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Abstract. We propose a simple physical model to characterize the dynamics of magma 
withdrawal during the course of caldera-forming eruptions. Simplification involves 
considering such eruptions as a piston-like system in which the host rock is assumed to 
subside as a coherent rigid solid. Magma behaves as a Newtonian incompressible fluid 
below the exsolution level and as a compressible gas-liquid mixture above this level. We 
consider caldera-forming eruptions within the frame of fluid-structure interaction problems, 
in which the flow-governing equations are written using an arbitrary Lagrangian-Eulerian 
(ALE) formulation. We propose a numerical procedure to solve the ALE governing 
equations in the context of a finite element method. The numerical methodology is based on 
a staggered algorithm in which the flow and the structural equations are alternatively 
integrated in time by using separate solvers. The procedure also involves the use of the 
quasi-Laplacian method to compute the ALE mesh of the fluid and a new conservative 
remeshing strategy. Despite the fact that we focus the application of the procedure toward 
modeling caldera-forming eruptions, the numerical procedure is of general applicability. 
The numerical results have important geological implications in terms of magma chamber 
dynamics during explosive caldera-forming eruptions. Simulations predict a nearly constant 
velocity of caldera subsidence that strongly depends on magma viscosity. They also 
reproduce the characteristic eruption rates of the different phases of an explosive caldera- 
forming eruption. Numerical results indicate that the formation of vortices beneath the ring 
fault, which may allow mingling and mixing of parcels of magma initially located at 
different depths in the chamber, is likely to occur for low-viscosity magmas. Numerical 
results confirm that exsolution of volatiles is an efficient mechanism to sustain explosive 
caldera-forming eruptions and to explain the formation of large volumes of ignimbrites. 

1. Introduction 

Caldera collapse results from the complex coupling between 
mechanic and thermodynamic processes which control the 
behavior of the volcanic system and, in particular, that of the 
associated magma chamber. Field studies reveal that most 
collapse calderas are related to silicic volcanic systems and 
form in association with the eruption of large volumes of 
ignimbrites [Williams, 1941; Smith and Bailey, 1968; Lipman, 
1984, 1997]. Moreover, field evidence demonstrates that many 
explosive caldera-forming eruptions show a preceding central 
vent Plinian phase that decompresses the magma chamber well 
below lithostatic pressure, thus giving rise to a caldera phase 
characterized by the subsidence of the roof of the magma 
chamber, which causes the extrusion of large volumes of 
magma through a set of ring faults [Druitt and Sparks, 1984; 
Marti et al., 2000]. 

The conditions and physical processes leading to explosive 
caldera-forming eruptions are still not well understood. The 
magma chamber's mechanical and thermodynamic state 
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immediately before and during caldera collapse has not yet 
been investigated in detail. Presently, the most detailed 
information about collapse calderas concerns the distribution 
and timing of eruption products and the resulting structural 
collapse [Williams, 1941; Smith and Bailey, 1968; Willams and 
McBirney, 1979; Walker, 1984; Marti et al., 1994; Branney, 
1995; Lipman, 1984, 1997]. From a mechanical point of view, 
the critical question regarding the formation of collapse 
calderas concerns the variations in the state of stress required to 
generate the ring fault system that allows caldera subsidence. 
Although the stress distribution necessary to generate ring 
faults can be easily deduced [Roberts, 1970; Gudmundsson, 
1988], the physical conditions leading to that particular stress 
distribution are still unclear. Decompression of the magma 
chamber during an opening Plinian phase is insufficient to 
ensure caldera collapse, as indicated by large historical Plinian 
eruptions (Vesuvius, E1 Chichon, and Pinatubo), which did not 
result in collapse despite signific. ant volumes of magma erupted 
[Marti et al., 2000]. The occurrence of explosive caldera- 
forming events depends on the strength of the chamber walls 
and the depth, water content, and aspect ratio of the magma 
chamber [Marti et al., 2000]. Gudmundsson [1998] and 
Gudmundsson et al. [1997] have proposed that regional loading 
favors the formation of ring faults. Recently, McLeod [1999] 
has proposed that magmatic buoyancy can also play a major 
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role in attaining the stress conditions necessary for caldera- 
forming eruptions to occur. The mechanics of collapse calderas 
and, in particular, the stress conditions and the collapse criteria, 
require further study in order to provide a comprehensive 
model for their formation. 

The thermodynamic conditions of shallow magma chambers 
leading to explosive, caldera-forming eruptions are 
comparatively better constrained [Druitt and Sparks, 1984; 
Bower and Woods, 1997; Folch et al., 1998; Marti et al., 2000]. 
However, the thermodynamic evolution of the magma chamber 
during a caldera-forming process is still unresolved. The only 
previous attempt to model such a process numerically is that of 
Spera [1984], who solved the two-dimensional Navier-Stokes 
equations assuming magma as an incompressible flow and 
imposing an arbitrary subsidence rate. Other numerical models 
have addressed the eruption dynamics at the vent during 
caldera-forming eruptions considering the decompression of the 
upper part of the chamber [Wohletz et al., 1984]. 

A more complete approach should involve the coupling 
between the magma withdrawal process and the behavior of the 
host rock, thus implying the solution of a fluid-structure 
interaction problem. The goal of this paper is to develop a 
numerical procedure to model the temporal evolution of the 
physical properties of magma during caldera-forming 
eruptions. The paper does not investigate the causes of caldera- 
forming eruptions, but builds on previous work investigating 
the temporal evolution of the physical parameters from the 
initiation of the Plinian phase to the initiation of caldera 
collapse [Folch et al., 1998; Marti et al., 2000]. The paper is 
organized as follows. First, the physical model and the 
governing equations are introduced. The physical model is 
based on a simple piston-like rigid block that subsides into a 
magma chamber. Second, a numerical procedure to solve this 
fluid-structure interaction problem in the context of a finite 
element method (FEM) is developed. Finally, numerical 
examples are given and their geological implications discussed 
in the light of what is presently known from natural calderas. 

2. Physical Model and Governing Equations 

Numerical modeling of caldera-forming eruptions can be 
considered within the general frame of those fluid-structure 
interaction problems in which a rigid structure moves within 
the fluid (Figure 1). In such intimately coupled problems, the 
time-dependent position of a structure (in our case, the block 
that subsides) determines some boundaries of the fluid (the 
magma), and, in turn, some properties of the flow such as 
pressure and stress act as boundary conditions that partially 
affect the structural dynamics. In the particular case of caldera- 
forming eruptions, it is obvious that those boundaries of the 

fluid in contact with the structure (the boundary ['rs ) will 
undergo large-amplitude motion during the collapse process 
and, consequently, it will be necessary to consider the 
numerical solution of the flow-governing equations using a 
deforming mesh. For this purpose it is convenient to write the 
flow-governing equations using an arbitrary Lagrangian- 
Eulerian (ALE) formulation, in which the frame of reference 
moves with a velocity fi(t) with respect to the classical fixed 
reference frame. The goal of the ALE formulation is to keep all 
the advantages that the traditional Eulerian description provides 
in the treatment of fluids while simultaneously incorporating 
some characteristic aspects of the traditional Lagrangian 
description such as accuracy in the description of the moving 
boundaries. As usual [e.g., Spera, 1984; Trial et al., 1992], we 
assume for simplicity that magma is a Newtonian fluid. In 
consequence, the equations that govern its behavior are the 
Navier-Stokes equations, which using an ALE formulation are 
[Hughes et al., 1981 ], 

Op =-V.U +fi.Vp (1) at , 

au 
= -v. (u © u)-vp + V.T + pg + fi.vu (2) at , 

T =• Vu+uV-•(V.u)l (3) 

where (see notation section) t is time, p is density, p is 
pressure, • is viscosity, u is the velocity vector, U = ,ou is 
the momentum vector, g is the acceleration due to gravity, fi 
is the velocity of the ALE dynamic mesh, and T is the viscous 
stress tensor (the Cauchy stress tensor without its isotropic 
pressure term). Equations (1) and (2) are, respectively, the ALE 
continuity and the ALE momentum equations, derived from 
general principles of mass and momentum conservation. Note 
that in the ALE version of these equations a new term that 
accounts for the relative movement between the frame of 

reference and the fixed laboratory system appears with respect 
to the traditional Eulerian formulation. Equation (3) is nothing 
but the constitutive equation of a Newtonian fluid. 

The above set of equations must be complemented with a 
state law. The state law adopted in the present model is that of 
Folch et al. [1998], deduced assuming the following: (1) 
Magma is a continuous medium composed by a liquid phase 
and a single volatile species (H20 in the case of magmas of 
silicic compositions and, usually, CO2 in the case of basic 

• •! (t) F•s(t) j 

(t) ß 

Cz, (t) 
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Figure 1. Fluid-structure interaction problem. A structure moves within a fluid consisting of a time-dependent 
domain g2r(t). The boundary [`(t) of the domain g2r(t) can be decomposed as [`=FrsUF 0 
( Frs r• [`0 = •5 ), where Frs (t) is the time-dependent fluid-structure interface (dashed line). 
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magmas). (2) The solubility X of the volatile species is given 
by Henry's law 2' = s p m, where s and m are parameters that 
depend on both magma and volatile compositions [Tait et at., 
1989]. (3) The oversaturation in volatiles and their subsequent 
exsolution to form gas bubbles take place instantaneously once 
the ambient pressure equals the critical (exsolution) pressure 
Pe' (4) If oversaturated in volatiles, magma is a two-phase 
mixture composed by an incompressible liquid with dispersed 
bubbles of compressible gas in thermal and mechanical 
equilibrium, that is, one assumes a bubbly flow regime under 
the homogeneous approach. Only a single volatile phase is 
assumed for simplicity. (5) The gas phase behaves as a perfect 
gas. A discussion on these hypotheses is given by Fetch et at. 
[1998]. 

On the basis of these five assumptions, the state law is given 
by Fetch et at. [1998], 

p 1-$p m 

(4) 

where Pt is the liquid density, Q is a gas constant (Q =461.66 
JøK-•kg -• for water), T is temperature (here assumed constant), 
W is the volatile mass fraction (including both dissolved and 
exsolved contributions), and O is the step function, defined as 
©=0 for p > Pe and © = 1 for p < Pe' An important feature 
of state law (4) is that it presents two differentiated domains: 
Below the exsolution level (p > Pe) all the volatiles are 
dissolved in the liquid and the magma has a constant density 
p=p•, while above this level (P<Pe) the liquid is 
oversaturated in volatiles, the exsolved volatiles forming gas 
bubbles and magma becoming a two-phase compressible 
mixture in which density depends nonlinearly on pressure. The 
homogeneous approach constrains the applicability of the state 
law to high-viscosity, chemically evolved magmas in the 
bubbly flow regime [Papale, 1996]. 

The set of equations (1) to (4) must be solved in a time- 
dependent domain f2r(t) together with a given set of boundary 
and initial conditions to find density, pressure, and velocity. 
The fluid domain f2r(t) clearly depends on the dynamics and 
the rheology of the structure, so that an additional equation 
must be added to account for the structural response. For 
simplicity, the model assumes that the block subsides as a rigid 
solid, whose behavior is governed by Newton's second law, 

Mb•i = fl*S + Mbg , (5) 

where M b is the mass of the block, d is its position 
(superscript dots indicate temporal derivatives), and frs is the 
vector of forces that the fluid exerts on the collapsing block, 
given by 

frs = •(pn_T.n)dF 
F FS 

(6) 

where n is the outward unit normal to Frs. Clearly, equation 
(5) is intimately coupled with the Navier-Stokes equations by 
means of (6), and its solution allows determination of the fluid 
domain f2r(t) at any time instant. Two constraints must be 
added to the system. First the flow and the structural equations 
are intimately coupled by the fact that the velocity field of the 
structure d and that of the fluid u must be, at any time instant, 
compatible at the fluid-structure interface Frs (t), that is, 

d!(t) = u(t) on IFs (t) . (7) 

In fact, equation (7) is the ALE version of the classical nonslip 
condition. On the other hand, the structure and the ALE 
dynamic mesh are coupled by means of 

a(t) = •(t) 

•!(t) = fi(t) on Frs (t) ' (8) 
where i are the time-dependent coordinates of the mesh. The 
second condition in the above equation is imposed because a 
discontinuity between the velocities of the structure and the 
fluid mesh at the fluid-structure interface can perturb the 
energy exchange. 

3. Numerical Method 

We propose a general method to solve equations (1) to (5) 
together with the constraints imposed by (7) and (8). The 
methodology has been specifically developed to model the 
behavior of magma chambers during caldera-forming 
eruptions, but is general and could be applied to any fluid- 
structure interaction problem where the structure behaves as a 
rigid solid without rotational degrees of freedom. The 
numerical procedure is fully developed and tested using 
standard benchmark problems by Fetch [2000], and only the 
general features are outlined in this paper. 

3.1. General Procedure 

In order to solve the fluid-structure interaction problem, the 
governing equations for the structure and fluid should be 
integrated simultaneously. Nevertheless, the solution of this 
coupled problem via a monolithic scheme is an expensive 
procedure and presents computational drawbacks, because 
every component of the coupled problem has its own 
mathematical and numerical properties as well as its own 
software implementation requirements. An alternative is to use 
a partitioned or staggered procedure in which the fluid and the 
structural equations are alternately integrated in time by using 
separate solvers. The interaction is then taken into account by 
means of the boundary conditions. The advantage of the 
staggered procedure is that it keeps software modularity, 
simplifies the code, and, for small time step sizes, the solution 
converges to that of the monolithic scheme. The general 
procedure for the staggered method is illustrated schematically 
in Figure 2. Given the fluid-structure states at t = t", the aim is 
to find the solution of the coupled system at t "• = t"+ At, At 
being the time step size under consideration. Each time step of 
the staggered procedure is as follows: (1) Solve the structural 
equations to estimate the position of the structure at t "• , that 
is, the domain of the fluid F2F(t"•). (2) Transfer the motion of 
the boundary of the structure to the dynamic mesh of the fluid 
by imposing the first condition of equation (8) and use the 
quasi-Laplacian method to compute the configuration of the 
mesh at t "t . (3) Check whether there is an unacceptable mesh 
distortion and, if so, perform remeshing. (4) Determine the 
mesh velocity fi and the boundary conditions for the fluid at 
the fluid-structure interface FFs during the interval (t"t "•) in 
a manner compatible with the constraints imposed by equations 
(7) and (8). (5) Solve the equations of the fluid and compute the 
forces over the structure at t "• by means of equation (6). 
These steps are discussed in detail below. Note that, in general, 
the order of resolution of the staggered procedure (integrate the 
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• Solve the structural equations estimating the acceleration 
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motion to the dynamic 
mesh of the fluid 
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Mesh distortion . 
YES 

Set the velocity of the mesh 
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Solve the Navier-Stokes 
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Figure 2. Diagram of the staggered procedure used to solve a certain time step of the fluid-structure 
interaction problem. 

structure first and then the fluid or vice versa) is irrelevant if 
At is small enough. However, for our particular purposes, it is 
necessary to keep the order indicated above because, at t = 0, 
the structure responds to the initial stage of the fluid. 

3.2. Solution of the Structural Equations 

The structural equations are integrated in time using the 
constant average acceleration method [Blom, 1998]. This 
method is of order O(At 2) and constitutes the optimal case of 
the Newmark method. Let d", d n , •i", and •i "+• be the given 
position, velocity and accelerations of the structure at times 
t = t" and t = t "+• , respectively. Then, in the constant averaged 
acceleration method, the position and the velocity of the 
structure at t = t "+• are obtained by solving the following 
system, 

4 I 0 d,,• 4 I •l . •i,,•+ 
La,,+, = ,, + b--•t t L--•t -t o 

, (9) 

where ! is the identity matrix. It should be noted that the 
solution of (9) explicitly assumes that ki "+• is known, that is, 
that the vector of forces frs is known at t = t "+• . However, in 
the case of fluid-structure interaction problems, this value is, in 
general, an unknown at this stage. Therefore it is necessary to 
do some structural prediction based, for instance, on some 
extrapolation from previous values of the acceleration. In 
particular, we have performed a third-order explicit approach 
using values at t", t "-• , and t n-2 . 

3.3. Quasi-Laplacian Method 

Once the position of the structure has been determined at 
t =t "+• (i.e., once we know the domain of the fluid flr(t "•) ), 
the new coordinates of the dynamic mesh i at this time instant 
can be computed. This is done using the quasi-Laplacian 
method, a procedure introduced by Masud and Hughes [ 1997]. 
The idea is to solve, using a finite element method, the 
following problem: 
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V. [(1 + •) Vi]= 0 in g2r 
i=d on ['rs 
i=0 on Fo 

(10) 

where •: is a bounded, nondimensional function defined for 
each element of the FEM mesh as 

o 

ge_ 1-A•nin/Amax 
•le / •l•nax , (11) 

and where Aem•, and A,•.•x are the minimum and the maximum 
elemental areas (volumes) of the mesh and A e is the area 
(volume) of the element under consideration. This method's 
main advantage is that it recovers the traditional Laplacian 
method when the mesh is uniform (when Aemi, = Aem.•x = A e , 
then •:• =0 Ve ), whereas for nonuniform meshes the smaller 
elements translate with less distortion and the larger ones 
absorb the motion. This prevents element inversion and 
maintains the shape of elements in refined zones such as 
boundary layers. The first condition of (8) has been introduced 
explicitly as a boundary condition when solving (10). The 
solution of (10) allows the new configuration of the mesh to be 
determined by adding, as a computational cost, the solution of a 
linear system of algebraic equations 

Kx =0 , (12) 

where x is the vector of nodal displacements and K is the 
matrix arisin_g from the finite element discretization of 
v.[o+g)vl]. 

3.4. Mesh Distortion and Remeshing 

The solution of equation (10) determines a new 
configuration for the fluid mesh at every time step. Here, 
criteria to evaluate mesh distortion are considered. This is 

achieved by imposing a maximum and a minimum value for the 
elemental angles of the mesh. Whenever one or more elements 
of the mesh are unacceptably stretched, a remeshing and 
subsequent nodal interpolation from the old mesh to the new 
one are performed. Nodal variables are transmitted using 
classical Lagrange interpolation functions with some 
constraints that guarantee global conservation of quantities 
such as mass, momentum, or forces. This technique [Houzeaux 
and Codina, 2001] allows a compromise between the variable 
continuity and the global information it carries. The remeshing 
procedure is undesirable because of the computational cost and 
inherent projection errors. However, one of the advantages of 
the ALE formulation with adequate mesh movement is that the 
remeshing is necessary only rarely, for large structural 
displacements. 

3.5. Mesh Velocity and Boundary Conditions 

A key point in fluid-structure interaction is how to integrate 
the Navier-Stokes equations. Since the spatial configuration 
changes in time, the choice of appropriate time integration 
points is crucial. In FEM the normal procedure is first to 
discretize the equations in time using finite differences and 
obtain the weak form by integrating over the spatial domain. 
Thus once the equations are time-discretized, the use of a FEM 
leads to the evaluation of spatial integrals. This raises the 
question of where, in the case of time-dependent spatial 
domains, to evaluate these integrals: on the mesh configuration 
(t",i"), or on (t"+•,i"•), or on a combination. A common 

procedure is to solve the ALE Navier-Stokes equations 
considering both fi and configuration of the dynamic mesh at 
t "1/2 , by using 

and 

•n+l _ ,-n+1/2 
U 

At ' (13) 

•[n+l/2 = • (14) 

The use of (13) combined with the constant average 
acceleration method for advancing the structure guarantees that 
the second constraint of equation (8) is satisfied at a discrete 
level [Blom, 1998]. In general, not all the structural integrators 
can satisfy this condition of continuity between the velocities of 
the structure and dynamic mesh at Frs. As pointed out by 
Farhat et al. [1995], this justifies the use of this integrator for 
low-frequency-dominated structural equations (without 
oscillatory behavior). 

Another important issue concerns the prescription of the 
fluid boundary conditions at the fluid-structure interface, that 
is, which value of u must be prescribed at t n+i/2 tO verify the 
constraint imposed by equation (7). For the constant average 
acceleration method the structural velocity •1 is linear in time 
so that its value at t n+l/2 is given directly by the trapezoidal 
rule. Therefore if one sets the fluid velocity as 

u,,+•/2 1 (•!,,+• •!" ' (15) 

then the required constraint is satisfied at a discrete level 
because 

2 

(16) 

When the no-slip condition is considered, the particles of the 
structure and the fluid and the nodes of the dynamic mesh 
coincide at the fluid-structure interface, that is, the ALE 
formulation becomes Lagrangian at this part of the domain. 
This is significant because a major goal of the ALE formulation 
is to provide a Lagrangian description in zones such as moving 
boundaries of free surfaces. 

3.6. The Navier-Stokes Equations 

The final step of the staggered procedure involves numerical 
solution of the ALE Navier-Stokes equations using a FEM. The 
algorithm uses a fractional step method combined with a 
pressure gradient projection technique that provides additional 
stabilization of the pressure field and allows a fully implicit 
scheme of order O(At2). The algorithm can be solved for both 
compressible and incompressible flows. This is important in 
simulations of volcanic eruptions because the state law for the 
magma assumed by the physical model presents two domains: 
incompressible below the exsolution level and compressible 
above it. A detailed description of the algorithm has been given 
by Folch et al. [ 1999] and Folch [2000]. 

4. Numerical Results 

Numerous simulations of caldera collapse processes in 
silicic magmas have been performed using the algorithm 
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described above. Accuracy of numerical solutions has been 
checked using different meshes and time step sizes. This 
section describes the results obtained for a particular numerical 
simulation that exemplifies features found in the rest of the 
cases and the applicability of the numerical procedure. 
Obviously, the quantitative results vary considerably from one 
simulation to another. However, in general, similar qualitative 
behavior is observed. Interesting results are obtained, but 
caution is applied to their geological interpretation since they 
represent a simplification of the natural system. 

An elliptical chamber with major axis a =4 km and minor 
axis b =0.5 km is located at depth H ch a =4 km below the 
Earth's surface (Figure 3). Recent studies [Gudmundsson et al., 
1997; Gudmundsson, 1998] investigating stress fields favoring 
the generation of ring faults suggest that sill-like chambers 
offer the most suitable stress configuration for the initiation of 
ring faults. The assumed chamber has an aspect ratio as 
suggested by these previous studies. Magma flows through a 
ting fault of thickness rc =50 m located at a distance a• =3.5 
km from the symmetry axis. The resulting caldera depression 
has a diameter of 7 km. For simplicity, numerical calculation 
starts once the ring fault is already open and the caldera- 
forming eruption has begun. Preceding phases of the eruption 
in which the chamber is decompressed and the ring faults 
formed are neglected. An important limitation of the model is 
that the state law proposed for the magmatic mixture assumes 
thermal and mechanical equilibrium between liquid and gas 
phases. This equilibrium is justified as long as the bubbly flow 

E 

II 

E 
E 

Earth's surfaoe 

a• = 3.5 Km 

Computational 

v• nt 

Ring 
fault 

r•=50m 

Figure 3. Geometry at the onset of the caldera-forming 
eruption. The symmetry axis is located at r =0, and the origin 
of coordinates is at the center of the chamber. An elliptical 
chamber with major axis a =4 km and minor axis b =0.5 km is 
located at depth H ch a =4 km below the surface of the Earth. 
Magma flows through a ring fault of thickness r•=50 m 
located at a distance a c =3.5 km from the symmetry axis. The 
diameter of the resulting collapse caldera is 7 km. The conduit 
is cut at a distance H c =0.5 km in order to ensure the validity 
of the state law, so that the computational outlet does not 
coincide with the physical one (the vent). The computational 
domain for the fluid is shaded. 

regime is sustained and becomes unrealistic in the uppermost 
parts of the conduit, near and above the fragmentation level 
[Folch et al., 1998]. To satisfy this condition, the conduit is cut 
at a distance H c =0.5 km so that the computational outlet does 
not coincide with the physical vent. An adequate physical 
treatment of this region would require the solution of a 
nonhomogeneous problem, where governing equations for 
liquid and gas phases are considered separately. 

The geometry has been discretized using meshes with linear 
triangular elements. A mesh is considered to become 
unacceptable when none of its elements has an angle lower than 
10 ø or greater than 160 ø. When this critical condition is 
attained, a new mesh is generated, and the nodal variables are 
interpolated onto the new mesh. Although in this simulation 
large structural displacements and thus large mesh 
deformations are involved, only six different meshes are 
required to simulate the collapse process. General and detailed 
views the first and the last of these meshes are shown in Figure 
4. 

Boundary and initial conditions of the model are illustrated 
in Figure 5. The no-slip condition is assumed at the chamber 
and conduit walls, that is, u = •! at the fluid-structure interface 
Frs (see equations (7) and (15)) and u = 0 along the rest of the 
walls. The horizontal component of the velocity is set to zero 
along the symmetry axis. Pressure at the computational outlet is 
fixed to lithostatic. A major inconvenience of cutting the 
conduit is that the outflow boundary condition becomes a time- 
dependent unknown of the problem and some approximate 
boundary condition must be used. The adoption of the 
lithostatic value can be justified as a first approximation to this 
unknown value because the average stress field within the 
conduit can not be far from lithostatic if the conduit is to 

remain open against compression of the host rocks. In the 
simulation described, the assumed mean density of the host 
rock is Pr =2600kg m -3, implying a pressure of 90 MPa at the 
outlet. Initial values are assigned to velocity and pressure. 
Magma is assumed to be at rest before the eruption. The initial 
pressure distribution is assumed to be magmastatic. The 
chamber is filled with rhyolitic magma of density Pt =2400 kg 
m '3, temperature T =850øC, viscosity • =104 Pa s, and a 
constant water content of W =0.0425 (4.25 wt%). Under these 
conditions the exsolution level is located initially 200 m below 
the chamber roof, and 23% of the chamber volume is initially 
vesiculated. Driving the eruption is the density contrast 
between magma and the subsiding block, which induces 
downward movement of the block and squeezes magma out of 
the chamber through the ring fault [see Gudmundsson, 1998; 
Marti et al., 2000]. 

The subsidence of the block versus time is shown in Figure 
6. From this it can be seen that as soon as caldera collapse 
begins, the downward velocity of the subsiding block increases 
rapidly due to buoyancy effects. However, viscous forces, as 
well as the pressure exerted by the magma on the block, rapidly 
compensate for the density differences, making the net force 
acting on the block nearly zero. The result is that the block 
subsides at an approximately constant velocity, here of 0.55 
m/s. This nearly constant velocity is maintained throughout the 
eruptive process, ending only during the last phase of the 
eruption, when the block begins to slow before impacting on 
the bottom of the chamber. A consequence of this is that the 
eruption rate rapidly increases to a plateau value with a final, 
relatively sudden, decrease (Figure 7). This numerical result is 
in excellent qualitative agreement with intensities inferred for 
caldera-forming eruptions [Smith, 1979; Marti et al., 2000]. 
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Figure 4. General and detailed views of the first and the last finite element method (FEM) meshes used in computations. Meshes are made of with triangular linear elements and, on average, have 10,000 nodal points. Although only two meshes are shown in the figure, the whole simulation requires up to six different meshes for the fluid (i.e., five remeshings). 

The variation of erupted mass versus time (Figure 8) is estimated by computing the integral 

(17) 

where S c is the section of the conduit (of the ring fault) and T,, is the final time of analysis. The simulations suggest that 
once caldera collapse has started, it will tend to empty most of 

the chamber. However, note that in the simulations the end of 
the eruption is prescribed by the geometrical criteria of the 
subsiding block impacting on the bottom of the chamber, in this 
case 475 m of subsidence. This represents an extreme case, but 
not unrealistic, where the subsidence is the maximum allowed, 
most of the magma is extruded, and the original magma chamber is destroyed. In natural systems the process may stop earlier for two main reasons. First, the chamber may well be chemically heterogeneous. Magma at the base of the chamber 
of density exceeding that of the subsiding block would result in 
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Figure 5. Schematic of boundary and initial conditions. 

withdrawal of only the uppermost parts of the chamber filled 
with lighter magma. In fact, field evidence shows that in many 
cases, caldera-forming eruptions end with the emplacement of 
nonvesicular silicic lava domes along the ring fault [Walker, 
1984; Lipman, 1984, 1997; Marti et al., 2000]. Another 
possible stop to the process could be a closure of the conduit 
caused by a change in the local stress field or by a 
nonverticality of the ring fault fissure. The existence of inward 
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Figure 6. Subsidence of the collapsing block (in meters) 
plotted versus time (in hours). Note how the slope of the curve 
is, during most of the process, approximately constant. It 
corresponds to the phase of constant terminal velocity. The 
maximum subsidence allowed (by geometrical considerations) 
is indicated by the dashed line. 

dipping ring faults [Walker, 1984; Lipman, 1997] could result 
rapidly in closure of the fault due to subsidence of the block. 

Figures 9 and 10 show density contours and streamlines at 
different time instants. A characteristic feature of the 
simulations is that the exsolution level moves downward with a 
velocity similar to the subsiding block. This is also illustrated 
in Figure 11, where the position of the exsolution level along 
the axis of symmetry is plotted versus time. A feature of the 
simulations is that the exsolution surface is not horizontal 
because subsidence produces a lateral pressure gradient. 
Pressure is greater below the top center of the chamber and 
lower at the outermost part, below the conduit entrance (Figure 
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Figure 7. Eruption rate (in kilograms per second) versus time 
(in hours). A consequence of the kinematic behavior of the 
subsiding block is that the eruption rate remains approximately 
constant during most of the eruption (plateau phase). 
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Figure 8. Total erupted mass (in kilograms) versus time (in 
hours). 

10). Owing to the pressure dependence of volatile solubility, 
this phenomenon has a dramatic effect, tending to concentrate 
volatiles exsolution in the region below the ring fault. This is 
consistent with recent analytical results [Gudmundsson, 1998; 
Martœ et at., 2000] and explains the driving mechanism for the 
eruption of large volumes of ignimbrites during caldera- 
forming eruptions. 

As eruption proceeds, a major central vortex, and secondary 
small ones, may develop at the outermost part of the chamber, 
just below the conduit entrance. This development is illustrated 
in Figure 12, where streamlines around the conduit entrance are 

shown at four different time instants. The vortex arises because 

the no-slip condition at the fluid-structure interface induces a 
tangential slide. This kinematic behavior is similar to a driven 
cavity flow [Ghia et al., 1982; $hen, 1991]. In the case of 
caldera-forming eruptions, numerical simulations suggest that 
the formation of vortices is plausible for relatively low- 
viscosity (103-104 Pa s) magmas (at moderate to high Reynolds 
numbers). This could have important petrologic implications 
because vortices might explain magma mingling and mixing of 
a chemically stratified magma chamber. Many explosive, 
caldera-forming eruptions are characterized by magma mixing 
in their ignimbrite products [Hitdreth, 1981; Lipman, 1984; 
Henry et at., 1988]. 

Some results of the numerical simulations, such as 
subsidence velocity, eruption rate, or vortex formation, are 
strongly dependent on magma viscosity. To investigate this 
dependency, simulations considering different magma 
viscosities of 103, 104, and 105 Pa s have been performed. 
Figure 13 shows how the vortex formation is impeded if the 
magma is viscous enough, that is, if the Reynolds number of 
the problem is low. As expected, the higher the magma 
viscosity, the lower is the terminal subsidence velocity and the 
longer the eruption lasts. It should be noted that all simulations 
underestimate the force acting over the falling block due to the 
cutting of the computational domain. The viscous contribution 
at the uppermost part of the conduit, where magma viscosity 
increases notably due to volatile exsolution, would lead to a 
lower terminal velocity and hence to a longer eruption. While 
the results obtained here are still applicable, in the real case a 
much longer timescale would probably be observed. 

5. Summary and Conclusions 

A procedure to solve the Navier-Stokes equations with 
mechanical coupling has been developed and implemented 
using a finite element method and applied to determine the 

Non-vesiculated (incompressible) magma 

Exsolution level 

position 

Figure 9. Results at t = 10 min. (top) Contours of density. The position of the exsolution level determines the 
transition between the incompressible and the compressible regimes. (bottom) Streamlines. 
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Figure 10. Results at t =22.5 min. (top) Contours of density. (middle) Streamlines. (bottom) Contours of 
pressure. Note how the pressure below the block (below the roof of the chamber) is greater than at the entrance 
of the conduit. Since volatile solubility depends on pressure, it induces a major exsolution of volatiles just 
below the ring fault. 

0 

100 """" """-.,.,.,. x,. x 2OO 

3OO 

400 

500 

600 

0 0.1 0.2 0.3 

Time ( h ) 

Figure 11. Position of the exsolution level (in meters) along 
the symmetry axis plotted versus time. The origin of 
coordinates is the position of the chamber top at t =0. The 
(variable) position of the chamber top is also indicated by a 
dashed line. Note how the exsolution level shifts downward 

with a velocity similar to that of the subsiding block. 

dynamics of magma withdrawal from crustal reservoirs during 
explosive, caldera-forming eruptions. The Navier-Stokes 
equations are considered in the frame of an arbitrary 
Lagrangian-Eulerian (ALE) formulation that is especially 
suitable for fluid-structure interaction problems. This coupled 
problem is solved by means of a staggered procedure where the 
fluid and the structural equations are alternately integrated in 
time with separate solvers. 

Natural systems are extremely complex and involve many 
variables difficult to measure or poorly constrained. Therefore 
a physical model, including some necessary assumptions and a 
state law for the magmatic mixture under the homogeneous 
approach (bubbly flow regime), has been proposed. As such, 
predictions of the model should be viewed with caution and 
regarded as a support to traditional geological, geophysical, and 
geochemical approaches. Different simulations of a wide 
variety of possibilities have been performed. 

Numerical results provide insights into the caldera-forming 
processes that help improve our understanding of magma 
withdrawal dynamics during such explosive eruptions, refining 
the interpretation of the caldera products. The main numerical 
results and their geological interpretations can be summarized 
as follows: 

1. During caldera-forming eruptions the velocity of the 
subsiding block increases rapidly to a constant value, which 
depends strongly on magma viscosity. 

2. The eruption rate increases rapidly at the beginning of 
caldera subsidence, a plateau phase corresponds to the steady 
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Figure 12. Zoom of the streamlines at the rightmost part of the chamber, below the entrance of the conduit. 
This figure illustrates the development of a large central vortex as the eruption proceeds. The corresponding 
time instants are (top left)t =2 min, (top right) t =7 •nin, (bottom left) t =12 min, and (bottom right) t =16 
min. Pictures are not on the same scale. 

fall velocity, and, finally, a sudden decrease is observed. These 
phases correspond to the initiation of collapse and enlargement 
of the ring fault, the main ignimbrite phase, and the cessation of 
explosive activity and emplacement of degassed magma into 
the ring fault, respectively. 

3. Once initiated, the process of collapse stops when most of 
the chamber has been emptied, in the case of homogeneous 
chambers, or when most of the silicic, volatile-rich magma has 
been erupted, in the case of zoned chambers. Structural and 
geometrical effects (i.e., the ring fault geometry) may also 
influence the cessation of the caldera subsidence. 

4. Depending on magma viscosity, a vortex may develop at 
the extemal parts of the chamber, beneath the ring fault. This 
phenomenon is likely to occur if magma viscosity is low and 
may generate mingling and mixing of magrnas initially located 
at different depths. 

5. The exsolution level deepens with a velocity similar to 
that of the subsiding block. However, the exsolution surface is 
not horizontal because the movement of the block muses a 

lateral pressure gradient. Most exsolution takes place below the 
ring fault. This suggests that volatiles exsolution is an efficient 
mechanism to sustain such eruptions, and to explain the 
production of large volumes of ignimbrites. 

The simple model presented offers the first comprehensive 
approach to magma withdrawal dynamics during explosive, 
caldera-forming eruptions. We have described the 
mathematical method used to calculate the physical model. 
Future studies should include temperature dependencies, 

variable magma viscosity, chemical heterogeneities, and 
coupling with the dynamics of the conduit, in order to improve 
our knowledge of the most violent volcanic eruptions that can 
occur on the Earth's surface. 

Notation 

a major axis of the elliptical magma chamber. 
a• distance between the ring fault and the symmetry axis. 
,d e area of an element of the FEM mesh. 
b minor axis of the elliptical magma chamber. 
d position of the structure (of the subsiding block). 
/! velocity ofthe structure (of the subsiding block). 
i{ acceleration of the structure (of the subsiding block). 

tvs force exerted by the fluid over the structure. 
• gravity acceleration. 

H• computational height of the volcanic conduit. 
H•,,, depth of the magma chamber. 

m parameter of the Henry solubility law. 
M•, mass of the subsiding block. 

n outward unit normal. 
p pressure. 

p, critical (exsolution) pressure. 
O perfect gas constant. 
r• thickness of the ring fault. 
s parameter of the Henry solubility law. 

S• section of the volcanic conduit (of the ring fault). 
t time. 
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Figure 13. Zoom of the streamlines below the entrance of the conduit. Results are for magma viscosities of 
(top) 103 Pa s, (middle) 104 Pa s, and (bottom) 105 Pa s. Assuming that /I is 0.5 m s '•, the corresponding 
Reynolds numbers are 60, 6, and 0.6 respectively. The cases with viscosities 103 Pa s and 104 Pa s are very 
similar. However, no vortex is formed when the viscosity is 105 Pa s. 

7' temperature. 
u velocity of the fluid (magma). 
U momentum of the fluid (magma). 
fi velocity of the ALE dynamic mesh. 

W volatile mass fraction. 
i position (coordinates) of the ALE dynamic mesh. 
• solubility. 
At time step size. 

FFs fluid-structure interface. 
tt viscosity. 
p density of the magmatic mixture. 
,o• density of the liquid. 
,o• averaged density of host rock. 

• F domain of the fluid. 
•: function of the quasi-Laplacian method. 
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