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An efficient finite element (FE) scheme to deal with a class of coupled fluid–solid problems
is presented. The main ingredients of such methodology are: an accurate Q1/P0 solid
element (trilinear in velocities and constant piecewise-discontinuous pressures); a large
deformation plasticity model; an algorithm to deal with material failure, cracking propaga-
tion and fragment formation; and a fragment rigidization methodology to avoid the possible
numerical instabilities that may produce pieces of material flying away from the main solid
body. All the mentioned schemes have been fully parallelized and coupled using a loose-
embedded procedure with a well-established and validated computational fluid dynamics
(CFD) code (FEFLO). A CSD and a CFD/CSD coupled case are presented and analyzed.
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1. Introduction

In the analysis of complex structures subjected to blast loading and large deformations, Lagrangian FE codes with explicit
time integration are a necessary tool [1,2]. This class of problems requires hundreds of thousands of time steps, and in some
cases, millions of elements, which forces the use of computationally simple methodologies. Furthermore, the material failure
and the possible changes of topology due to the crack advance has to be implemented in an efficient manner. Expensive
remeshing procedures and/or cracking schemes could make the calculation of real problems an impossible task in terms
of CPU time. Moreover, the possible numerical instabilities that may appear as a result of several fragment of elements flying
away has to be taken into account. For most cases, i.e., for bomb fragmentation studies, it is not the internal stresses of the
small fragments what needs to be computed in an accurate manner, but their size and shape. Hence, a fast rigidization algo-
rithm that maintains the volume of the fragments must be available. All the mentioned schemes should be fully parallelized
to obtain solutions in a realistic period of time.

The main ingredients of an efficient methodology to deal with real coupled fluid–solid blast problems will be described in
this paper. First, a brief description of a large deformation plasticity constitutive material [17] is presented. Such model is
motivated by a well-understood micromechanical picture of single-crystal metal plasticity. The resulting constitutive model
relies on a hyperelastic characterization of the elastic material response, which avoids the drawbacks of the widely used hyp-
oelastic models, i.e., the material isotropy, the nonzero residual strain in a closed ‘‘elastic” cycle, and in general, the lack of a
stored-energy function to obtain the elastic stress tensor. In addition, the deviatoric and volumetric elastic stresses are func-
tion of tensors which are invariant against rigid rotations (tensors defined in the convective coordinates). This feature auto-
matically makes the scheme to fulfill the objectivity [17] principle (no special objective stress rates are used).
. All rights reserved.
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From the numerical point of view, the element kinematic variables are fully integrated (eight integration points per ele-
ment), which avoids spureos modes and its immediate consequence: the use of artificial hourglass viscosities [13]. On the
other hand, the pressure field is interpolated using only one nodal point per element (piecewise constant pressures per ele-
ment). Such numerical feature removes the volumetric locking and accurately approximates the material incompressibility
in the plastic range [14]. Also, a pressure smoothing is applied in each time step, to avoid the appearance of check-board [14]
pressure modes, which may be presented in some cases using the Q1/P0 element (this element does not strictly fulfill the
incompressible BB condition) [14].

In Section 3, the material fracture model is exposed. For this purpose, the elements conforming the FE mesh are checked
using some failure criteria, i.e., the maximum effective plastic strain, or some damage variable. The most failed node and face
of the element are then chosen to define the failure plane. The new node is created by duplicating the most failed one, and by
redefining the connectivity of the elements located at one side of the failure plane. Such methodology produces a cracking
propagation algorithm that does not require expensive remeshing schemes. This last feature is highly desirable when dealing
with real problems, where millions of elements and thousands of time steps may be required. However, it may fails to pro-
duce real fragmentation patterns for some cases, which motivates to implement semi-empirical agglomeration algorithms
i.e., Mott’s theory [27,28].

A simple rigidization algorithm based on the number of elements that a fragment of material contains has been imple-
mented to avoid numerical instabilities and to save CPU time. All the mentioned schemes have been fully parallelized and
coupled using a loose-embedded procedure with the well-established and validated computational fluid dynamics (CFD)
code, FEFLO98. Finally, A CSD and a CFD/CSD coupled cases are presented.

2. Constitutive equation and numerical approximation

As mentioned in Section 1, the plasticity model used in this work is motivated by a well-understood micromechanical
picture of single-crystal metal plasticity [17]. The resulting constitutive model relies on a hyperelastic characterization of
the elastic material response, which avoids the drawbacks of the widely used hypoelastic models, i.e., the material isotropy,
the nonzero residual strain in a closed ‘‘elastic” cycle, and in general, the lack of a stored-energy function to obtain the elastic
stress tensor. Moreover, the deviatoric and volumetric elastic stresses are function of tensors which are invariant against ri-
gid rotations (tensors defined in the convective coordinates). This feature automatically enforces objectivity [17] on the
scheme.

Also, it can be demonstrated that the hypoelastic models based on commonly used objective stress rates, like the Jau-
mann–Zaremba and Green–McInnis–Naghdi stress rates, do not result in a straightforward generalization of the classical ra-
dial return algorithm when one tried to develop a J2 plasticity theory for large deformation cases (see [17]). The only models
which result in such a generalization are the ones based on the Lie derivate of the Kirchhoff stress. However, many authors
copy as it is the structure of the radial return map for small deformation plasticity, to use it with hypoelastic models that are
not based on the mentioned derivate. Our experience indicates that such algorithms violates in an unacceptable manner the
isochoric (incompressible) character of the plastic flow when non-structured meshes are used: This is, the elements tend to
have negative volume and their edges tend to cross at high explosive loads (pressures). However, the use of non-structured
meshes is almost mandatory for this type of problems, not only because they allow the automatic generation of the compu-
tational grid by using a tetrahedra mesh generator (then each tetrahedra is divided in four hexahedral elements see Fig. 1),
but also because the unstructured topology of the mesh automatically includes a random behavior to the fracture algorithm,
which makes the simulations more realistic. This point is demonstrated below in the numerical simulations.

Ref. [17] presents a detailed description of the hyperelastic plasticity model that has been used in this work. However, a
brief summary is shown below for completeness. The stored-energy function has the form:
W ¼ UðJeÞ þWðbeÞ ð1Þ

UðJeÞ ¼ 1
2
j

1
2
ðJe2 � 1Þ � ln Je

� �
ð2Þ

WðbeÞ ¼ 1
2
l tr½be� � 3
� �

ð3Þ
which results in the following stress–strain relationships:
s ¼ JepI þ s ð4Þ

p ¼ j
2
ðJe2 � 1Þ=Je ð5Þ

s ¼ ldev½be� ð6Þ
Above, s is the Kirchhoff stress tensor, p the mechanical pressure and s is the deviatoric part of the stress tensor. Je is the
determinant of the elastic part of the deformation gradient tensor Fe, j the material bulk modulus and l is the shear mod-
ulus. Finally, be is the volume-preserving part of be (elastic left Cauchy–Green tensor), given by:
be ¼ Je�2=3FeFeT
: ð7Þ



Fig. 1. From left to right: finite element mesh of �100,000 hexahedrals; vertical cut showing the interior top part of the weapon.
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The yield condition is a classical Mises–Hubert type, but formulated in terms of the Kirchhoff stress tensor:
f ðs;aÞ :¼ jjsjj �
ffiffiffi
2
3

r
½rY þ Ka� 6 0 ð8Þ
where rY denotes the flow stress, K denotes the isotropic hardening modulus, and a the hardening parameter. jjsjj is the
norm of s ¼ ffiffiffiffiffiffiffiffiffi

sijsij
p

(repeated index sum). It is clear that non-linear hardening laws ðKðaÞÞ, dynamic increase factors for rY

and empirical based models for the flow stress ðryÞ are easily accommodated in the formulation. As an example, the widely
used Johnson–Cook [29,30] model for the flow stress in metals, which takes into account the effect of high strain rate hard-
ening and temperature softening, was easily implemented in this plasticity framework.

Finally, the plasticity model is completed, as usual, with the following associative flow rule, hardening law, Kuhn–Tucker
and consistency conditions:
Lvbe ¼ �2
3
ctr½be�n ð9Þ

n ¼ s
jjsjj ð10Þ

_a ¼
ffiffiffi
2
3

r
c ð11Þ

c P 0; f ðs;aÞ 6 0; cf ðs;aÞ ¼ 0 ð12Þ
c _f ðs;aÞ ¼ 0: ð13Þ
Above, Lvbe is the Lie derivative of be and c is the consistency parameter. _A is the material time derivative of A.
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2.1. Discretization of the dynamic equation

The dynamic equilibrium equation written on the spatial configuration at time tðXtÞ is given by:
q€u�r � r ¼ F in Xt ð14Þ
plus compatible initial and boundary condition. In Eq. (14) q is the density, r the Cauchy stress tensor, u the displacement
field, €u the acceleration and F is the body forces. All the terms are evaluated in the actual configuration.

The equilibrium variational form at the spatial configuration is obtained by multiplying Eq. (14) times a test function
du 2 V that fulfills the imposed boundary condition and continuity requirements. After integrating by parts the internal
stress term in the usual manner, the following is obtained:
Z
X
qdu � €udX ¼ �

Z
X
eðduÞ : rdXþ

Z
X

du � f dXþ
Z

CN

du � tdC; 8du 2 V ð15Þ
where eð�Þ is the spatial symmetric gradient operator, eðduÞ is nothing but the spatial strain rate tensor, which is obtained
from the standard FE kinematic interpolation (see Ref. [14] for details), t are the surface tractions which are applied on
the boundary of X ð@XÞ in the actual configuration, and CN is the Neumann part of @X.

It is widely known that by using standard FE functions and equal interpolation for the kinematic variables (displacements,
velocities, and accelerations) and the pressure field to discretize Eq. (15) in space, a lack of stability may appear if the mate-
rial becomes almost incompressible. This is the case for metals in the plastic range, where it is standard to assume that the
plastic flow is isochoric (the material flows preserving its volume). The mentioned lack of stability (a pure numerical prob-
lem) is demonstrated by the well documented pressure check-board mode [13,14] and locking effect. It is also well-estab-
lished that the both anomalies may be avoided by several numerical techniques. Among them are: uniform reduced
integration [14,15], selective integration [14], mixed interpolation [13,14] (div-stable elements), and numerical or physical
stabilizations [3–12]. A mixed interpolation has been used in this work: the kinematic variables are interpolated using the
standard Q1 FE functions (trilinear 8-nodes hexahedral elements), and the pressure is interpolated using the constant piece-
wise-discontinuous (P0) FE function (constant pressure at elemental level). In addition, a filter of pressures (smoothing) is
performed each time step to enforce a convergent pressure field (free of check-board modes). This element does not require
artificial viscosity terms due to the fact that it is free of hourglass modes [13] (the deviatoric stress terms are fully
integrated).
3. Fracture scheme

Most of the fracture schemes may be classified into two groups (or a combination of them): smeared crack models and
discrete crack approaches [18,19]. The former, also called continuum approaches, are based on the classical continuum
(strain localization, smeared cracking) or the enriched continuum [16,20,21] (gradient enrichment, Cosserat continuum,
non-local models). In such models, the material softens (using some constitutive law) forming a band where the crack (or
micro-cracks) grows. In general, the topology of the mesh does not change during the simulation.

In the discrete crack approaches, the mesh topology changes to follow the cracks [18,22]. These schemes explicitly rep-
resent the crack as a separation of nodes. When some failure criterion is fulfilled, the node is redefined as two nodes and the
elements are allowed to separate. While this produces a realistic representation of the opening crack, a coarse discretization
in the finite element model results in misrepresentation of the propagating crack tip. One way to avoid this is by using reme-
shing procedures in the failure zone [22].

In the present work a discrete crack approach has been adopted. The main reason for this choice is that in coupled blast
simulations big changes of topology are expected. A smeared approach would not be capable of realistically simulating the
hundreds of fragments flying away from the main solid body, and the possibility of impacting some other surfaces. Reme-
shing procedures have not been implemented yet in the code, and it is not mandatory as long as fine enough meshes are
utilized. In addition, expensive remeshing procedures could render large scale cases impossible to simulate.

The discrete fragmentation scheme is implemented as follows: first, the adopted failure criterion is computed at the inte-
rior of the elements. The most failed element e (element that violates the failure criterion with the highest value) is then
chosen. Among the faces that are attached to e, the one with maximum tensile stress will be detached. This is, the one that
fulfills the following expression:
ðni � reÞ � ni P ðnj � reÞ � nj; 8i; j 2Fe and i – j ð16Þ
where re is the stress tensor in the element e;ni the unit exterior normal on the face i (exterior to the element e) and Fe is
the set of faces attached to e.

To detach the face with the highest tensile stress Fe
i , each point ip 2Fe

i (4 points for hexahedral elements) is duplicated
in the elements containing the topological perpendicular edge to the face. In other words, the nodal point ip belonging to the
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face Fe
i is duplicated in all the elements containing the edge ðip; jpÞ, where jp is the point that fulfills the following require-

ments: (1) jp belongs to the set of nodes of element e; (2) jp is connected to point ip; (3) jp is not contained in the set of nodes
of the face Fe

i .
The algorithm sketched above produces the main failure scheme for weapon fragmentation applications: longitudi-

nal cracks consisting of very long stripes of metal which, although theoretically correct (tangential stress is higher
than the longitudinal one), does not yield the small fragment pattern observed in experimental tests [25,26]. For that
reason, a secondary fragmentation algorithm based on a lot of experimental data collected for more than 50 years,
has been introduced to the CSD code. Such algorithm is based on the Mott’s theory of break-up of cylindrical
‘‘ring-bombs”. In [27] a detailed description of the model can be consulted. Below, just a brief summary is presented
for completeness.

According to Mott [28], the average circumferential length of the resulting fragment is given by:
x0 ¼
2rF

qc0

� �
r
V

ð17Þ
where q and rF are the density and strength of the bomb material, respectively, r the radius of the ring at the moment of
fracture, V its radial velocity, and c0 denotes a semi-empirical statistical constant determining the dynamic fracture proper-
ties of the material. The value of this last constant has been calibrated [27] using theoretical assumptions and experimental
data to a value of c0 ¼ 56. This has been the value used in this work for all the numerical simulations. Two others important
relationship has been used for relatively large fragments. These are: the representative values of average aspect ratios of
fragment lengths to circumferential breadth l0=x0, and the aspect ratios of circumferential breadth to fragment thickness
x0=t0. The reported values in the literature [27,28] for such relationships are between l0=x0 � x0=t0 � 2:5 and
l0=x0 � x0=t0 � 5:0. In this job a value of 4.0 has been used. However, some additional random effects are introduced to
the fragment sizes. These are: the unstructured character of the used meshes as the reader can observe in Fig. 1, and a uni-
formly distributed random variable which will be clarified later.

Therefore, for weapon fragmentation cases the final fracture algorithm is as follows:

(1) Compute the element with the highest value of the failure criteria emax (i.e., the element with maximum effective
plastic strain).

(2) Obtain the circumferential length of the possible resulting fragment using expression (17).
(3) Obtain the length of the possible resulting fragment using l0=x0 ¼ 4.
(4) Compute the average failure criteria ftop in a ring of elements of size l0 above emax.
(5) Compute the average failure criteria fbot in a ring of elements of size l0 below emax.
(6) If ftop greater than the value the material can stands, the top ring will be fragmented using the relations

l0=x0 ¼ x0=t0 ¼ 4 � r, where r is a uniformly distributed random number between 0.625 and 1.25, that introduces
a random effect to take into account, in some way, the spatial variability of the material strength.

(7) If fbot greater than the value the material can stands, the bottom ring will be fragmented using the relations
l0=x0 ¼ x0=t0 ¼ 4 � r.

The above fragmentation algorithm produces results that compares remarkably with the experimental data.

3.1. Rigidization scheme

After the failure algorithm is performed and some topology changes are detected, the possible detachment of fragments of
elements from the main body is checked. The procedure is as follows: one element e is marked with a fragment identification
number ID. After that, the elements surrounding e are marked with the same ID, the elements surrounding the elements that
surrounds e are also marked, and the procedure is successively repeated until no more elements are left. So, the fragment
number ID has been identified. Other unmarked elements are then chosen to attempt to identify other fragments by repeat-
ing the whole procedure. The fragment identification algorithm is finished when all the mesh elements have been marked as
belonging to some fragment.

After that, all the fragments with a number of elements that is less than a user defined value are rigidized. This is, the
internal forces of the elements belonging to such fragments are set to zero, and their external forces are averaged and applied
as a constant force to all the fragment elements. The fragment will then behave as a rigid body.

Finally, it is important to remark that the rigidization algorithm is activated only when the detailed stress distribution
into the small fragments is not required, but their velocities and masses. This is the case for most of the weapon fragmen-
tation problems.
4. Fluid/Solid coupling

The fluid–structure interaction is simulated by coupling a CSD solver and a CFD solver in a staggered manner (see Box 1
for details), and by using an embedded approach for the fluid–solid interaction (FSI) treatment. In our scheme, the
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computational mesh for the solid body (for the CSD solver) is totally embedded into the fluid mesh (mesh for the CFD code).
This is, the fluid mesh covers the entire solid body (or bodies), and it is not conforming (not fitted) to the solid boundary faces
(fluid mesh edges are intersected by solid boundary faces).
Box. 1. Description of the CFD/CSD coupling algorithm.

Read meshes; read initial and boundary conditions for both solvers;

CSD code sends the external solid faces ðSÞ and initial velocities ðvSÞ on S to CFD solver;
tCFD  0; tCSD  0;
DO WHILE ðtCSD < tfinal and tCFD < tfinalÞ

CFD code computes the fluid elements intersected by S;
CFD code solves the fluid from t to t þ dtCFD using an embedded technique;
CFD code sends the pressures P on S to CSD code;
tCFD  t þ dtCFD;
DO WHILE ðtCSD 6 tCFDÞ

CSD code solves the structure (updates vS) loading S with P;
tCSD  t þ dtCSD;
Update the external faces S;

END DO
CSD code sends the new external solid faces ðSÞ and velocities
ðvSÞ to CFD solver;

END DO
The staggered algorithm and FSI treatment may be read as follows: The simulation starts and all the data for both solvers
are read. The CSD solver computes the external faces mesh of the solid body, and sends its coordinates, connectivities, and
velocities to the CFD solver. Then, the CFD solver computes the fluid mesh edges that are intersected by the solid faces, and
imposes the right flow boundary and initial (previous time step) conditions at the intersecting points. This is, the velocities
are set to the solid faces velocities (or only to their normal components for Euler type flows), and, in general, all the variables
are interpolated to the mentioned intersecting points, and to the fluid nodes which were inside the solid body at the previous
time step, if it is required. This last procedure may be performed by a simple first order approach, or by a second order
scheme which uses point mirroring and unknowns interpolation with gradient reconstruction. A detailed description of
the FSI (fluid–solid interaction) treatment may be consulted in Refs. [25,26].

After the flow field is solved taking into account the blocking effect of the solid faces (boundary and initial conditions
described above), the flow pressures are interpolated (applied) over such a solid faces. Then, the CSD solver updates the
structure kinematic variables, internal stresses, strains and geometry with the new loads (new pressures over the solid
faces). Finally, the solid faces are updated and sent back to the flow solver to repeat the whole procedure for a new time step.
A detailed algorithm is shown in Box 1.

The stability of the CSD and CFD solvers is guaranteed by choosing different time step sizes for each code. The time step
size for the explicit CSD code ðdtCSDÞ is computed in a standard manner, based on the element types and sizes [2]. A standard
second-order explicit Newmark scheme (the widely called central difference scheme) is used to integrate the dynamic equi-
librium equation in time [14]. The explicit CFD code also computes its own time step size ðdtCFDÞ using a standard Courant
criterion [23].

Finally, it is important to remark that both the CFD and the CSD solvers are parallelized for shared memory architectures
using the Open MP libraries. The CSD solver uses a coloring algorithm [23] to compute all the operations over the elements in
a parallel manner, and a renumbering technique to avoid cache misses. Most of the cracking algorithm is also parallelized:
the failure criterion computation over the elements, its smoothing from the element to the nodes, and the computation of
imax (see Section 3) are operations that might be perfectly parallelized. On the other hand, the node duplication and element
reconnection are performed in a scalar way. This drawback does not have much impact in the total cost of the simulation
because such operations involve a very small group of elements. Therefore, its CPU time can be almost neglected in compar-
ison to other elemental tasks: internal force computations, constitutive law evaluation, etc.
5. Numerical examples

Several numerical examples for elastic and plastic materials were performed to validate the implemented solid element
[24]. Among them were: the bar impacting on a rigid wall (typical benchmark) and the necking of a circular bar [17]. All the
numerical results showed great agreement with the ones reported by other authors.

Due to the scope of this work, only real coupled test cases are of interest. Hence, the fragmentation of a generic weapon
inside a chamber with very strong walls is presented to demonstrated the described methodology.



Fig. 2. Comparison of agglomeration schemes. From left to right and top to bottom: long strips and one-element fragments at 100.0 ls using the node
disconnection scheme as it is; same result at 200.0 ls using the node disconnection scheme; fragmentation using the Mott’s approach at 100:0 ls;
fragments at 200.0 ls using the Mott’s approach.
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The geometry and some details of the finite element mesh for the weapon can be observed in Fig. 1. The walls of the
chamber were assumed rigid: all its kinematic and dynamic variables were prescribed to zero. The adopted weapon material
properties are presented as follows: Density q ¼ 7:76 g=cm3, Young modulus E ¼ 6:415� 1012 dy=cm2, Poisson ratio m ¼ 0:3,
yield stress ry ¼ 1:283� 1010 dy=cm2, isotropic hardening modulus K ¼ 8:657� 1010 dy=cm2 and maximum effective plas-
tic strain for failure ep

max ¼ 0:3.
Fig. 3. Failure evolution and fragment formation using the node disconnection scheme and a structured mesh. From left to right and top to bottom: fracture
at 100, 200, 300, and 400 ls.
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To compare the straightforward failure scheme (node disconnection as it is) and the one used the empirical agglomera-
tion algorithm given by Mott’s expression (17), a cheap stand-alone simulation were performed. Basically, the flow field
around and inside the weapon was not solved, and just a pressure front traveling inside the bomb from the top to the bottom
were prescribed. The pressure peak was set to 1011 dy=cm2 and the front velocity to 7:2� 105 cm=s. The decay of the pres-
sure front was simulated with an exponential function of the form:
Fig. 4.
cut of fl
p ¼ ppeake�0:1d ð18Þ
where d is the distance from the faces above the pressure front (the front is traveling from the top to the bottom of the
weapon), to the position of the peak pressure. The pressure of the faces below the peak pressure were set to zero.
From left to right and top to bottom: CSD (solid metal) velocities at 12:6 ls, vertical cut of fluid velocities at 12:6 ls, CSD velocities at 37:5 ls, vertical
uid velocities at 37:5 ls (CFD velocity values are hidden for clearance reasons).
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In Fig. 2 (top) the fragmentation pattern using the un-modified failure scheme is shown. One can observe longitudinal
long strips of material plus some small one-element fragments (elements that has been disconnected) which, as it was
previously mentioned, are theoretically correct. However, the final sizes and mass distribution of the fragments does not
agree with the experience for this type of weapons (see Fig. 2 top right).

Using the agglomeration technique based on the Mott’s expression (17), the weapon fragmentation seems to show a bet-
ter agreement with the observed experimental data. In Fig. 2 (bottom) the evolution of the metal failure using this scheme is
presented.

For additional tests, a structured mesh was generated to check the un-modified (simple node disconnection) failure
scheme for this type of meshes. In Fig. 3 the fracture evolution for the structure grid is shown. Even though the fragment
formation improved with respect to the un-structured grid, the final fragments does not look real. They are too well shaped,
due to the fact that the randomness introduced by the unstructured grids is lost.
Fig. 5. From left to right and top to bottom: CSD velocities at 62:5 ls, vertical cut of fluid velocities at 62:5 ls, CSD velocities at 87.5 ls, vertical cut of fluid
velocities at 87.5 ls (CFD velocity values are hidden for clearance reasons).
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Based on the previous results, a coupled simulation was performed using the Mott’s scheme for the fragmentation pro-
cess. The simulation was performed using the algorithm presented in Box 1. An explosive was ignited (point detonated) in-
side the weapon (at the top), generating a pressure front that travels along the case, and producing the fragmentation
evolution showed in Figs. 4–8. The results can be observed to be in excellent qualitative agreement with experimental data.
The fragment velocities, sizes and shapes are very similar to those reported by real tests. It can also be noticed that the top
part of the weapon is detached from the body at an early fragmentation stage (something commonly observed in experi-
ments). In the same Figs. 4–8 a vertical cut of the fluid velocities evolution may also be observed. The effect of the embedded
fragments on the fluid velocities seems to be well captured, which validates the used coupled approach. Fig. 9 presents a cut
of the fluid pressures and of the pressures over the solid faces at different steps. This Figure demonstrates the extrapolation
of such a variable from the flow field to the embedded solid structure.
Fig. 6. From left to right and top to bottom: CSD velocities at 112:5 ls, vertical cut of fluid velocities at 112:5 ls, CSD velocities at 137:5 ls, vertical cut of
fluid velocities at 137:5 ls (CFD velocity values are hidden for clearance reasons).



Fig. 7. From left to right and top to bottom: CSD velocities at 162:5 ls, vertical cut of fluid velocities at 162:5 ls, CSD velocities at 187:5 ls, vertical cut of
fluid velocities at 187:5ls (CFD velocity values are hidden for clearance reasons).
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Finally, in Fig. 10 the fragment mass distribution is shown. The agreement is good with experimental data for this type of
weapons. Fig. 11 shows the evolution of the fragment energy. Again, it fits very well the experience for this type of weapons:
most of the explosive energy is transformed in kinetic fragments energy.

As a final remark, it can be observed that all the fragments (including the top and bottom parts of the weapon) are effec-
tively rigidized and they fly alone free of instabilities.
6. Conclusions and final commentaries

An efficient CSD/CFD scheme for coupled blast simulations was presented. It is based on a fully integrated solid
hexahedral element with mixed interpolation (Q1/P0: trilinear in velocities and constant piecewise-discontinuous



Fig. 8. From left to right and top to bottom: CSD velocities at 212:5 ls, vertical cut of fluid velocities at 212:5 ls, CSD velocities at 237:5 ls, vertical cut of
fluid velocities at 237:5 ls (CFD velocity values are hidden for clearance reasons).
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pressures), a well-founded large deformation plasticity constitutive model, and in some fast procedures to treat the mate-
rial’s fracture. Moreover, all the algorithms are fully parallelized: the CPU speed up obtained in the numerical examples
was quasi-optimum. One coupled numerical example was presented to demonstrate the overall scheme, which shows very
realistic results.

Furthermore, it was found during the simulations that the use of hypoelastic schemes to treat the plasticity in metals,
combined with widely used objective stress rates (Jaumann–Zaremba, Green–McInnis–Naghdi, etc.) and unstructured
meshes, violates in a unacceptable manner the incompressible character of the plastic flow. This produces negative volume
elements during the simulation, edge crossing and, therefore, very poor results. Hence, it is highly recommended the uti-
lization of hyperelastic models and convective formulation to treat the plastic material behavior in unstructured FE
meshes.



Fig. 9. From left to right and top to bottom: Interpolated pressure over CSD faces at 87:5 ls (vertical clipping to show the interior solid faces of the weapon),
vertical cut of flow pressures at 87:5 ls, interpolated pressure over CSD faces at 187:5 ls, vertical cut of flow pressures at 187:5 ls.
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Finally, it is important to remark that the described CSD scheme is being used to solve real coupled blast cases. The
obtained results for the large scale applications show to be realistic, and the used CPU time is also very encouraging. To give
an idea of the CSD code speed, a simulation using a mesh of 1� 105 3D Q1/P0 CSD elements, approximately spent 0.5 s of
CPU on 16 ALTIX SGI processors.
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Fig. 10. Fragment mass distribution.

Fig. 11. Fragment energy as a fraction of the total flow (CFD) energy.
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