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Abstract. Within the context of vibration-based condition monitoring, virtual sensing
techniques facilitate vibration sensing at locations where sensors are not set at the time of
inspection. In this work we postulate a data-driven frequency-domain virtual sensing procedure,
based on Cross Power Spectral Density (CSD) matrices obtained from an initial dense sensor
configuration. CSD matrices are used to build a conditional probability distribution for the
Fourier transform of the withdrawn sensors, based on the response at the still available sensors,
in a Gaussian process regression fashion. In this way, it is possible to estimate the Fourier
transform of the vibration responses at the absent sensors, based on those from the available
sensors. The proposed method is assessed in a wind turbine drivetrain diagnostics simulator,
characterised by two speed reduction gearboxes (parallel shaft and planetary), and three shafts.
The drivetrain is instrumented with accelerometers located on different bearings and on the
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gearboxes. The full sensor set is used to build the reference CSD based on an initial dataset
at a fixed speed and load. Later, the acceleration response at some of the sensors is estimated
with the proposed virtual sensing method using measured responses from a limited set of
accelerometers.

1 INTRODUCTION

In the domain of vibration-based structural health and condition monitoring (SHM/CM),
the application of conventional physical sensors often presents substantial challenges, includ-
ing the burdensome expenses associated with installation, procurement, and ongoing sensor
maintenance. For instance, vibration-based CM of wind turbine drivetrains, where numerous
components prone to failure but expensive to repair, the number of possible sensor locations is
often very limited. Moreover, sensors must be located on the exterior of the machine, hindering
the sensitivity towards feeble damage signatures.

An attractive alternative corresponds to virtual sensors, in which the response on locations
where physical sensing is not possible, is extrapolated using information from other sensors
[1, 2]. An evident advantage is that virtual sensing techniques operate exclusively within
a digital environment, effectively mitigating the installation and maintenance costs associated
with traditional physical sensors. In addition, virtual sensors can boost the sensing capabilities,
facilitating response analysis in hard-to-reach locations, which can be used, among other things,
for fatigue analysis and to increase damage diagnosis sensitivity [3, 4, 5].

Physics-based methods use information on the dynamics of the structure to extrapolate
the vibration time series from available sensors to desired locations [2, 3, 6, 7]. Here, FE
models, mode shapes and frequency response functions are typically used as a basis for virtual
sensing. In data-driven methods, an initial dense sensor configuration is used to establish a
model of the relation among sensors at different points in the structure. A sparse configuration
is subsequently considered, after removing a subset of sensors. Then, the response at the
withdrawn sensors can be extrapolated with the help of the model obtained in the first phase.
Here, time-domain sensor correlation models [4, 5] or time-series models [1, 8] can be used.

In this work we postulate a data-driven frequency-domain virtual sensing procedure, based
on Cross power Spectral Density (CSD) matrices obtained from an initial dense sensor config-
uration. The CSD matrices are interpreted as the frequency-domain covariance structure of
the sensors, which is the basis to build a conditional probability distribution for the discrete
Fourier transform of the withdrawn sensors, based on the response at the still available sensors,
in a Gaussian process regression fashion. In this way, it is possible to estimate the Fourier
transform of the vibration responses at the virtual positions, based on those from the available
sensors. As a main contribution, in this work we introduce the technique based on Welch-based
estimates of the CSD matrix, which allows estimation of the response of virtual sensors on
N -sample signal blocks.

The proposed method is assessed in a wind turbine drivetrain diagnostics simulator, char-
acterised by two speed reduction gearboxes (parallel shaft and planetary), and three shafts.
The drivetrain is instrumented with accelerometers located on different bearings and on the
gearboxes. The full sensor set is used to build the reference CSD matrix based on an initial
dataset at a fixed speed and load. Later, the acceleration response at some of the sensors is
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estimated with the proposed virtual sensing method, based on measured responses of a limited
set of accelerometers.

The document is organized in the following manner. Section 2 details the proposed vir-
tual sensor methodology. Section 3 describes the experimental setup, the assessed drivetrain
operational and health conditions, and the data acquisition process. Section 4, describes the
obtained results. Lastly, Section 5 provides the main conclusions and outlines directions for
future research.

2 METHODOLOGICAL FRAMEWORK

The virtual sensing methodology postulated in this work uses the Cross Power Spectral
Density (CSD) matrix as a frequency-domain reference of the relation among sensors in an
SHM system. In this section, we first summarize the definition and estimation procedure of the
CSD matrix, and subsequently, we introduce the CSD-based virtual sensing methodology.

2.1 Cross-power spectral density - Definition - Estimation

Main definitions: The Power Spectral Density (PSD) is a function indicating the distribu-
tion of the power (variance) of a stochastic process across frequency components. In simple
terms, the PSD indicates the fraction of the power of a signal found in a frequency bin. For-
mally, for a discrete-time signal x[t] t ∈ Z, the PSD is defined as the Fourier transform of the
signal’s Auto-Correlation function Rxx[τ ], τ ∈ Z, which is also equivalent to the expected value
of the signal’s Fourier transform squared magnitude as shown below [9, Sec. 5.2], [10, Sec. 8.3]:

Pxx(f) = F{Rxx[t]} = E{|X(f)|2} (1)

where X(f) := F{x[t]}, f ∈ [−fs/2, fs/2] indicates the discrete-time Fourier transform of x[t],
fs is the sampling rate in samples per time unit (Hertz ), and E{·} is the expectation operator.

Analogously, the Cross power Spectral Density (CSD) between a pair of signals xi[t] and
xj[t] is defined as the Fourier transform of the cross-correlation function between xi[t] and xj[t],
namely Rxi,xj

[τ ]. As in the case of the PSD, the CSD can also be calculated as the expected
value of the product of the Fourier transforms Xi(f) = F{xi[t]} and Xj(f) = F{xj[t]}. Both
definitions are summarized below [9, Sec. 5.2], [10, Sec. 8.3]:

Cxi,xj
(f) = F{Rxi,xj

[t]} = E{Xi(f) ·X∗
j (f)} (2)

where the superscript ∗ indicates the complex conjugate.
Building upon the interpretation of the PSD, the CSD can be deemed as a way to quantify

the co-dependency of the components of signals xi[t] and xj[t] around frequency f . Therefore,
following from Eqns. (1) and (2), the PSD can be understood as the variance of the frequency
component X(f), while the CSD measures the cross-covariance of the frequency components
Xi(f) and Xj(f).

Cross-Power Spectral Density Matrix: In the case of L concurrent signals organized in

the vector xxx[t] =
[
x1[t] x2[t] · · · xL[t]

]T ∈ RL, the CSD matrix is then defined as:

CxxCxxCxx(f) := E{XXX(f) ·XXXH(f)} =
[
Cxi,xj

(f)
]
∈ CL×L (3)
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whereXXX(f) = F(xxx[t]) indicates the discrete-time Fourier transform of the vector signal xxx[t], and
the superscript H indicates the Hermitian matrix, defined as the conjugate transpose matrix.
The CSD matrix is composed by the PSD of each one of the individual signals xi[t] in the main
diagonal, and the CSDs between signals xi[t] and xj[t] in the remainder of the matrix. Further
details and properties of the PSD, CSD, and CSD matrix can be found, for instance, in [9,
Ch. 5] or [10, Ch. 8].

Estimation of the CSD matrix: Estimation of the CSD matrix given the vector signal
xxx[t] ∈ RL of finite length Ns (so that t = 0, 1, 2, . . . , Ns − 1), can be accomplished via Welch’s
estimator. In short, Welch’s estimate of the CSD between signals xi[t] and xj[t] is calculated
as the average of the product the N -sample Discrete Fourier Transforms (DFTs) of each one
of the signals on M blocks extracted concurrently from both signals, as explained below:

Ĉxi,xj
[n] =

1

NM

M∑
m=1

(X
(m)
i [n]) · (X(m)

j [n])∗ X
(m)
i [n] =

N−1∑
t=0

w[t] · x(m)
i [t] · e−j2πnt/N (4)

where n = 0, 1, . . . , N −1 is the frequency index, x
(m)
i [t] is a signal block of size N samples, and

w[t] t = 0, 1, . . . , N − 1 is a spectral window, which controls the effect of leakage in the DFT.
Customarily, the signal blocks can be selected from overlapping segments on the available signal,
so that the total number of averages used in the calculation of the PSD estimate is increased.
Selection of the DFT size, overlap and type of spectral window are the adjustment parameters
of the method, which are tuned to improve the quality of the result. Upon calculation of
individual CSD estimates, the CSD matrix is built as follows:

ĈxxĈxxĈxx[n] =
[
Ĉxi,xj

[n]
]

(5)

resulting in a complex-valued 3-dimensional tensor of dimensions L×L×N , providing the CSD
matrix estimates at each one of the discrete frequency values fsn/N , with n = 0, 1, . . . , N − 1.

2.2 CSD-based virtual sensing methodology

As explained in the previous section, the CSD can be interpreted as the frequency-domain
covariance structure of a vector stochastic process. In this section, we exploit this property
to estimate the DFT of the response at virtual sensors, based on a number of available sensor
measurements, which follows from a Gaussian Process interpretation of the problem.

Frequency-domain vibration responses as Gaussian Process: A Gaussian Process
(GP) represents a distribution over functions from a multivariate normal (Gaussian) distri-
bution over all possible function values [11, Ch. 2],[12, Ch. 18]. This means that a function
sampled at some point in space follows a normal distribution, whereas a set of sampling points
in space follow a multivariate normal distribution.

In the present framework, we may define the frequency-domain vibration response across
the structure as the complex-valued function X(f, s) ∈ C, where f indicates frequency and
s a spatial position. In turn, the measurements obtained at different sensor positions si, i =
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1, 2, . . . , L, are represented by the vector XXX(f) :=
[
X(f, s1) X(f, s2) · · · X(f, sL)

]T ∈ CL.
Now, we define X(f, s) as a GP with zero mean and covariance:

C({f, s}, {f ∗, s∗}) = δ(f − f ∗) · Cxs,xs∗ (f) (6)

where δ(f − f ∗) designates the delta function, indicating no correlation between frequency
components, and Cxs,xs∗ (f) indicates the CSD between the responses on positions s and s∗ at
frequency f . Based on this definition, the readings at the whole set of sensors in the vector
XXX(f) follow the multivariate normal distribution, as shown below:

X(f, s1)
X(f, s2)

...
X(f, sL)

 ∼ N



0
0
...
0

 ,


C11(f) C12(f) · · · C1L(f)
C21(f) C22(f) · · · C2L(f)

...
...

. . .
...

CL1(f) CL2(f) · · · CLL(f)


 ⇒ XXX(f) ∼ N (000n,CxxCxxCxx(f))

(7)

where Cij(f) ≡ Cxi,xj
(f).

Virtual sensing: We may now define the virtual sensing problem, as the problem of calcu-
lating the vibration responses at some virtual positions contained in the vector XXXv(f) ∈ CLv

based on some available sensor readings in the vector XXXa(f) ∈ CLa . Following from Eq. (7),

we define the vector XXX(f) =
[
XXXT

a (f) XXXT
v (f)

]T
, which leads to the following partition of the

multivariate normal distribution:[
XXXa(f)
XXXv(f)

]
∼ N

[
000na

000nv

] [
CaaCaaCaa(f) CavCavCav(f)
CvaCvaCva(f) CvvCvvCvv(f)

]
(8)

where CaaCaaCaa(f) ∈ CLa×La is the CSD matrix of the available sensors, CavCavCav(f) = CavCavCav
H(f) ∈ CLa×Lv

is the CSD matrix calculated between the available and virtual sensors, and CvvCvvCvv(f) ∈ CLv×Lv

is the CSD matrix of the virtual sensors.
Using the property of conditional probability for the multivariate normal distribution, we

can then calculate an estimate of the response on the virtual sensors given the available sensors,
X̂XXv|a(f) and its covariance CCCv|a(f), as the conditional expectations:

X̂XXv|a(f) = E {XXXv(f) |XXXa(f)} = CvaCvaCva(f) ·CaaCaaCaa
−1(f) ·XXXa(f) (9a)

CCCv|a(f) = E{XXXv(f) ·XXXH
v (f) |XXXa(f)} = CvvCvvCvv(f)−CvaCvaCva(f) ·CaaCaaCaa

−1(f) ·CvaCvaCva
H(f) (9b)

Accordingly, the virtual sensor estimate X̂XXv|a(f) corresponds to the mean value of XXXv(f) given
XXXa(f), while the CSD matrix CCCv|a(f) quantifies the uncertainty remaining in the virtual sensor
estimate as a function of frequency. The latter can be interpreted as the reliability of the virtual
sensor estimates across the frequency axis. In turn, the quantity CvaCvaCva(f) ·CaaCaaCaa

−1(f) ·CavCavCav(f) can
be deemed as the best estimate of the CSD matrix CvvCvvCvv(f) based on the information of the
available sensors.
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Application of the algorithm based on the DFT: Practical application of the algorithm
is based on experimentally obtained CSD matrix estimates Ĉ̂ĈCaa[n], Ĉ̂ĈCva[n] and Ĉ̂ĈCvv[n] on the
discrete frequencies n = 0, 1, . . . , N−1, based on Welch estimates, as explained in Sec. 2.1. This
implies that on a training phase, the CSD matrices are obtained based on the complete array
of sensors, including the sensor positions that will become virtual sensors in normal operation.
Subsequently, on normal operation, the N -sample DFTs estimates of the response at virtual
sensors X̂XXv[n] are calculated based on the respective N -sample DFTs of the measured responses

at available sensors X̂XXa[n]. Time-domain responses on the virtual sensors are ultimately found
as the inverse DFT of the obtained frequency-domain estimates. The obtained methodology is
summarized in Fig. 1.

Figure 1: Summary of the CSD-based virtual sensing methodology

3 APPLICATION STUDY

Experimental setup The analysis presented here is based on vibration data extracted from
a Drivetrain Diagnostics Simulator (DDS), manufactured by SpectraQuest, shown in Figure
2, and further described in [13]. The DDS was designed to simulate industrial wind turbine
drivetrains for experimental and educational purposes. The studied DDS system consists of an
electric motor located on the left side driven with a speed/torque regulator where it applies
torque to the transmission via the high speed shaft (HSS), which is transferred to the parallel
shaft gearbox for a first speed reduction stage, leading to the medium speed shaft (MSS). The
MSS is connected to a planetary gearbox which further reduces the rotational speed towards
the low speed shaft (LSS). The LSS is connected to a controllable load, in the form of a pair of
programmable electromagnetic brakes. Each one of the three shafts (HSS, MSS, LSS) includes
couplers (yellow boxes in Figure 2) designed to break apart the sides of the shafts, and thus
facilitate the exchangeability and modularity of the drivetrain components. Bearings 1 (located
at MSS) and 2 (located at LSS), are the relevant parts in this case study because these are the
ones that are exchanged to simulate the different types of failures.

The DDS is instrumented with seven piezoelectric accelerometers (S1 to S7) placed at dif-
ferent parts of the drivetrain and an optical encoder mounted on the MSS, which provides a
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Figure 2: Wind turbine drivetrain diagnostic simulator with main components and sensor
locations [13].

reference tachometer signal. The accelerometers used in this study are Dytran 3097A22 uni-
axial IEPE accelerometers with a sensitivity of ∼ 100 mV/g and a 50 g measuring range. The
accelerometers are distributed along the drivetrain, in the positions indicated in Table 1. The
sensors are located on critical parts of the drivetrain, where damages are most likely to occur,
namely the bearings and gearboxes.

Location Description Name

Bearing 1 Two accelerometers on the horizontal and vertical axis,
mounted on the side and top respectively.

S1-S2

Bearing 2 Two accelerometers on the horizontal and vertical axis,
mounted on the side and top respectively.

S3-S4

Bearing 3 One accelerometer on the horizontal axis mounted on the
side.

S5

Parallel axis gearbox One accelerometer mounted on the medium speed output
shaft.

S6

Planetary gearbox One accelerometer mounted towards on the low speed out-
put shaft over the ring gear.

S7

Table 1: Location of the accelerometers in the DDS system.

Condition Description Name

Healthy All bearings are in good condition. H
Damage 1 Bearing 1: outer race failure, bearing 2: healthy. D1

Table 2: List of health conditions introduced in the DDS system.

Data acquisition In the present study, the analysis focuses on two health conditions of the
DDS, namely a healthy condition and damage in one of the bearings, as indicated in Table
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2. Further, two rotational speeds (10 and 16 Hz) and two load conditions (0% and 40%) are
considered as well. For each of these configurations described above, 30 experiments of 60
seconds each are carried out at a sampling frequency of 5120 Hz.

CSD estimation CSD matrices are estimated using Welch’s method, as explained in Sec. 2.1,
using the following settings: Hann window with DFT size N = 4192, number of overlapping
samples 2048 and resulting number of averages of the CSD estimator 74. As a result, CSD
tensors of dimensions 7×7×N are obtained for each one of the drivetrain operating conditions
are calculated.

Configuration of virtual sensing Once CSD matrices are estimated for the complete array
of sensors, sensors 1 to 6 are kept as available sensors, while sensor 7 is set as virtual sensor.
Then, based on the obtained CSD matrices, estimates of the DFT of the response at the virtual
sensor of size N are calculated using Eq. (9a).

4 RESULTS

4.1 Results in frequency domain

The results of the DFT of the virtual sensor for the DDS system under the healthy condition
operating at 10 Hz and 0% load (orange lines) compared with the DFT of the actual sensor
readings (blue lines) are shown in Fig. 3. Corresponding results for the DDS under bearing 1
outer race failure operating at 10 Hz and 0% load are shown in Fig. 4.

Figure 3: DFT virtual sensor estimate in position 7 in the full frequency range (left), and
detailed view from 400 to 800 Hz (right). Condition corresponding to healthy state at 10Hz
and 0% load.

In both cases, a good match between the DFTs of the actual sensor reading and the virtual
sensor estimate are found through most of the frequency axis. Detailed analysis on the frequency
range from 400 to 800 Hz for the healthy case indicate larger discrepancies within this frequency
range. Such discrepancies are interpreted as dynamics that are particular to the specific sensor
(sensor 7: planetary gearbox) and cannot be correlated to the other sensors. Similar analysis
on the damaged case, indicates slightly better compliance of the virtual sensor estimation with
the actual signal.
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Figure 4: DFT virtual sensor estimate in position 7 in the full frequency range (left), and
detailed view from 400 to 800 Hz (right). Condition corresponding to bearing 1 outer race
failure at 10Hz and 0% load.

4.2 Results in time domain

Fig. 5 provides the sensor signals transformed back in time domain for the healthy (left)
and damaged (right) conditions of the drivetrain operating at 10 Hz and 0% load. The results
show that the waveforms of the actual and virtual sensor signals are very similar, while the
instantaneous squared error shows that the error seems to have a periodic pattern, which again
is interpreted as the unique dynamic characteristics found on sensor 7.

Figure 5: Time domain analysis of the sensor responses at the healthy condition (left) and
damaged condition (right) operating at 10Hz and 0% load. Top row displays the virtual and
actual sensor readings, bottom row provides the instantaneous squared error between these
signals.

4.3 Error analysis

The virtual sensor estimation procedure is repeated for all the 30 individual experiments
at each health and operational condition and the Mean Squared Error (MSE) is calculated at
each of those cases. The distributions of the obtained MSE at all the considered conditions,
displayed as boxplots, are shown in Fig. 6. Overall, it is observed that the error distribution
stays within a similar range in the healthy and damaged states across all the drivetrain condi-
tions. Nonetheless, the median value of the MSE tends to change according to the operational
condition of the drivetrain, with largest values observed in the 10 Hz 40% load.
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(a) Healthy H1 state (b) Damage D1 state

Figure 6: MSE boxplots for virtual sensor estimates across the 30 individual experiments at
different DDS configurations.

5 CONCLUSIONS

By using cross-spectral density matrices, it was possible to develop a virtual sensor capable
of successfully estimating the original signals of the available physical sensors. Thus, by means
of their frequency domain plots, particular characteristics of each configuration established in
each experiment were identified, which are very useful to be able to relate the different sensors
present with unique behaviours that can be related either to the dynamics of their structure
or to the operating conditions of their environment. The results obtained have revealed a
consistent error range, oscillating between 20% and 40% approximately for most of the models
evaluated. This range of error is in line with the expectations set at the beginning of the project
since a model is used as a starting point to estimate the different sensors. This project lays the
foundations for future research and improvements in the different techniques used to optimise
and calibrate the models in order to significantly reduce the error intervals. On the other hand,
these models can incorporate advanced techniques with machine learning approaches in order
to further improve the accuracy of the obtained estimates that can be implemented for damage
detection and prevention, which is so necessary nowadays in these types of fields where costs
for maintenance or machinery failures are so high but need immediate attention because more
and more clean, sustainable energy sources are needed and that is why this approach is based
on WT transmission systems.
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