective optimization model is shown as follows:

min

∣∣∣∣∣ M

∑
i=1

[Ci − (Ci0 − CR)]

∣∣∣∣∣
s.t.


Ci = hi(x)
x(j)− x(k) = ∆xj,j+1 + ∆xj+1,j+2 + · · ·+ ∆xk−1,k
i = 1, 2, · · ·, m; j = 1, 2, · · ·, n;
j < k;

(25)

where x is the decision variable, that is the service fee at each FCS, x ≡
[
CS(1), CS(2), · · · , CS(n)

]
. Ci

is the overall charging cost within the target area after the adjustment of charging service fee; Ci0 is
the overall charging cost within the target area before the adjustment of charging service fee; CR is
the reimbursement for the system. x(j) is the charging service fee for the j-th FCS, that is x(j) = CS(j);
∆xj,j+1 is the difference of charging service fee between j-th and j+1-th FCSs, which has been calculated
in the previous steps; hi(x) is the function of overall charging cost for the i-th user when the charging
service fee in each station is x, which is an abstract function.

The problem can also be solved by using the genetic algorithm. Eventually, the charging service
fee at each FCS can be obtained.
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4. Example Simulation

4.1. Simulation Idea and Data Sources Explaination

Based on the distribution of fast charging demands in the target region, combined with different
types of user charging selection criteria, this paper employs a fuzzy programming algorithm to achieve
the multi-objective optimization of charging balance degree and user satisfaction degree, and then
the charging service fee at each FCS is calculated and the changes of the indexes before and after cost
adjustment can be obtained.

Before the popularization of EVs and ITS, the geographical locations and battery states of EVs in
the road network cannot be recorded and accessed in real-time. In order to obtain the distribution of
fast charging demands in the target region, this paper randomly generates the geographical locations
and battery states of EVs in the road network (see Appendix A), according to the geographical locations
and remaining fuel state of the fuel vehicles in one evening peak in a specific road network system.
Actually, in the future, with a myriad of EVs’ access to ITS system, the geographical locations and
battery states of EVs in the road network can be acquired in real-time.

Through the statistical analysis of the behavior characteristics of EV users, we can compile the
statistical summary table shown in Table 1 in Section 2.2, and adopt the disaggregate MNL model
to obtain the probability of users adopting various charging location selection criteria. However,
the current number of EVs is limited, despite of a wide range of data collection based on Table 1. Thus,
the statistical results still cannot characterize the future large-scale EVs’ access scenario. Considering
that the selection of the charging locations for EV users is similar to the selection of the charging
location for the fuel vehicles, the statistical data in this paper for each factor (shown in Table 1) is
obtained by adopting MNL model on the basis of the travel characteristics of the fuel vehicles in the
existing road network. As a result, the ratio of users Class I, II and III in the target region is about 2:3:5.

In summary, due to the lack of relevant data, in the following simulation example, the given
basic data such as the geographical locations and battery states of EVs in the road network, and the
probability of different EV users adopting various types of charging location selection criteria are
formed according to the existing traffic network and fuel vehicle distribution. However, the goal of this
attempt is only to test and verify the methods and the effectiveness of the charging load scheduling
strategy mentioned in this paper. Theoretically, whether the relevant data and the future scenario are
mutually fitted will only affect the final assessment of the size of the specific indexes, but this will
not change the equilibrium trend of charging loads before and after the adjustment of the charging
service fee.

It is necessary to use a more reliable method for the simulation of arrival of vehicles, waiting time
in queue for recharge, state of charge of the battery, etc. Therefore, this paper uses the Monte Carlo
method to simulate the dynamic process of the EV’s spatial-temporal distribution [24].

4.2. Parameters Setting and Simulation Calculation

The region shown in Figure 3 is used as the analysis object, the figure shows the main road traffic
network in the target region, the two FCSs are located in point A and B, the pull-in direction is shown
in Figure 3, where the distance between station A and intersection 11 is 220 meters and the distance
between station B and intersection 25 is 380 meters. All roads are two-way lanes, and vehicles can
only turn around at the intersections. The FCS A is located at node 23 of the IEEE 33 node distribution
system shown in Figure 4, and the FCS B is located at node 7 of distribution system shown in Figure 4,
the number of fast charging piles in these two stations is 20 and 30 respectively, and the maximum
charging power is 80 kW and the power factor is 98%. The unit price is 0.87 CNY/kWh, and before
the charging service fee based coordinated fast charging strategy being implemented, the charging
fee in these two stations is 1 CNY/kWh. Taking the targeted time period 20:00–22:00 as an example,
there are 80 fast charging demands, whose spatial distribution is shown in Figure 3 (the fast charging
demands are related to the traffic flow, the higher the traffic flow, the more the distribution of charging
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demands). The geographical locations and battery states of EVs to be charged in the simulation region
are shown in Table A1 in Appendix A.
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The unit time value of users can be calculated by the per capita income in the targeted region
according to Equation (7), and it is set to 20 CNY/hour in this case.

As the charging location selection results vary with different types of users, considering the user
choice probability, for a single user, the expected values of the total charging time and the total charging
cost are:

T = pI TI + pI I TI I + pI I I TI I I (26)

C = pICI + pI ICI I + pI I ICI I I (27)

where T is the expected value of total charging time for the user, C is the expected value of the total
charging cost for the user. pI , pI I , pI I I are the probability for Class I, Class II and Class III type users,
respectively. TI , TI I , TI I I are the total charging time for Class I, Class II and Class III type users,
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respectively. CI , CI I , CI I I are the total charging cost in optimal charging location for Class I, Class II
and Class III type users, respectively. For FCSs, the expected value of total charging volume in the
target period is:

Epi =
m

∑
j=1

I I I

∑
k=I

pk Ij,k,iCcapj(1− SOCj,i) (28)

where, Epi is the expected value for total charging volume at charging station i; pk is the probability
of k-th (k = I, II and III) type of users; Ij,k,i is the charging location selection coefficient, whose value
is set as 1 when the j-th (j = 1, . . . , m) user is the k-th type of users, and its optimal charging location
is charging station i, otherwise is set as 0; Ccapj is the battery capacity for the j-th user; SOCj,i is the
remaining SOC when the j-th user arrives at charging station i.

When the charging service fee is not adjusted, combined with the above-mentioned user response
mode, the expected value of the charging balance degree E0 can be calculated according to Equations
(11)–(15), (26)–(28), thus E0 = 0.2811.

Similarly, the expected value of charging balance degree and the relative expected values of
overall charging time and overall charging cost of station A and B under different charging service
fees can be calculated, the results are shown in Figure 5.
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Figure 5 aims to explain the relationship between the charging balance degree E and the charging
fees of different stations. In the upper-left and lower-right section of Figure 5, due to the large difference
in charging fee between the two stations, EV users are more likely to choose the one with lower cost.
Under this circumstance, the value of E in these two sections are much larger, which reflects an
unbalance of the charging load distribution.

The acceptable range of the charge balance degree is E ≥ 0.8; and the acceptable range of the
relative value of users’ overall charging time is T∗i ≤ 1.15; Due to EV users’ response toward the
charging cost, the charging balance degree in the target region increases, the voltage of each node in
the distribution system is more balanced, the network loss is reduced, and the additional capacity
and reactive power compensation at fast charging nodes become smaller, thus the economic benefit
of the power grid is improved (this paper does the initial accounting aimed mainly at the reactive
power equipment investment operating costs). However, the EV users’ overall charging time increases.
To ensure the user benefits, grid companies or FCSs should reimburse part of the benefits to users
to reduce their overall charging cost. The amount of reimbursement will directly affect the user
dependency, but it will not be analyzed in detail here due to space limitations.
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This paper only assumes that the amount of reimbursement of the grid is 2% of the total charging
cost, and the relative value of users’ overall charging cost is maintained as C∗i ≈ 0.98 (0.978–0.982),
Based on Figure 5, the feasible range of charging service fee of these two FCSs is shown in Figure 6.
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Using the genetic algorithm and fuzzy programming method, the satisfactory solutions of
charging service fee for station A and B are 0.89 CNY/kWh and 1.17 CNY/kWh, respectively. In this
scenario, the grid benefit (the relative charging balance degree of FCSs in the target region E′) and
user satisfaction degree (the relative values of users’ overall charging time T∗t

′
and charging cost C∗t

′
)

are separately:
E′ = 0.9211, T∗t

′
= 1.1297, C∗t

′
= 0.981

Hence, the grid balance degree increases from 0. 2811 to 0.9211 after the adjustment of charging
service fee, the distribution of charging loads becomes more uniform, and the charging infrastructures
are fully utilized. However, the users’ overall charging time has slightly increased by 12.97%, but the
users’ overall charging time has reduced by 1.9%, considering various types of users, a large proportion
of users are price-sensitive, they are willing to pay a certain amount of time cost to obtain the charging
benefits. Therefore, users are more likely to accept such coordinated fast charging strategy and the
node voltage over-limit and voltage offset volume in the IEEE 33 system at this moment is shown
in Table 2.

Table 2. Voltage off-limit situation in IEEE-33 system.

Scenes The Over-Limit Voltage Node The Most Serious Voltage
Offset Value (Per Unit Value)

Random access of charging load 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
28, 29, 30, 31, 32, 33 0.919573

Change the charging fees to
regulate EVs 13, 14, 15, 16, 17, 18, 30, 31, 32, 33 0.921568

According to the requirement [25], the limitation of power supply voltage offset should be “20 kV and below three
phase power supply voltage offset should be±7% of nominal voltage” (China national standardization management
committee, 2008).

It can be seen from Table 2 that after the adjustment of charging service fees, the range of off-limit
voltage nodes is reduced, the voltage offset is also reduced, and thus less reactive power compensation
equipment is required. However, due to the large access of charging loads to the grid, these two
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scenarios both encounter the problems of off-limit voltage and reactive power deficiency when the grid
is operating in the peak-load period, and additional reactive power compensation devices are required.

Static var generator (SVG) is the third generation reactive power compensation device after
SVC [26]. It has the advantages of long life span, high stability, fast response and low harmonic content.
This paper assumes that the reactive power deficiency is provided by SVG, whose cost accounting
method is shown in Table A2 in Appendix A. The reactive power compensation investment costs after
the adjustment of charging service fee is shown in Table 3 after calculation.

Table 3. Cost of reactive-load compensation equipment before and after charging fee adjustment.

Scenes

Configuration
Capacity of Reactive
Power Compensation

Device (Mvar)

Initial Investment Cost
(Ten Thousand CNY)

Annual Operating Costs
(Ten Thousand CNY)

The Most Serious
Voltage Offset Value

after Reactive
Compensation

(Per Unit Value)

Random access of
charging load 9.6 324 23.6 0.9373

Change the
charging fees to

regulate EVs
7 220 18 0.9427

As can be seen from Table 3, for the 10 kV distribution system given in the simulation case,
through the adjustment of charging service fee, the cost of initial reactive power equipment can be
effectively reduced by 1.04 million CNY, and the annual operating cost is reduced by 56,000 CNY.

Taking into consideration that the penetration of EVs is relatively small nowadays, there are only
two FCSs being designed in the distribution network of the simulation system, and only 80 fast charging
demands are generated during the peak-load period. With the rapid development of EVs, the number
of FCSs and fast charging demands will increase continually, and considerable economic and social
benefits will be brought by the use of charging service fees to orderly guide the charging behaviors.

5. Conclusions

This paper has proposed a price-setting strategy concerning the charging service fee at FCSs
by considering both the charging balance degree and user satisfaction degree in the target region.
This method first adjusts the charging service fee to guide the fast charging behaviors of EVs in
the spatial dimension, and balances the fast charging loads at each charging station while ensuring
user satisfaction degree. Taking the IEEE 33 nodes distribution network and the corresponding road
network system as an example, based on the fast charging demand distribution in the target region,
the price-setting of charging service fee at each FCS and the orderly guidance of fast charging loads
are achieved. Finally, the simulation results show that the adjustment of charging service fee can
effectively dispatch the distribution of fast loads at the spatial level, can improve the local charging
balance degree, and can be easily implemented due to its good user satisfaction degree.

It should be noted that currently, the safety and reliability evaluation system of EV-included
distribution network is not mature, and the impact of fast charging loads’ large-scale random access to
distribution networks (including power quality, power flow distribution, voltage offset, overloading)
requires further study. On the other hand, the access of charging loads will cause the increase of
backup power, transformer capacity and reactive power compensation equipment investment. Thus,
the economic costs need to be further analyzed. This paper only considers the charging balance degree
as the evaluation index of the distribution network, which has certain limitations. In conclusion,
the determination of the reimbursement scale of the system after the equilibrium of the charging loads
still needs to be refined and such problems are definitely the focus of future research.

It’s the future development tendency to combine the charging stations with renewable energy
power generations, which can economize on energy and reduce discharge. Under this circumstance,
we should consider the following problems:
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• Energy storage devices must be implemented to deal with the stochasticity and fluctuation of
renewable energy resources. By making cascade utilization of the lithium batteries of EV, we
can minimize the cost of the acquisition cost and discard cost of lithium batteries. Therefore,
it’s worthy to research the collaborative planning of charging service fees and battery exchange
fees setting.

• To encourage more EV users to adopt renewable energy resources, the charging fees at the
renewable energy charging stations can be more favorable or free at specific moments. Thus,
it’s worthy to study the charging fee setting of ordinary charging stations and renewable energy
charging stations by considering the generation cost of thermal and hydro units and output
characteristics of new energy resources at different moments.

Due to length limitations, we cannot solve the aforementioned problems within this paper, which
will be explored in later research.
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Appendix A

Table A1. Location and battery capacity of fast charging users in the target area.

EV
Num.

EV Location Battery Parameter
EV

Num.

EV Location Battery Parameter

The Previous
Intersection

Numbers

The Next
Intersection
Numbers

Distance from
the Next

Intersection/km

Battery
Capacity/kWh

State of
Charge

The previous
Intersection

Numbers

The Next
Intersection
Numbers

Distance from
the Next

Intersection/km

Battery
Capacity/kWh

State of
Charge

1 2 3 0.91 18 0.39 41 18 19 0.12 42 0.34
2 5 4 0.73 33 0.50 42 20 19 0.82 33 0.33
3 1 6 0.96 12 0.17 43 19 20 0.24 15 0.38
4 3 8 0.52 26 0.42 44 19 20 0.63 18 0.38
5 3 8 1.05 38 0.38 45 19 20 0.78 38 0.28
6 9 4 0.98 26 0.25 46 21 20 0.44 15 0.35
7 7 11 1.20 15 0.32 47 21 20 0.87 15 0.34
8 8 12 0.64 18 0.38 48 21 20 0.93 12 0.40
9 12 8 0.53 12 0.64 49 20 21 0.74 26 0.44

10 12 8 0.74 18 0.57 50 22 16 0.78 42 0.44
11 9 13 0.48 26 0.24 51 23 17 0.43 15 0.28
12 9 13 1.31 12 0.59 52 23 17 0.54 33 0.36
13 10 11 1.27 90 0.41 53 18 24 0.27 70 0.25
14 10 11 0.93 26 0.34 54 18 24 0.82 26 0.26
15 11 12 0.69 42 0.41 55 24 18 0.85 15 0.35
16 13 12 0.65 15 0.33 56 19 25 0.83 18 0.47
17 12 13 0.38 15 0.34 57 25 19 0.85 42 0.29
18 14 13 0.81 33 0.47 58 25 19 0.93 38 0.38
19 13 14 0.22 18 0.46 59 20 26 0.22 15 0.33
20 13 14 0.75 15 0.46 60 20 26 0.89 26 0.44
21 15 14 0.64 42 0.40 61 26 20 0.73 12 0.26
22 10 16 0.38 18 0.25 62 26 20 0.64 15 0.35
23 11 17 0.62 15 0.41 63 21 27 0.42 26 0.39
24 17 11 0.88 33 0.48 64 22 23 1.15 26 0.44
25 18 12 0.80 26 0.39 65 23 24 1.09 15 0.47
26 13 19 0.37 12 0.43 66 25 24 0.68 42 0.36
27 13 19 0.49 26 0.41 67 24 25 0.43 15 0.23
28 13 19 0.92 18 0.33 68 26 25 0.47 15 0.29
29 19 13 0.17 12 0.37 69 26 25 0.58 33 0.27
30 19 13 0.86 18 0.29 70 25 26 0.30 26 0.54
31 14 20 0.53 15 0.42 71 27 26 0.27 12 0.30
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Table A1. Cont.

EV
Num.

EV Location Battery Parameter
EV

Num.

EV Location Battery Parameter

The Previous
Intersection

Numbers

The Next
Intersection
Numbers

Distance from
the Next

Intersection/km

Battery
Capacity/kWh

State of
Charge

The previous
Intersection

Numbers

The Next
Intersection
Numbers

Distance from
the Next

Intersection/km

Battery
Capacity/kWh

State of
Charge

32 20 14 0.52 15 0.26 72 27 26 0.73 18 0.41
33 20 14 0.61 38 0.26 73 26 27 0.48 38 0.33
34 15 21 0.85 15 0.29 74 30 23 1.01 26 0.42
35 21 15 0.44 12 0.11 75 31 24 0.77 33 0.29
36 17 16 1.38 15 0.47 76 25 32 0.35 38 0.24
37 18 17 0.79 33 0.38 77 32 25 0.83 15 0.24
38 17 18 0.81 70 0.29 78 33 27 0.97 18 0.39
39 19 18 0.23 26 0.46 79 30 31 1.66 26 0.34
40 19 18 0.39 26 0.21 80 33 32 0.13 18 0.33

Table A2. Cost accounting table of investment and maintenance for SVG in distribution network.

Distribution Voltage Level (kV) SVG Capacity (MVar) Rated Service Life (year) Investment Costs
(Ten Thousand CNY)

Annual Operation Cost
(Ten Thousand CNY) Industry Discount Rate (%)

3.8 0.3 18 7 0.8 15
3.8 1 18 50 2 15
10 2 18 70 5 15



Energies 2017, 10, 672 19 of 21

Through the sample study of the service objects and the arrival time, the statistical law of the
quantity index (like waiting time, queue length, service intensity, etc.) of the system is available and
can be used to reconstruct the process of service delivery and ensure the agency’s cost or some other
indicators, thus achieving multi-objective optimization. EVs’ charging service behaviors are mutually
independent, which meet the characteristics of stationarity, non-aftereffect property and generality.
The M/M/c queuing theory is employed to calculate the waiting time of electrical vehicle users spend
before getting charged. And the queuing process is shown in Figure A1:
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Figure A1. Queuing model of charging station based on the M/M/s model.

In order to calculate the queuing time of the electric vehicle users in the charging stations,
the following assumptions are made:

1. The arrival pattern of the cars waiting to be charged is subject to Poisson’s flow distribution with
parameter λ (λ > 0);

2. The charging service time required of each vehicle is independent and obeys a negative
exponential distribution with parameter µ (µ > 0);

3. The charging station has c (c ≥ 1) charging equipment which can provide service independently
and concurrently;

4. The first-come first-served rule is executed in the station.

The state transition diagram of M/M/c queuing model is given in Figure A2 based on the
above conditions.
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The queue length and waiting time of each EV user at charging station can be obtained as follows:

Ls = Lq +
λ
µ

Lq =
∞
∑

n=c+1
(n− c)Pn = (cρ)cρ

c!(1−ρ)2 P0

Ts =
Ls
λ

Tq =
Lq
λ
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where Ls is the average queue length considering the entering process of new EVs to be charged, Lq is
the queue length inside the charging station, Ts is the average residence time, Tq is the average waiting
time, which is used to calculate the total charging time Td in Equation (1) of the original manuscript.
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