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Abstract. We propose a reformulation of linear Kirchhoff beams in two dimensions based on
the tangential differential calculus (TDC). The rotation-free formulation of the Kirchhoff beam
is classically based on curvilinear coordinates. However, for general applications in engineer-
ing and sciences that take place on curved geometries embedded in a higher-dimensional space,
the tangential differential calculus enables a formulation independent of curvilinear coordinates
and, hence, is suitable also for implicitly defined geometries. The geometry and differential
operators are formulated in global Cartesian coordinates related to the embedding space. Iso-
geometric analysis (IGA) is employed for the generation of shape functions in the numerical
analysis because Kirchhoff kinematics require C1-continuous shape functions. The boundary
conditions are enforced using Lagrange multipliers. We emphasize systematic convergence stud-
ies for established and new test cases by investigating residual errors. Therefore, the approxi-
mated solution obtained by the FEM is inserted into the strong form of the governing equations
in a post-processing step. The error is then integrated over the domain in an L2-sense. For suffi-
ciently smooth physical fields, higher-order convergence rates in the residual errors are achieved.
For classical benchmark test cases with known analytical solutions, we also confirm optimal
convergence rates in the displacements.

1 INTRODUCTION

Kirchhoff beams, also known as curved Euler-Bernoulli beams, are thin curved beams which
fulfill the so called Euler-Bernoulli or Kirchhoff assumptions. These are that the cross sec-
tion of the beam remains plane and orthogonal to the beam axis after the deformation of the
beam. The Kirchhoff constraint states that shear deformations are vanishing in this model,
e.g. [1, 2]. Note that a planar Kirchhoff beam is a one-dimensional beam embedded in a two-
dimensional plane and a spatial Kirchhoff beam is a one-dimensional structure in R3. For this
work, one-dimensional curved beams in a two dimensional plane are investigated. In the classical
formulation, a local curvilinear coordinate system is used. The geometry of the beam depends
on a parametrization which is generally not unique. That is, the same curved beam geometry
can be described by infinitely many maps. Within this geometry description co- and contravari-
ant base vectors occur naturally. For mathematical operations on this domain, some additional
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quantities and operators, e.g., Christoffel symbols, are necessary. Components of tensor quan-
tities, e.g., load vectors and stress tensors, are expressed in co- or contravariant components.
Linear curved Euler-Bernoulli beams based on curvilinear coordinates are described in [3] and
non-linear ones in [4, 5]. In shell mechanics, the analogy to Kirchhoff beams are Kirchhoff-Love
shells. In the classical description of Kirchhoff-Love shells, curvilinear coordinates are used for
the definition of the two-dimensional middle surface of the shell and the mechanical tensors [6, 7].

We emphasise a reformulation of Kirchhoff beams in a plane where the geometric quantities,
mathematical operators and mechanical tensors are described in global Cartesian coordinates.
This approach is known as tangential differential calculus [8, 9]. It has been used in structural
mechanics for shells [10, 11, 12, 13], for spatial beams [1], membranes [14], and ropes and mem-
branes [15]. TDC can also be applied in fluid mechanics, e.g. [16, 17]. This work is related to
the reformulation of the Kirchhoff-Love shell in terms of TDC [12]. The main advantage of using
a TDC-based model instead of a classical formulation based on curvilinear coordinates is that
the description is independent of a parametrization. Therefore, it is also possible to define the
geometry implicitly, that is, based on level-sets. Then, co- and contravariant bases and certain
quantities, such as, e.g., Christoffel symbols, are not necessary. A TDC-based formulation is
more general because of these aspects.

In a TDC-based formulation for a Kirchhoff beam, the centre axis of the beam is a one di-
mensional manifold embedded in a two-dimensional space R2. For the curved, planar Kirchhoff
beam based on TDC the vectors describing geometric and mechanical quantities are 2× 1 and
second-order tensors have a 2 × 2 - coefficient matrix. The base vectors of these vectors and
tensors are the global Cartesian base vectors x = e1 and y = e2 which are unit vectors. For
the numerical results in this contribution a parametrized mapping is used to discretize the weak
form of the BVP. Test and trial functions must fulfill C1-continuity because of the kinemat-
ics which results from the Kirchhoff constraints. Therefore, isogemetric analysis (IGA) is used
where the test and trial functions are B-splines (NURBS) [18, 19]. The approximated solution
is used together with the strong form of the governing equations of this BVP to calculate the so
called residual error (also denoted as strong form error) in the L2-norm.

An outline of this paper is as follows: In section 2, tangential differential calculus is intro-
duced; in section 3 the mechanical model of the Kirchhoff beam is described, followed by some
aspects of the implementation in section 4, and in section 5 numerical test cases and results are
shown. Finally this paper closes with a conclusion.

2 TANGENTIAL DIFFERENTIAL CALCULUS

Partial differential equations (PDEs) on surfaces can be modelled using tangential differential
calculus (TDC) [20]. A manifold Γ with dimension q is embedded in a d-dimensional space Rd.
The difference d − q is the codimension of Γ. For the Kirchhoff beam q = 1 and d = 2, so, a
1-dimensional manifold is embedded in R2. Geometry and differential operators with respect to
global Cartesian coordinates can then be defined using TDC on such manifolds. We restrict the
definitions here to the case of q = 1 and d = 2. However, the concepts are easily extended to other

2



Michael W. Kaiser and Thomas-Peter Fries

situations, e.g., with q = 2 and d = 3 for shells [12, 13]. Figure 1 shows a 1-dimensional manifold
embedded in R2. In Figure 1(a) the normal and co-normal vectors are shown and further the
two possible types of geometry definitions are visualized: In Figure 1(b) an explicitly defined
geometry is depicted and in Figure 1(c) an implicitly defined geometry is shown.
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Figure 1: (a) 1-dimensional manifold Γ embedded in R2 with normal vector nΓ, boundary points ∂Γ,
and co-normal vectors n∂Γ; (b) explicit and (c) implicit geometry definition of Γ.

One possibility to define the manifold describing the central axis of the Kirchhoff beam is
through a parametrization, see Figure 1(b). This is a bijective mapping

x(r) : Ωr → Γ (1)

from the parameter space Ωr ⊂ R1 to the real domain Γ ⊂ R2. Based on the parametrization,
a Jacobi matrix J can be defined with dimension 2× 1 which is a tangential vector to Γ.

J(r) = ∇rx(r) =
∂x

∂r
=

(
t∗1
t∗2

)
= t∗Γ (2)

where ∗ indicates that the vector is not normed. The normed tangential vector is then

tΓ =
t∗Γ
‖t∗Γ‖

=

(
t1
t2

)
. (3)

The normed normal vector follows as

nΓ =

(
−t2
t1

)
. (4)

The first fundamental form is defined as

G = JT · J (5)

which is a q × q quantity. Later the Moore-Penrose-(pseudo)-inverse is used. It is defined as

Q = J+ = J ·G−1. (6)
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It is also possible to describe the manifold implicitly using the level-set method, see Figure 1(c).
A level-set function φ(x) : R2 → R with x ∈ Ωx ⊂ R2 describes the beam implicitly via the
zero-isoline as

Γ =
{
x ∈ Ωx : φ(x) = 0

}
. (7)

The unit normal vector is then defined as

nΓ =
∇xφ

‖∇xφ‖
(8)

where ∇xφ is the gradient of the level-set function.

To map an arbitrary vector to the tangent space TxΓ, the projector

P = I− nΓ ⊗ nΓ (9)

is introduced. The projection of the arbitrary vector-field v : Γ → R2 onto the tangent space
is defined by vt = P · v ∈ TxΓ. Important properties of the projector are: The projection of
a tangential second-order tensor At = P ·At · P is this tensor itself and because the projector
maps onto the tangent space, there follows P · nΓ = 0. Further, P is symmetric, i.e., P = PT

and idempotent, i.e., P ·P = P.

2.1 Tangential gradient of scalar functions

The gradient of a scalar function f : Γ→ R on the parametric manifold is defined as

∇Γf = Q · ∇rf =

[
∂Γ
x f
∂Γ
y f

]
. (10)

with ∇r being the gradient with respect to the reference coordinates. Important properties are
that P · ∇Γf = ∇Γf and ∇Γf · nΓ = 0.

For the implicitly defined manifold, the gradient of a scalar function f(x) with x ∈ R2 is
the projection of the classical gradient onto the tangent space

∇Γf = P · ∇xf. (11)

2.2 Tangential gradients of vector-valued functions

For a vector-valued function u(x) = (u v)T : Γ → R2 there are two gradient operators to
distinguish. The directional gradient of u is defined as

∇dir
Γ u(x) =

[
(∇Γu)T

(∇Γv)T

]
=

[
∂Γ
xu ∂Γ

y u

∂Γ
x v ∂Γ

y v

]
. (12)

Generally, the directional gradients of vector-valued functions are not in the tangent space. The
projection of this directional gradient onto the tangent space leads to the covariant gradient of
a vector-valued function, i.e.,

∇cov
Γ u(x) = P · ∇dir

Γ u(x). (13)

The following important relations and properties are noted: ∇dir
Γ u 6=

(
∇dir

Γ u
)T

,∇cov
Γ u 6=

(
∇cov

Γ u
)T

,
∇dir

Γ u · nΓ = 0, ∇cov
Γ u · nΓ = 0, and ∇dir

Γ u ·P = ∇dir
Γ u.
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2.3 Tangential gradients of tensor functions

For a second-order tensor function A(x) : Γ→ R2, there are again directional and covariant
gradient operators to distinguish. The directional gradient of A with respect to xi is defined as

∇dir
Γ,iA(x) =

∂A

∂Γ
xi

=

[
∂Γ
xiA11 ∂Γ

xiA12

∂Γ
xiA21 ∂Γ

xiA22

]
(14)

and the covariant gradient of A is obtained by

∇cov
Γ,iA(x) = P · ∇dir

Γ,iA ·P. (15)

2.4 Curvature

The Weingarten map [8, 17] is related to the second fundamental form in classical differential
geometry and therefore to curvature. It is defined as

H = ∇dir
Γ nΓ = ∇cov

Γ nΓ (16)

and a symmetric in-plane tensor. Therefore, a 1-dimensional manifold embedded in R2 has one
eigenvalue which is zero and the other one is the curvature of the manifold, i.e., κ = −eig(H).

2.5 Tangential divergence operators and divergence theorems

Tangential divergence operators for vector-valued functions u and second-order tensor func-
tions A are used in the equations describing the mechanical behaviour of the Kirchhoff beam
later. To derive the weak form of the PDE starting from the strong form, integral theorems are
necessary. The tangential divergence operator for a vector-valued function u is defined by

divΓu = tr
(
∇dir

Γ

)
= tr

(
∇cov

Γ

)
(17)

and for a second-order tensor function, the tangential divergence is defined by

divΓA =

[
divΓ

[
A
]
1i

divΓ

[
A
]
2i

]
=

[
divΓ

[
A11 A12

]
divΓ

[
A21 A22

]] . (18)

The divergence theorem used in TDC is defined

• for a scalar function f and a vector function u as:∫
Γ
f · divΓu dΓ = −

∫
Γ
∇Γf · udΓ +

∫
Γ
κf(u · nΓ) dΓ +

∫
∂Γ
fu · n∂Γ ds. (19)

• for a vector function u and a second-order tensor function A as:∫
Γ
u · divΓA dΓ = −

∫
Γ
∇dir

Γ u : A dΓ +

∫
Γ
κu · (A · nΓ) dΓ +

∫
∂Γ
u · (A · n∂Γ) ds. (20)

The terms including curvature κ vanish if the vector u is tangential in equation (19) and if
the tensor A is tangential in equation (20). The double dot product is defined as ∇dir

Γ u : A =
tr
(
∇dir

Γ u ·AT
)

and further, there holds ∇dir
Γ u : At = ∇cov

Γ u : At if At is an in-plane tensor.
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3 KIRCHHOFF BEAMS

The derivation of the governing equations of the linear Kirchhoff beam in a two-dimensional
plane based on TDC is shown in this section. The deformations are infinitesimal, i.e., the
reference and actual configurations of the beam are indistinguishable. Therefore, equilibrium can
be formulated in the undeformed configuration. A linear-elastic material is assumed which fulfils
Hooke’s law. The considered beams are supposed to be thin such that the Kirchhoff (Bernoulli)
assumptions can be applied and shear strain is neglected. As general in structural mechanics
we distinguish the fields of kinematics, constitutive relations (material) and equilibrium in the
derivation.

3.1 Kinematics

The displacement field is described by the vector u = (u v)T. To describe the deformation
induced by bending actions, the difference vector w is introduced as

w = −
(
∇dir

Γ u
)T

= H · u−∇Γ

(
u · nΓ

)
(21)

Figure 2 shows the kinematic relations for the linear Kirchhoff beam.
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Figure 2: Kinematic relations for the linear Kirchhoff beam.
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Γ0 denotes the beam’s centre axis in the initial configuration. The dark blue line Γ is this
axis after deformation. A point P within the beam’s cross section has a distance ζ normal to
the centre axis. The cross section is constant over the beam-length. The vector u describes the
deformation of the beam’s axis. The strain tensor is built up using components for membrane
and bending action as

εdir
Γ = εdir

Γ,M (u) + ζεdir
Γ,B(w). (22)

There, the membrane strain tensor is defined by

εdir
Γ,M (u) =

[
udir
,x

1
2(udir

,x + udir
,y )

sym. udir
,y

]
(23)

and the bending part is expressed as a function of u as

εdir
Γ,B(u) = −

[
udir
,xxnΓ

1
2(udir

,xy + udir
,yx)nΓ

sym. udir
,yynΓ

]
. (24)

The mixed terms in equation (24) cannot be summed up because the directional gradient oper-
ator is not symmetric. However, the resulting strain tensor itself is a symmetric tensor.

3.2 Constitutive relations

As already described above, linear-elastic material behaviour according to Hooke’s law is
assumed. The cross section is constant over the beam’s length. This means that a pre-integration
of the strain tensor is possible which leads to second-order tensors for normal forces and bending
moments. The bending moment tensor follows as

MΓ(u) = P ·Mdir
Γ ·P = EI ·P · εdir

Γ,B ·P (25)

and the effective normal force tensor as

ÑΓ(u) = EA ·P · εdir
Γ,M ·P. (26)

To get physical normal forces it is necessary to consider the beam’s curvature and bending
moments. The real normal force is denoted by

Nreal
Γ = ÑΓ + H ·MΓ (27)

which is the physically occurring internal normal force in the beam’s centre line. Further scalar
values for the normal forces and bending moments are determined. These are obtained as the
non-zero eigenvalues of the tensors ÑΓ and MΓ. Therefore, Ñ = tr

(
ÑΓ

)
and M = tr

(
MΓ

)
are

the scalar-valued internal normal forces and moments respectively.

3.3 Equilibrium

Using the quantities defined above, the equations for equilibrium are obtained. The governing
partial differential equation (PDE) in strong form is expressed in terms of TDC as

divΓN
real
Γ + nΓ · divΓ(P · divΓMΓ) + H · divΓMΓ = −f . (28)
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It is important to note, that in contrast to classical definitions, the strong form (28) does not
rely on any curvilinear coordinates and may, hence, also be used for implicitly defined manifolds.

Multiplication of equation (28) with the test function v and integration over the domain Γ
leads to the weak form of the PDE expressed as: Find u ∈ VKB : Γ→ R2 such that∫

Γ
∇dir

Γ v : ÑΓ+εdir
Γ,B(v) : MΓ dΓ−

∫
∂Γ
v
(
P̃n∂Γ

n∂Γ+P̃nΓnΓ

)
−ωt∂Γ

(v)Mt∂Γ
d∂Γ =

∫
Γ
vf dΓ (29)

∀v ∈ VKB0 .

The corresponding function spaces are defined as:

VKB =
{
u : Γ→ R2 |u ∈ [H1(Γ)]2 : u,ji ·nΓ ∈ [L2(Γ)]2

}
(30)

VKB0 =
{
v ∈ VKB(Γ) : v|∂ΓD

= 0
}

(31)

At the boundary the force in co-normal direction is defined as P̃n∂Γ
= (Nreal

Γ ·n∂Γ)·n∂Γ, in normal
direction as P̃nΓ = P·divΓ(MΓ)·n∂Γ. The bending moment is defined as Mt∂Γ

= (MΓ ·n∂Γ)·n∂Γ,
and the rotation as ωt∂Γ

= (∇Γ(v · nΓ) −H · v) · n∂Γ. The co-normal vector n∂Γ is tangential
to Γ at the boundary ∂Γ, see Figure 1(a).

4 DISCRETIZATION AND IMPLEMENTATIONAL ASPECTS

The mechanical model of the Kirchhoff beam leads to second order derivatives in the weak
form. Therefore, in the FEM for Kirchhoff beams, shape functions with C1-continuity are
required. This can be fulfilled using isogeometric analysis (IGA). The splines are the test and
trial functions used for the FEM-discretization [18, 19]. The stiffness matrix follows as

Kelem = Kelem,M +Kelem,B. (32)

The membrane part is defined by

[
Kelem,M

]
ij

=

∫
Γ

2∑
b=1

Pib · K̄bj dΓ with: K̄bj =
EA

2

[
δbj

2∑
a=1

N ,a ·NT
,a +N ,j ·NT

,b

]
(33)

and the bending part is defined by

[
Kelem,B

]
ij

= EI

∫
Γ
ni · nj · K̃ dΓ with: K̃ =

2∑
k=1

2∑
l=1

Pkl

( 2∑
m=1

N ,lmN
T
,mk

)
(34)

where the N are the B-spline-functions. Dirichlet boundary conditions (BCs) are enforced using
Lagrange multipliers. Neumann-BCs are considered at the right hand side as additional terms
on the level of the external loading within the domain.

A · u =

[
K CT

C 0

]
·
[
u
λ

]
=

[
f∗

b

]
(35)
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where f∗ are the applied loads including additional terms for Neumann-BCs and b is a vector
including the prescribed Dirichlet-BCs.

To verify the accuracy of the FEM approximation, we investigate different errors. For known
bench-mark test cases and systems for which analytical solutions can be computed, these ref-
erence solutions can be used for an adequate error analysis. In the displacements the optimal
convergence rate is O(p+ 1) where p is the order of FE-shape functions (here: B-splines). If an
analytical solution is not available the error can be measured in the strong form (28) of the PDE.
This error is often labelled residual or strong form error εSF and is the summed element-wise
relative L2-error

εSF = εrel,residual =

nElem∑
i=1

εL2,rel,τi (36)

ε2
L2,rel,τi

=

∫
Γ

(
divΓN

real
Γ + nΓ · divΓ(P · divΓMΓ) + H · divΓMΓ + f

)2
dΓ∫

Γ f
2 dΓ

.

Fourth-order derivatives are part of the strong form for Kirchhoff beams. Therefore, the optimal
convergence rate for the residual error is O(p − 3) for sufficiently smooth displacement fields
[12].

5 NUMERICAL RESULTS

For the TDC-based formulation, several test cases have been investigated. Figure 3 shows the
structural system and the solution plots for the deformation uΓ, the bending moment, and the
normal forces for a sliced arc subjected to a constantly distributed vertical load. The convergence
in the displacements and in the residual error are shown in Figure 4 in a double-logarithmic plot
over the mesh size h. The expected rates of O(p+ 1) in the displacements and O(p− 3) in the
residual are confirmed, respectively.
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Figure 3: System sketch and results for a sliced arc.
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Figure 4: (a) L2-error convergence rates for analytical solution of the sliced arc with O(p+ 1) and (b)
residual error for the same test case with O(p− 3) as expected.

Figure 5 shows the system, the results and the εSF-convergence study for a quarter arc
subjected to single loads at its free end. Optimal convergence rates are again verified in the
shown residual errors.
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Figure 5: System sketch, results and residual error analysis for a quarter arc.

Figure 6 shows the system, the results and the optimal εSF-convergence study for a beam
defined by a trigonometric function subjected to distributed loads.
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Figure 6: System sketch, results and residual error analysis for a trigonometric beam.

6 CONCLUSION

The Kirchhoff beam has been reformulated based on the TDC which is more general because
the beam can be defined parametrically or implicitly. Numerical results for a discretization based
on a parametrization using IGA are presented. Optimal convergence rates based on analytical
solutions are obtained. A systematic error study based on the residual errors in the L2-norm
is applied to several test cases and shows optimal higher-order convergence rates. This strong
form or residual error analysis can be applied even if analytical solutions are not available and,
therefore, gives a possibility to verify the accuracy of an approximation also for complicated
geometries and loading situations.
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