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Abstract. Simulating coupled problems using a multiphysics framework is different from
the classical approach using dedicated coupling tools. It can have several advantages
such as reduced memory footprint or more efficient communication between the involved
solvers. The realization of coupled simulations with a multiphysics framework is presented
together with important details of the software design such as data management, data
communication, mapping, and distributed computing. Several examples from different
physical disciplines with coupling internal and external solvers are shown.

1 INTRODUCTION

Coupled problems are often conducted with the partitioned approach by using black-
box solvers/codes. The coupling between the solvers is mostly done with dedicated cou-
pling tools such as EMPIRE [1|, comana [2] or preCICE [3]. This approach inherently
has disadvantages such as duplication of data as well as data communication between the
solvers/codes and the coupling tool.

Performing coupled simulations within a multiphysics framework can mitigate or solve
those issues as presented in this work. It builds on and extends [4].

After the introduction in the first chapter, chapter two discusses the software design for
realizing CoSimulation in the multiphysics framework Kratos Multiphysics [5,16] (Kratos).
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The third chapter focuses on mapping as a crucial component of CoSimulation. Chap-
ter four addresses the important aspects of CoSimulation in distributed environments.
In chapter five the details of realizing CoSimulation with Kratos solvers are presented,
followed by chapter six which shows the coupling to external solvers. The last chapters
give a brief overview and conclusion of this work as well as an outlook. Finally, the
acknowledgements finish this work.

2 SOFTWARE DESIGN

The implementation of CoSimulation features in a multiphysics framework is crucial
for an efficient, versatile, and flexible simulation of coupled problems. In Kratos this is
realized with the CoSimulationApplication. This chapter extends and continues the work
of [4] and focuses on some important aspects of the software design and implementation.

First, the main components of the CoSimulationApplication are briefly explained below,
their interaction is shown in figure [I]

e SolverWrapper: Baseclass and CoSimulationApplication-interface for all solvers/codes
participating in the coupled simulation, each solver/code has its own specific version.

e CoupledSolver: Implements coupling schemes such as weak /strong coupling with
Gauss-Seidel /Jacobi pattern. It derives from SolverWrapper such that it can be
used in nested coupled simulations.

e 10: Responsible for communicating and data exchange with external solvers/codes

e DataTransferOperator: Transfers data from one discretization to another, e.g.
by use of mapping techniques

e CouplingOperation: Tool for customizing coupled simulations

e ConvergenceAccelerator: Accelerating the solution in strongly coupled simula-
tions by use of relaxation techniques

e ConvergenceCriteria: Checks if convergence is achieved in a strongly coupled
simulation.

e Predictor: Improves the convergence by using a prediction as initial guess for the
coupled solution

Kratos uses Python as scripting language and C++ as backend for performance critical
tasks. This combination has proven to be very useful in practice as it combines the
flexibility of Python with the performance of C++. The CoSimulationApplication makes
use of these features which results in a flexible and performant framework. The flexibility
is very important for coupled simulations as many of them require some special treatments.

Having the interfaces available in Python also means that integration of functionalities
from other libraries (e.g. mapping) can be achieved easily.

2
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Figure 1: UML diagram of Kratos CoSimulationApplication

2.1 Data management

Data plays a very important role in coupled simulations. Hence smart and efficient
solutions are required to avoid potential overhead, both in terms of computation as well
as memory.

The CoSimulationApplication uses the Kratos native data structure ModelPart. 1t is
an elaborate data structure that provides all the necessary functionalities such as mesh,
geometry, nodes, elements, and different databases.

The ModelPart is also used by the Kratos solvers, hence their data can be accessed
directly without any upfront manipulation, no extra computation/memory overhead is
necessary when accessing the data of Kratos solvers. This is a large advantage of per-
forming coupled simulations with a multiphysics framework.

2.2 DataTransferOperator: Transferring data between ModelParts

The ModelPart is used as central data storage, each solver has at least one of them.
CoSimulation requires the transfer of data between solvers, which means that data has
to be transferred from one ModelPart to another. How the data is transferred strongly
depends on its format. Possible formats are:

e Data not related to any field or geometry
e Field data which belongs to a mesh (or geometry)

An example of the first type is a single degree of freedom (SDOF) solver, which has
only one degree of freedom that is not related to a mesh or geometry. Another example is
input from a sensor. If combined with a model that has a geometry, then of course they
can be associated in specific geometrical locations, but be themselves they don’t have it.
In those cases it is sufficient to copy the values, no mapping techniques are required.
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A prominent example of the second type is fluid-structure interaction (FSI), where
typically the displacements computed by the structural solver have to be transferred
to the fluid solver, and the loads computed by the fluid solver have to be transferred
to the structural solver. The loads and displacements are associated with the interface
meshes of the respective solvers. Usually, those meshes are not matching due to the
different technical requirements of the solvers, hence mapping techniques have to be used
for transferring the data.

In the CoSimulationApplication the DataTransferOperator fulfills this task. Different
operators are available, for mapping, copying of values, and others. This separation of
concepts helps to keep the framework flexible as well as to split the responsibilities.

2.3 Customizing CoSimulation with the CouplingOperation

Coupled simulations can be done for many different applications, and in different ways.
Hence the requirements for the coupling framework differ vastly for different cases. To
fulfill the requirements and to give the necessary flexibility, mechanisms for customization
have to be given.

This is the task of the CouplingOperation in the CoSimulationApplication. It is an
object that can be used optionally in different places to perform different tasks related to
the coupling. Examples of those tasks are writing output, computing auxiliary quantities
such as normals or scaling values.

Adding a custom task is simple, it only requires adding a Python script that implements
the desired functionality.

3 MAPPING

The transfer of data between non-matching discretizations requires the use of mapping
techniques. As the solvers/codes participating in a coupled simulation often use meshes
for solving their respective physics such as the finite element method (FEM), mapping is
a crucial component of CoSimulation.

However as already explained in mapping is not always needed and hence is
treated as a separate, optional component. In Kratos, the mapping is implemented in the
MappingApplication (see [7] and [8]). It is integrated into the the CoSimulationApplication
as a DataTransferOperator.

As the mapping is implemented in Kratos, it can directly access the internal data struc-
ture, the ModelPart (see . Therefore any memory overhead due to data duplication
is avoided, which is very important especially for mapping between volume meshes.

The MappingApplication provides different mapping techniques such as nearest neigh-
bor or nearest element. Furthermore, the mapping can be done in 1D (line to line),
2D (surface to surface), or 3D (volume to volume). It fully supports message passing
interface (MPI) in distributed environments. More details can be found in [§].
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4 COSIMULATION IN DISTRIBUTED ENVIRONMENTS

Large coupled problems are often conducted using high-performance computing (HPC)
systems such as clusters or supercomputers. These systems employ special programming
techniques for distributed computing such as MPI. Kratos supports distributed environ-
ments, see [9]. The CoSimulationApplication supports it too, also it implements function-
alities to facilitate the solvers working distributed. Different scenarios for CoSimulation
in distributed environments exist, as shown in figure [2]

Scenario 1: CoSimulationApplication
and all solvers run in MPI
(and use all processors)

Scenario 2: CoSimulationApplication
and all solvers run in MPI, some solvers
use less processors

Scenario 3: CoSimulationApplication
and some solvers run in MPI, some solvers
run without MPI

O>-H| [O>-A| [O>H|
| DA [O>-m o>l

. >E| >R O>A
. >l >R O>A

B CoSimulationApplication
A Solver A

@ Solver B

Figure 2: Different scenarios for running CoSimulation in distributed environments (4 MPI-processors)

Efficient algorithms and methods for data exchange are required for distributed com-
puting to avoid communication between the processors as it is overhead. This means that
gathering and scattering of data should be avoided as much as possible and replaced with
more efficient versions such as peer-to-peer communication. The CoSimulationApplication
and especially the MappingApplication make use of peer-to-peer communication whenever
possible.

5 COUPLING INSIDE KRATOS

As a multiphysics framework Kratos provides solution techniques for different physics
such as structural analysis (within the StructuralMechanicsApplication), fluid dynamics
(within the Fluid DynamicsApplication), or discrete elements (within the DEMApplication).
As explained in [2.1], the solvers use the ModelPart as common data structure.

5.1 Common interface of Kratos solvers

Besides using the same data structure, the Kratos solvers also have a common user
interface, the AnalysisStage. This interface accommodates the different solvers and also
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is used throughout the CoSimulationApplication. The main functions are:

e Initialize: This function is called once at the beginning of the simulation, it e.g.
reads the input files and prepares the internal data structures

e RunSolutionLoop: Iterates through the time steps. Is split up into the following
six functions:

— AdvanceInTime: Advancing in time and preparing the data structure for the
next time step.

— InitializeSolutionStep: Applying boundary conditions

— Predict: Predicting the solution of this time step to accelerate the solution.

— SolveSolutionStep: Solving the problem for this time step. This is the only
function that can be called multiple times in an iterative solution procedure.

— FinalizeSolutionStep: Updating internals after solving this time step.

— OutputSolutionStep: Writing output at the end of a time step
e Finalize: Finalizing and cleaning up after the simulation

The interface of the Solver Wrapper (see [2)) follows the same inteface, which makes the
integration of Kratos solvers into the CoSimulationApplication straight forward.

5.2 Examples

This section shows several examples of coupled problems, solved with Kratos solvers.

5.2.1 Simulation of rock fall protection net

Rockfall protection nets are often used in mountainous areas to protect cars and streets
from falling rocks. [I0] and [11I] simulate and investigate this coupled problem using
Kratos.

The coupling is done in a partitioned way with the CoSimulationApplication. The rocks
are simulated with the discrete element method (DEM) by using the DEMApplication.
The net is simulated using the FEM with the StructuralMechanicsApplication. The setup
of the coupling is shown in figure 3| (left). The impact loads exerted by the rocks are
mapped to the structural model, and the displacements and velocities computed by the
structural solver are mapped back to the DEM for updating the boundary. Figure
(right) shows an application.
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and velocity
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Figure 3: DEM-FEM coupling (taken from [I0]): Coupling scheme (left) and application to rock fall
protection net (right)

5.2.2 FSI with SDOF solver

This example shows the coupling of a computational fluid dynamics (CFD) solver (using
the FluidDynamicsApplication of Kratos) with an SDOF solver as already mentioned
in 2.2 The CFD models the real geometry of the obstacle in the flow, whereas the
SDOF solver only models the stiffness and damping of the structural system. The forces
computed by the CFD are summed up and applied to the SDOF as an external load. After
solving, the displacements are then transferred to all the CFD nodes on the boundary.

This concept is illustrated in figure [4] on the left, with a square cross-section. The
results of the vertical movement of the square are shown on the right. An example of
such a simulation would be the flow over a flexible bridge.
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Figure 4: FSI with SDOF solver: Setup (left) and oscillation of rectangle (right)

5.2.3 Munich Olympic stadium roof

Munich was the host of the Olympic games in 1972, for which the Olympic stadium
was built. The main construction of the stadium roof is a hanging cable net covered with
acrylic plates, it is held up and supported by masts and pylons, see figure [5

The behavior of the roof under wind loading is investigated. For this, a CFD model
(using the Fluid DynamicsApplication) and a FEM model (using the StructuralMechanics-
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Application) were created, see figure |§| The FSI coupling is done with the CoSimulation-
Application. Figure [7] shows the displacements of the roof in strong wind.

Figure 6: Structural FEM model of the Olympic stadium roof

6 COUPLING TO EXTERNAL SOLVERS

Coupling to external solvers requires an additional step compared to coupling internal
(Kratos) solvers: The data exchange between the solvers/codes. As explained in[2.1] the
data of internal solvers can be accessed directly. The internal data structure of other
solvers/codes can usually not be directly accessed from outside, hence the interface data
of external solvers has to be imported to/exported from the CoSimulationApplication.
This way they can be treated like internal solvers, which simplifies the implementation.
Unfortunately, it also leads to memory overhead as the data on the interface is duplicated,
which can play an important role depending on the application case. A remedy for this
memory overhead could be to directly communicate data between solvers, but then no
coupling functionalities of the CoSimulationApplication such as mapping or convergence
acceleration can be used.

The IO (see [2)) now plays an important role as it is responsible for the data exchange
which is done via interprocess communication (IPC). Different communication methods
exist, most often used are file- or socket-based communication.
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Figure 7: Displacements of Olympic stadium roof under wind loading

The detached-interface approach (see [4]) is used to minimize the dependencies of
external solvers on the CoSimulationApplication. The idea is to have an independent
interface for data exchange that simplifies the integration into external solvers by avoiding
any dependencies on Kratos and the CoSimulationApplication.

The CoSimIO [12] is a small tool that implements the detached-interface approach.
It is integrated into the CoSimulationApplication and can be used to perform coupled
simulations, see [13].

6.1 Example: Wind Turbine

This example shows the application of the presented work to a full wind turbine FSI
simulation, which is done within the research project WINSENT ([14]). The CFD solver
FLOWer [15] is coupled with Kratos which uses the StructuralMechanicsApplication for
the structural simulation of the turbine and the CoSimulationApplication for the cou-
pling. The CFD model and the adaptions in FLOWer to make the coupling of the entire
turbine possible were done by Giorgia Guma from the Institute of Aerodynamics and Gas
Dynamics at the University of Stuttgart.

FLOWer implements an interface to the coupling library FMPIRE. To minimize the
changes necessary in FLOWer for the coupling with the CoSimulationApplication, a sim-
plified version of the EMPIRE interface using file-based communication was developed
following the detached-interface approach. This interface is a single file header only C++
file with no dependencies, which made the integration is FLOWer straightforward.

Two structural models were created, using beam and using shell elements. The dis-
placements of the blades can be seen in
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Figure 8: Displacements for turbine models under operating conditions, for beam model (left) and shell
model (right)

7 CONCLUSIONS AND OUTLOOK

This work presented the realization of CoSimulation by using the multiphysics frame-
work Kratos and the CoSimulationApplication. Different aspects of software design and
implementation are covered. Mapping was discussed as a crucial component of CoSimula-
tion, as well as conducting coupled simulations in distributed HPC environments. Several
real-world application examples show the capabilities of the CoSimulationApplication.

Future extensions of this work can be the application to volume coupled problems or
coupling to other particle methods such as the material point method (MPM). Further-
more the features for CoSimulation in distributed environments can be improved. This
includes the detached interface CoSimIO to support MPI. Also, different methods for data
exchange with external solvers using IPC such as sockets or pipes can be implemented to
improve the performance and efficiency of the data exchange.
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