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Projective prediction of pressure increments
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SUMMARY

A simple projective predictor of pressure increments has been developed. The procedure requires the
storage of previous pressure increments and right-hand sides, i.e. a modest amount of storage. Based on
this information, the known right-hand sides are projected onto the right-hand side at the new timestep.
The projection coe�cients are then used to predict the pressure increment at the new timestep. Numerical
tests indicate that the number of iterations required is reduced considerably. Furthermore, the main gains
are achieved with a very modest number of basis vectors. Typically, no more than 2 previous results
have to be stored. The procedure is easy to implement and should be applicable to a large number of
codes. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many incompressible solvers are based on the so-called projection techniques, whereby the
advancement of the �ow�eld in time is split into the following three substeps [1–6]:

• Advance the velocity with an advective–di�usive predictor (vn → v∗);
• Solve a Poisson equation for the pressure increment (pn → pn+1);
• Update the velocity �eld with the pressure increment to obtain a diverge-free solution at
the new timestep (v∗ → vn+1).

The solution of the Poisson equation, which is of the form

∇2(pn+1 − pn)= �∇ · v∗
�t

(1)

is typically carried out with a preconditioned conjugate gradient [6] solver, and consumes a
considerable percentage of the overall computational e�ort. Any gain (e.g. in the form of a
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reduction in the number of iterations) will have an immediate impact on the overall execution
speed of the solver.
Equation (1) results in a discrete system of the form

K ·�p= r (2)

One way to reduce the number of iterations required is to start with a value of �p that
is close to the solution. For time-accurate problems with constant timesteps an extrapolation
from previous increments seems a reasonable proposition. However, experience [3] indicates
that this does not yield a reliable way of reducing the number of iterations. Most solvers tend
to initialize the iterative solver for Equation (2) with �p=0. The rationale given for this
choice is that at steady state �p=0, i.e. as the solution is converging, this represents a good
choice. On the other hand, it can be argued that the pressure increment between timesteps
is similar [3]. If we consider the case of a vortex street behind a cylinder or a car, this is
certainly the case, as many timesteps are required per shedding cycle. For this reason, we
seek an estimate of the starting value �p based on the values obtained at previous timesteps.

2. PROJECTIVE PREDICTION

In what follows, the basic assumption is that K does not change in time. For many incom-
pressible �ow solvers this is indeed the case. Solvers that use some form of stabilization or
consistent numerical �uxes (e.g. in the form of a fourth-order damping) do not fall under this
category. For these cases it may be argued that K changes very little.
If we denote by �pi ; ri ; i=1; l the values of the pressure increments and right-hand sides

at previous timesteps n− i, we know that
K ·�pi= ri (3)

Given the new right-hand side r, we can perform a least-squares approximation to it in the
basis ri ; i = 1; l:

(r− �iri)2 → min (4)

which results in

A��������������= s; Aij= ri · rj; si= ri · r (5)

Having solved for the approximation coe�cients �i, we can estimate the start value �p from

�p= �i�pi (6)

We remark that, in principle, the use of the right-hand sides ri ; i = 1; l as a basis may be
numerically dangerous. After all, if any of these vectors are parallel, the matrix A is singular.
One could perform a Gram–Schmidt orthogonalization instead. This option was invoked by
Fischer [3] who looked at a number of possible schemes to accelerate the convergence of
iterative solvers using successive right-hand sides within the context of incompressible �ow
solvers based on spectral elements. However, we have not found this to be a problem for
any of the cases tried to date. The advantage of using simply the original right-hand sides
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is that the update of the basis is straightforward. We keep an index for the last entry in the
basis, and simply insert the new entries at the end of the timestep in the position of the oldest
basis vector. The storage requirements for this projective predictor scheme are rather modest:
2*npoin*nvecl. We typically use 1–4 basis vectors, i.e. the storage is at most 8*npoin.

3. EXAMPLES

1. Cylinder: This classic case considers a cylinder of unit diameter in a uniform �ow. The
Reynolds-number based on the diameter is approximately Re=200. The geometry is
shown in Figure 1(a), and the velocity �eld in the plane z = 0 in Figure 1(b). The mesh
had 13 kpts and 54 kpts elements. The case was run for 100 timesteps, with a
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Figure 1. (a,b) Cylinder: mesh and �ow�eld; and (c,d) Cylinder: iterations
for the pressure-Poisson system.

Copyright ? 2004 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2005; 21:201–207



204 R. L �OHNER

0

50

100

150

200

0 100 200 300 400 500 600 700 800 900 1000

P
re

ss
ur

e 
Ite

ra
tio

ns

Timestep

Usual
2 Search Directions

0

50

100

150

200

0 100 200 300 400 500 600 700 800 900 1000

P
re

ss
ur

e 
Ite

ra
tio

ns

Timestep

Usual
4 Search Directions

(d) (e)

(a)

Figure 2. (a) Ahmed body: surface mesh; and (b,c) Ahmed body: surface pressure and speed.
(d,e) Ahmed body: iterations for the pressure-Poisson system.
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Figure 3. (a,b): NACA 0012: surface mesh and pressure.
(c,d): NACA 0012: lift convergence and pressure iterations.

5-stage explicit advective–di�usive predictor [7] and a Courant-number of C=1:2. Due
to the presence of highly stretched elements, a linelet preconditioner [6] was used for
the pressure-Poisson equation. The required number of iterations per timestep may be
seen in Figures 1(c) and (d). The average number of pressure iterations required was
165 for the original scheme and 128, 122 and 128 for the projective prediction with 1,2
and 4 search directions, i.e. a reduction of 25%.

2. Ahmed Car Body: This example considers high Reynolds-number �ow past the so-called
Ahmed body. It is a standard test case for external car aerodynamics. The parameters
were set to: � = 1:0; v = (1; 0; 0); � = 2:33 × 10−7; L=1, which implies a Reynolds-
number of Re=4:29× 106. The Smagorinsky turbulence model was used. The resulting
�ow is quasi-steady and shows the development of a vortex train behind the body.
Figures 2(a)–(c) show the surface mesh employed, as well as the pressure and velocity
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�eld obtained. Note the boundary layer mesh. The complete mesh had 77 kpts and
420 kels. The case was run for approximately 1000 timesteps, with a 4-stage explicit
advective–di�usive predictor and a Courant-number of C=0:8. As before, a linelet pre-
conditioner was used for the pressure-Poisson equation. The required number of iterations
per timestep may be seen in Figures 2(d) and (e). As before, a reduction of approxi-
mately 25% is achieved.

3. NACA0012: This classic example considers a NACA0012 wing at �=5◦ angle of attack.
The aim of this test is to guage the performance of the projective pressure increment
predictor for a steady, inviscid (Euler) case. Figures 3(a) and (b) show the surface mesh
employed, as well as the surface pressures obtained. The mesh consisted of 68 kpts and
368 kels.
For the advective–di�usive predictor, an implicit LU-SGS/GS scheme was used [8].
Local timesteps were employed with a Courant number based on the advective terms of
C=5. Given that the mesh is isotropic, a diagonal preconditioner for the pressure-Poisson
equation was used. As the �ow is started impulsively, a divergence cleanup (�rst three
iterations) precedes the advancement of the �ow�eld. After the residuals have converged
an order of magnitude, the number of pressure iterations is reduced arti�cially to 20, and
the relative tolerance for residual convergence is increased to tolp=10−2. Every 10th
timestep, the residual convergence is lowered to the usual value of tolp=10−4 in order
to obtain a divergence-free �ow�eld. We have found this procedure to work well for
inviscid, steady �ows, reducing CPU requirements considerably as compared to keeping
the relative tolerance constant throughout the run. The case was run for 60 steps, which
was su�cient to lower the relative change in lift forces to below tolf = 10−3. The
convergence of the lift may be seen in Figure 3(c). The required number of iterations
per timestep is shown in Figure 3(d). Note that even for this steady, inviscid case the
projective pressure predictor yields a considerable reduction in the number of pressure
iterations.

4. CONCLUSIONS

A simple projective predictor of pressure increments has been developed. The examples shown
here, as well as others run by the author, indicate that the number of iterations required is
reduced considerably by using such a projective predictor of pressure increments. Furthermore,
the main gains are achieved with a very modest number of basis vectors. Typically, no more
than two previous results have to be stored. The procedure is easy to implement and should
be applicable to a large number of codes.
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