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Abstract The analysis of breakthrough curves (BTCs) is of interest in hydrogeology as a way to
parameterize and explain processes related to anomalous transport. Classical BTCs assume the presence
of a single peak in the curve, where the location and size of the peak and the slope of the receding
limb has been of particular interest. As more information is incorporated into BTCs (for example, with
high-frequency data collection, supercomputing efforts), it is likely that classical definitions of BTC
shapes will no longer be adequate descriptors for contaminant transport problems. We contend that
individual BTCs may display multiple local peaks depending on the hydrogeologic conditions and the
solute travel distance. In such cases, classical definitions should be reconsidered. In this work, the pres-
ence of local peaks in BTCs is quantified from high-resolution numerical simulations in synthetic fields
with a particle tracking technique and a kernel density estimator to avoid either overly jagged or
smoothed curves that could mask the results. Individual BTCs from three-dimensional heterogeneous
hydraulic conductivity fields with varying combinations of statistical anisotropy, heterogeneity models,
and local dispersivity are assessed as a function of travel distance. The number of local peaks, their cor-
responding slopes, and a transport connectivity index are shown to strongly depend on statistical ani-
sotropy and travel distance. Results show that the choice of heterogeneity model also affects the
frequency of local peaks, but the slope is less sensitive to model selection. We also discuss how solute
shearing and rerouting can be determined from local peak quantification.

1. Introduction

While breakthrough curve (BTC) analysis is a traditional tool in hydrogeology to obtain hydraulic param-
eters, in recent years, emphasis has been placed on analyzing the shape of the receding portion of the
curve [Haggerty et al., 2000; Dentz and Berkowitz, 2003; Zhang et al., 2007; Willmann et al.,, 2008; Fernan-
dez-Garcia et al., 2009; Becker and Shapiro, 2000; Pedretti et al., 2013]. Ongoing questions are: what is the
most characteristic shape of the receding portion of the BTC, can we define it mathematically, and what
is the relationship between the receding portion of the BTC and physical aquifer parameters and/or
processes [e.g., Bijeljic and Blunt, 2006; Willmann et al., 2008; Dentz and Bolster, 2010; Pedretti et al., 2013,
2014; Zhang et al., 2013]. A number of field and laboratory observations have found a late-time behavior
of BTCs with a constant slope in log-log space, and thus it has been hypothesized that a power law
behavior is representative of curves in real aquifers [Farrell and Reinhard, 1994; Werth et al., 1997; Hagg-
erty et al, 2002; Schumer et al., 2003; Fernandez-Garcia et al., 2004]. In the investigation of these ques-
tions and other involving anomalous transport, late-time BTCs are usually assumed to be monotonic.
That is, local peaks in the BTC are not considered so that a local increase or decrease (in time) of BTC
slope is disregarded.

In fact, a number of studies have shown that multipeak BTCs do exist [e.g., Mallants et al., 1994]. The pres-
ence of fractured media in both numerical simulations [e.g., Moreno and Tsang, 1991] and field campaigns
[Andersson et al., 1993; Frost and Davison, 1994; Thorbjarnarson and Mackay, 1994; Rudolph et al., 1996; Day-
Lewis et al., 2004] have also shown the emergence of multimodal BTCs. Bimodal BTC peaks are common,
and have been observed in many previous analyses [e.g., Coppola et al., 2009; Bellin et al., 1991; Quinodoz
and Valocchi, 1993; Michalak and Kitanidis, 2000], where results are attributed to dual-domain permeability
fields and kinetic sorption in nonconservative solutes. Bimodal peaks in field campaigns can also result due
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to rainfall dilution [e.g., Goppert and Goldschneider, 2008]. Although the focus of this paper is at the field
scale, double peak BTCs have also been reported at the pore scale [Bolster et al., 2014].

From the growing body of evidence showing local peaks, we contend that local peaks in BTCs exist and
should be considered, but are sometimes not reported for a number of reasons. For example, when BTCs are
obtained from actual measurements, subsampling may mask nonmonotonicity, or small peaks may be
reported as measurement errors and thus smoothed out or removed. When numerical analyses of synthetic
aquifers are performed, the simulation methods used may yield artificially monotonous curves. For example,
BTCs obtained from Eulerian methods tend to become oversmoothed, suffering from numerical dispersion as
a function of the cell size [e.g., LaBolle et al., 1996; Salamon et al., 2006]. Likewise, while Lagrangian methods
based on particle tracking are considered favorable in this respect, they can also suffer from artificial oscilla-
tions in the BTC stemming from the reconstruction of concentrations from a limited number of particles [e.g.,
Kinzelbach, 1988; Salamon et al., 2006; Fernandez-Garcia and Sanchez-Vila, 2011; Boso et al., 2013; Pedretti and
Fernandez-Garcia, 2013]. Moreover, in most cases individual BTCs are reported in terms of ensemble averages,
thus practically eliminating the presence of local maxima in either the advancing or receding limbs of the
curve. In these cases, effects related to individual plumes have been averaged out. In reality, only a single real-
ization of heterogeneity exists, and typically the plume is unable to sample the flow field at once, resulting in
irregular fingering of the plume. Recently, Le Borgne et al. [2013] described this phenomenon as the formation
of lamella-like topology, where as travel distance increases, mixing results in diffusive coalesce of these local-
ized fingers and transport behavior behaves closer to the ensemble-mean.

Unimodal assessments of BTCs may no longer suffice with two major advancements in the field of hydro-
geology: (1) the increase of high-frequency data and the progression of data collection techniques that
diminish the problems of under-sampled BTCs [e.g., Berman et al., 2009; Tyler et al., 2009]; and (2) advance-
ments in supercomputing and numerical simulation allowing for higher resolution of flow and transport
problems [e.g., Kollet et al., 2010; Hammond et al., 2014]. As more information is incorporated into BTCs and/
or they are obtained in more spatial locations, it is likely that classical definitions of BTC shapes will no lon-
ger be adequate descriptors for future treatment of contaminant transport problems. The need for alterna-
tive BTC descriptors is partially motivated by the need for integration of hydrogeologic advancements in
environmental management decisions. Recent work has shown that time dependence in environmental
concentrations is imperative in accurately assessing environmental and human health risk [Siirila and Max-
well, 2012a, 2012b; Kumar et al., 2013; Rodak et al., 2013]. Thus, while traditionally the peak environmental
concentration is only considered, these recent works suggest the entire BTC should be considered in risk
analysis. Depending on the length of the exposure duration and when considering the entire BTC, discrep-
ancies in the environmental concentration at a given time could differ if local peaks were considered.

In this work, the presence of multiple peaks in BTCs is assessed from high-resolution numerical simulations
with particle tracking techniques, introducing a kernel density estimator to avoid the impact of using a
finite number of particles. Individual realizations of three-dimensional heterogeneous hydraulic conductivity
fields with varying combinations of statistical anisotropy, heterogeneity models, and local dispersivity are
utilized to test for mechanisms of physical mass transfer. BTCs of nonreactive solutes are analyzed for the
presence of local maxima/minima, a question which has received little to no attention in the literature BTCs
are also analyzed for the corresponding slope of the receding limb of the curve as a function of travel dis-
tance and number of integral scales traveled. The design of this numerical experiment allows for the discus-
sion of BTC evolution in terms of not only the quantity of local peaks, but also how knowledge of local peak
quantity and slope relates to pre-Fickian transport.

2. Methodology

Large-extent (10 km), finely discretized (cm scale vertical, m scale horizontal) aquifers are simulated to
ensure an accurate representation of different scales of heterogeneity (see Table 1). Saturated aquifer flow
is simulated using the parallel, three-dimensional groundwater model ParFlow [Ashby and Falgout, 1996;
Jones and Woodward, 2001; Kollet and Maxwell, 2006]. Nonreactive solute transport is simulated with the
Lagrangian particle tracking model SLIM-FAST [Maxwell, 2010] and a bilinear velocity interpolation [LaBolle
et al., 1996]. Each flow field is composed of approximately 184 million cells, necessitating the use of parallel
high-performance computing. Two constant head boundaries at x = 0.0 (m) and x = 10,002 (m) drive a
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groundwater gradient, while all other boundaries

Table 1. Flow and Transport Parameters ) .
are no-flow (see Figure 1 for flow domain sche-

Parameter Value Units K .
matic and Table 1 for parameters). A 10.0 (m) cubic

Domain size (x, y, 2) (10,002 X 501 X 99) (m) . .

Cell discretization (Ax, Ay, A) (3.0 X 3.0 X 0.3) m) source of 400,000 particles is instantaneously

Number of cells (nx, ny, nz) (3334 X 167 X 330) ) released, then tracked as a function of time at 25

Centered location (250.0, 250.0, 50.0) (m) down-gradient planes perpendicular to the mean

of source (x, y, 2) . . B L

Number of particles 400,000 0 flow direction (P1—-P,s). Each plane is discretely

Porosity 0=03 ) located, spaced evenly in the x direction along the

x distance between planes  Pay = 316.66 (m) mean flow length, where the distance between

X p::nilocatlzns) B EEE D oop ) (G each plane is Px, = 316.66 (m) (see Figure 1). As

10 A2r + + s A25,
¥, z plane locations (y, 2) (0-501, 0-99) (m, m) described in sections 2.3 and 2.4, these 25 planes
Change in head and gradient Ah = 25.0 (m) are used to quantify aquifer transport connectivity,
J=0.0025 ¢ .
BTC time step (t5) @ @ the number of local peaks in the BTC, and the local

peak slope as a function of travel distance.

While a point source and a planar sampling area
were adapted in our methodology, a larger source with a point sampling area (and other combinations of
planar versus point sources and sampling areas) could easily be implemented in future studies. A larger
source zone would likely result in fewer peaks in the BTC as more preferential flow pathways would con-
verge with the bulk of the solute plume. Unlike the use of a point sampling area, a planar sampling area
was selected as it allows for tracking of the entire plume. While the disadvantage of a planar sampling area
is the lack of distinction between breakthrough locations at a given time, the ability to track not only a sub-
set of the plume’s streamlines intersecting the sampling location but rather the entire plume, was the pur-
pose in selecting this numerical setup. An alternative sampling method considering both local and planar
techniques was proposed by Vanderborght and Vereecken [2001], which involves the upscaling of local, nor-
malized BTCs to a reference plane.

2.1. Generation of Heterogeneous Flow Fields

The use of geostatistically based heterogeneity models to simulate physical heterogeneity is of interest in
this analysis, as the shape of the BTC (number of local peaks and slope) will likely differ given different mod-
els, even if the global statistics are the same. Two heterogeneity models, a truncated Gaussian, TG, and a
facies model, F, are used to simulate three-dimensional, spatially correlated heterogeneous K fields of equiv-
alent global univariate statistics. In this study, truncated Gaussian random fields are generated internally in
ParFlow using the turning bands algorithm [Tompson et al., 1989], which enforces a semivariogram function
through rotation of 250 one-dimensional lines through space, and where each value in the random field is
a weighted average of values contained within each band. An exponential model is used to define spatial
correlation of hydraulic conductivity, K (m d ). The resulting K field is a continuous distribution where high
and low values of K are inherently isolated in nature [Koltermann and Gorelick, 1996]. In contrast, a facies K
field distribution is discrete, and high and low K values are not necessarily isolated. Facies fields are gener-
ated using transition probability indicator simulations (T-PROGS) [Carle and Fogg, 1996, 1997; Carle, 1999]
which utilizes a Markov chain model with cokriging and a final quenching step in the interpolation scheme.
Three discrete facies are chosen to populate the K field: High, Fill, and Low. The corresponding K values
(Kkighs Keinn Kiow) vary over 3 orders of magnitude, but are equivalent in volumetric proportion. To make the
truncated Gaussian and facies fields comparable, the global geometric mean and variance of In(K) are iden-
tical across models (see Table 2).
The truncated Gaussian model is
identical to a Gaussian model
except that values of K larger than
Kkigh or lower than K., are “trun-
cated” or set equivalent to Ky;g, or
Ki 0w, respectively (see Figure 2). The
truncated Gaussian model is chosen

in this analysis over the Gaussian
Figure 1. Schematic of the simulation flow domain, showing location of instantane- ne b xtreme val FK
ous source with respect to the twenty-five planes (P1-P25) where BTCs are obtained. One because extreme values o
Note: figure is not to scale. are better connected in truncated
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Gaussian fields. Therefore, BTCs resulting from the

Table 2. Heterogeneity Parameters .
truncated Gaussian model more closely resemble

Anisotropy Ratio Value Units . . 8 K
facies model BTCs, making the comparison with

&;=0.1() 1,=15.0 (m) he faci del | bi d

62— 00125 () = 1200 ) the facies model less biased.

&,=0.0015625 (-) I, =960.0 (m)

*For all scenarios ly=150,1;=1.5 (m), (m) 2.2, Sensitivity to Statistical Anisotropy and

Parameter Value Units Local Dispersivity

Geometric mean of K Ks=1.0 (md™) Autocorrelation of K is defined in the x, y, and z

Variance of In(K) 0°=529 9] directions via the integral scale: I, (m), I, (m), I, (m).

Facies K values Ky=100,P4=033 (md~ "), () Statistical anisot f Kis defined via the ratio:
and proportions K=10,Pr—034  (md", () atistical anisotropy of K is defined via the ratio:

K, =0.1,P, =033 (md™"), () e =1/l (). The effect of statistical anisotropy is ana-
Facies off-diagonal T = Ty =05 g lyzed by varying the magnitude of I, ranging from

transition probabilities
(all directions)

15.0 (m) to 960.0 (m), while the magnitudes of /, and
1, are held constant (see Table 2). For both the trun-
cated Gaussian and facies cases, three ¢ cases are
used from Siirila-Woodburn and Maxwell [2015], ranging from least anisotropic (¢;), intermediate anisotropic
(¢4), and most anisotropic (&) (see Table 2).

Because we are interested in the behavior of individual BTCs and not ensemble statistics, our methodology does
not utilize any spatial or temporal averaging across realizations. That is, for each combination of heterogeneity
model (TG, F) and anisotropy ratio (¢4, &4, &7), BTCs at each of the 25 down-gradient planes are compared independ-
ently. To ensure that the chosen realization is of “typical” behavior within the ensemble, two additional realizations
from each combination of heterogeneity model/anisotropy ratio are chosen randomly to compare for similarities or
differences. This precaution is only necessary given flow field global statistics that yield greater variance in BTCs
across realizations. From the results of Siirila-Woodburn and Maxwell [2015], ensembles with a small variance in com-
parative metrics are those in the facies model, and with the least anisotropy (¢;) whereas ensembles with a high var-
iance are those in the truncated Gaussian model, and with the highest degree of anisotropy (e;).

We are also interested in BTC sensitivity to local dispersivity, as it may play an important role in BTC shape
via induced solute mixing at smaller scales. As molecular diffusion is typically 1 or more orders of magnitude
smaller than the effects of mechanical dispersion, except in the case of very slow groundwater velocities
[e.g., Cherry et al., 1984], the effect of molecular diffusion is assumed small in this analysis, and we combine
diffusion and dispersion with an “effective” dispersivity value. We define the inclusion of local dispersion in
our simulations through the dimensionless Peclet number, Pe = /o, (-), where o is longitudinal dispersivity
(m). For all scenarios, transverse dispersivity, oy (m), is equivalent to 0.1(x;). All heterogeneity model-
anisotropy combinations are simulated with four cases of local dispersivity, where o, vary over 3 orders of
magnitude, and where Pe numbers range from 9.6 X 10° (-) to 1.5 X 10 (-) (see Table 3). One infinite (I)
and three discrete (D1-D3) cases of Pe are simulated with the following «; and oy values:

Case I: oy = a7 = 0.0 (M), equivalent
to Pe = o0

Case D1: o; = 0.001 (m); o= 0.0001
(m)

©
3
a

Case D2: o; = 0.01 (m); iz = 0.001 (m)
Case D3:o; = 0.1 (m); o7 =0.01 (m)

Cumulative distribution (-)
o
(4}

/ 2.3. BTC Reconstruction to Assess
Transport Connectivity and Local
0.25 / —Facies (FA) Peaks
A total of 1,800 BTCs are assessed

=—Gaussian (G), not modeled

—Truncated Gaussian (TG) for transport connectivity and local
0.001 001 o4 ] o 100 1000 peaks, corresponding to each of the
K(md") 25 planes with varying heterogene-

. ity model (TG, F), anisotropy ratios
Figure 2. Distribution of hydraulic conductivity, K, for the two heterogeneity models

used in this study (modified from Siirila-Woodburn and Maxwell [2015]). (€1, €4, €7), Pe (4 scenarios), and
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realizations (3). Although more formally defined
Table 3. Pe (-) Given Varying Anisotropy Ratios and Local Disper-

sivity Cases below in section 2.3.2, a “local peak” is consid-
& =01() £4=00125() & =0.0015625 (-) ered as any fluctuation in the BTC changing
Case | Pe = o0 Pe = oo Pe = oo locally from a positive to negative slope (i.e.,
CaseD1  Pe=15x10* Pe=12x10° Pe=96X 10° from a rising limb to falling limb).
CaseD2 Pe=15%X10° Pe=12X10" Pe=96x 10"
CaseD3 Pe=15X10" Pe=12X10" Pe=96Xx 10’ The challenge when looking at such local details

is to ensure that peaks and slopes are a real out-

come of the system rather than a numerical arti-
fact. To this end, we avoid the use of Eulerian methods to prevent oversmoothing caused by the need to
use low Pe numbers. Thus, a fully Lagrangian method was used. To avoid artificial fluctuations in the solute
BTC caused by the finite number of particles used, we combined a large number of particles (np = 400,000)
with a locally adaptive optimal kernel density estimator (KDE). Optimal KDE methods have been recently
proposed in the particle tracking literature to overcome oversmoothing and artificial fluctuations caused by
the use of a limited number of particles [Fernandez-Garcia and Sanchez-Vila, 2011; Pedretti and Fernandez-
Garcia, 2013]. The basis of the KDE approach used in our work is the universal adaptive bandwidth (UAB)
method developed by Pedretti and Fernandez-Garcia [2013]. UAB is automatic, and locally adaptive, playing
on the strengths of the established global and adaptive bandwidth methods especially to reconstruct
heavy-tailed BTCs. Following Pedretti and Fernandez-Garcia [2013], the singular input parameter which con-
trols sensitivity, o, is specified as 0.5 (-) (« values must range from [0, 1]). Remarkably, at this stage it is impor-
tant to highlight that KDE methods also provide a scientific basis to quantify the size of artificial fluctuations
in particle tracking solutions, which is a key aspect to consider in identifying local peaks.

Sensitivity to the use of the KDE and the number of particles is assessed to avoid artificial effects on the BTC
shape. In reality, the true BTC will only be achieved in the limit (i.e., an infinite number of particles), as oscil-
lations in BTC error decrease inversely with np'’2. To select the number of particles to be used, preliminary
simulations involving different quantities of particles were conducted (np varying over 3 orders of magni-
tude, see Figure 3). As np increases from 4,000 to 40,000 to 400,000 particles (red, green, and blue points,
respectively), the shape of the BTC becomes more defined. Curves reconstructed from 40,000 and 400,000
are almost identical in shape and in the number of local peaks displayed, except for very late times corre-
sponding to low concentrations (i.e., where few particles are passing the plane).

From this preliminary analysis, and taking a conservative methodology, 400,000 particles were selected for
all simulations. Analysis of local peaks and corresponding slopes is conducted from KDE reconstructed
breakthrough curves. We stress the necessity of using the KDE for BTC reconstruction as even though trends
in shapes may be visually evident from the particle tracking raw BTCs (e.g., blue points in Figure 3), quanti-
tatively assessing the number of local
peaks via changes in slope direction
was infeasible due to erraticism in the
raw particle tracking signal. Lastly,
confidence intervals in the KDE were
also calculated as a function of np. As
described in more detail in Appendix
A, the 95% confidence interval is very
small, always smaller than about 1077
for 400,000 particles, where the coef-
ficient of variation for even very
ik 1 jagged BTCs is less than 5% except
‘ during very late times when the num-

ber of particles passing the plane is
& o 0 very low. Thus, the effect of the KDE

Time [T] and number of particles is considered
negligible, and any oscillations in the

Mass Density [M T"']

4K
40K

400 K
400 K KDE

R

Figure 3. Example particle tracking breakthrough curve simulated with varying . .
numbers of particles (red, green, and blue points) and the corresponding kernel BTCs are considered resulting from
density estimator (KDE) reconstructed breakthrough curve for the 400,000 particle the heterogeneous flow field and are

simulation (pink points). not biased due to the methods used.
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2.3.1. Calculation of Transport Connectivity

From the KDE reconstructed BTC, we obtain the transport connectivity indicator C/ = tso/ts (-), where tsq (y)
and t5 (y) are the times at which 50% and 5% of the plume mass pass the plane, respectively [Knudby and
Carrera, 2005]. Given that the CI metric assesses the shape of the BTG, it is used to quantify channeling
through preferential flow pathways. A higher CI value signifies a BTC skewed towards earlier arrival times,
and most often display significant tailing.

2.3.2. Classification of Local Peaks

Next, from the KDE reconstructed BTC local peaks are found and classified according to the duration in which
the slope of the BTC remains negative. Recall that for each realization a BTC is obtained at each of the 25
observation planes. From each log-log curve, we define the time-dependent variable, slope, s(t) = dlog(m)/
dlog(t), where m [M T~ ' is mass discharge and t [T] is time. From the sign of s, we can determine the pres-
ence of a local peak. The duration of a local peak coincides with the duration of when the derivative changes
from positive to negative (i.e., from a local maximum in the BTC to the following local minimum, or from a ris-
ing to a falling limb). For the purpose of discussion, we disregard all local peaks with a duration smaller than
20 simulation time steps. Local peaks with a duration ranging between 20 and 100 time steps are denoted as
“significant local peaks, SLPs,” and those extending over 100 time steps as “major local peaks, MLPs.” This dis-
tinction is illustrated in Figure 4a. These cutoff points were found to be suitable in distinguishing local peaks
in our simulations, but are not to be interpreted as absolute endpoints for all BTCs. Visual inspection was first
used to determine such cutoff points. First, the major cutoff was found by ensuring all BTCs contain at least
one major peak (notice that standard BTCs would display one single peak that would then be considered
major). Second, the significant cutoff was found by distinguishing significant peaks from those which are and
are not visually apparent in the BTC, and which are greater than the 95% confidence interval of the KDE (see
Appendix A). Naturally, this procedure will be data specific, and will vary given the time step and duration of
the BTC. This procedure is not intended as strict guidelines to determine differences in BTC peaks, but rather
to allow for quantitative inspection of the BTC and discussion of BTC shape and evolution with travel dis-
tance. Although local peaks are defined here with regard to their duration, other methodologies similar to
the above could be conducted with regards to the magnitude in mass. Additionally, it is important to note
that although the definition of a local peak here is with regards to time, the methodology used does not dis-
regard the importance of the magnitude in mass as part of defining local peaks. Given that significant and
major peaks are ensured to be greater than the 95% confidence interval of the KDE, in essence local peaks
are also defined here with regards to their magnitude. With this, it is statistically guaranteed that significant
and major peaks are associated with real oscillations in the BTC caused by heterogeneity, and are not errors
associated with the methods used or the presence of a finite number of particles.

2.4. Determination of Slopes

Using this methodology, slopes for significant and major local peaks are analyzed. Determining the
slope of a BTC is done by the incremental ratio, and thus requires a proper method to assess the
length of the curve that will be used to estimate the slope (see definition and discussion by Willmann
et al. [2008]). As shown in Figures 4b and 4c, for an individual local peak, the portion of the BTC of
interest starts from the initial point at which the slope changes from positive to negative (t;), and
extends to the final point at which the slope retains a negative value (t). However, as the signal
between these two points may vary in the degree of noisiness, a final cutout point in the local peak
prior to t; may need to be defined. In doing so, the tail end of the slope is not over sampled, which
may add a bias in the determination of the slope. For example, a scenario which this extra precaution
is necessary if the slope changes very drastically as t approaches t; and the final portion of the local
peak is not be representative of the overall local peak slope, warranting exclusion from the calculation.
The determination of the cutoff point, tsmpre is described in Appendix B.

3. Results and Discussion

3.1. Evaluation of Transport Connectivity

Figure 5 shows CI (-) results as a function of dimensionless travel distance, DI, ' (-), where D (m) is the x
direction travel distance from the source to the plane and /, varies depending on statistical anisotropy, ¢.
Physically, DI, can also be thought of as the number of integral scales traveled. Cl is shown in different
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Figure 4. a) Example kernel density estimator reconstructed break-
through curve determined to have one significant and three major
peaks. b) Determination of t; and t; for each local peak based on
changes in slope sign. c) Definition of local peaks given changes in
slope sign. d) Determination of local peak slope at the time tsample,
with the use of a cutoff point in variance, o2 t.

subplots for the four cases of local dispersion
(rows, Figure 5) and heterogeneity models (col-
umns, Figure 5). Differences in ¢ are denoted by
color (see key in subplot a) for three representa-
tive realizations each. As described in section
2.3.1, a high Cl value corresponds to high prefer-
ential flow favoring anomalous transport; low val-
ues are indicative of more Fickian transport.

3.1.1. Effect of Anisotropy on Transport
Connectivity, Cl

Two generalities can be made: (1) as the number
of integral scales traveled increases, C/ decreases
and (2) greater anisotropy cases (&) result in
greater initial C/ values compared to more iso-
tropic cases (g1). An exception exists for the TG-¢,-
&4 scenario (Figure 5, left column), discussed
below. C/ is also much more variable within the
first 10 integral scales traveled, suggesting that
early transport flow paths are also more variable
during this time. These results are expected, as it
is logical that the probability of a fast flow path
existing between the source and plane after short
travel distances is high and vice versa (where the
probability of connected flow paths after long
travel distances is low). What is interesting to
note is that at the smallest dimensionless travel
distance (DI, "), the & C/ value is slightly larger
than the &4 Cl value. Similarly, at this short travel
distance the ¢4 Cl value is slightly larger than the
& Cl value. This implies that if considering true
travel distance (D), transport connectivity is
slightly greater for more anisotropic aquifers. This
is consistent with previous analyses exemplifying
the importance of statistical anisotropy in both
dimensional and dimensionless space [Siirila-
Woodburn and Maxwell, 2015] but differs from the
work of Zarlenga et al. [2013] which found a weak
dependence of ¢ on BTC results for any degree of
the spatial heterogeneity of the porous formation.
Some key differences in numerical setups
between this analysis and Zarlenga et al. [2013]
should be noted, primarily that the ¢ in our analy-
sis range over a much greater parameter space.
The most anisotropic aquifer in this analysis is
approximately 65 times more anisotropic of that
of Zarlenga et al.; in fact, the lowest ¢ of Zarlenga
et al. is equivalent to the highest statistical anisot-
ropy ratio in this study (¢; = 0.1).

3.1.2. Effect of Heterogeneity Model on Trans-
port Connectivity, Cl

In general, the truncated Gaussian model gener-
ates random fields with well-connected heteroge-
neous structures that can distribute solutes in
relatively fast channels. This effect is more
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apparent for large Pe numbers (advective dominated problems, discussed in the following section) and
intermediate anisotropy ratios. Again while generally the Cl increase as the number of integral scales trav-
eled increases, an exception persists for the TG-¢,-¢4 scenario (approximately between 5 and 10 dimension-
less travel distances, DI "). Here ¢, realizations yield C/ values higher than those of ¢; realizations. To explain
this effect, we first need to recognize that even though both heterogeneity models share the same global
statistics, they are quite different in nature. The facies model describes a categorical variable that can take a
fixed number of values whereas the truncated Gaussian model, instead, represents a spatially continuous
random process defined over a wide range of possible values. Consequently, the facies model assigns a pre-
defined average value of K in each facies, whereas the truncated Gaussian model accounts for heterogene-
ity within a larger range of K values. It is likely that these differences make the general C/ trends more clear
for the facies model than the truncated Gaussian model.

3.1.3. Effect of Local Dispersion on Transport Connectivity, Cl

In general, as the magnitude of local dispersivity increases (rows in Figure 5) Cl also decreases, and the
effects of heterogeneity are diminished. Differences between anisotropy, ¢, also decrease. Essentially, the
increases in local dispersion (especially in the transverse direction) produce a better mixed solute system,
causing the particles to jump from areas of high transport conductivity (fast channels) to areas of low trans-
port conductivity (areas with relatively low groundwater velocities) and thereby a faster homogenization of
the entire system.

3.2. Evaluation of Local Peak Statistics

Figures 6 and 7 show the local peak statistics for major and significant local peaks, respectively. Again,
results are shown as a function of dimensionless travel distance, DI '. Local peaks are shown in different
subplots for the four cases of local dispersion (rows) and heterogeneity models (columns). Differences in ¢
are denoted by color (see key in subplot a).

3.2.1. Trends in Statistics and Conceptual Model of the Physical Mechanism Causing Local Peaks

The number of significant local peaks (Figure 7) is in some scenarios 2 or 3 times greater than the number
of major local peaks (Figure 6) (note that the y axis frequency range is different in both plots to accommo-
date for such differences). This result was expected, as it is inherent in our definition of local peaks (section
2.4) to favor a smaller number of major local peaks than significant local peaks. It is interesting to note that
for some cases (e.g., TG, Case |, &;) the number of major local peaks is as high as 20 (Figure 6a) and the num-
ber of significant local peaks is as high as 50 (Figure 7a), suggesting very jagged BTCs. In contrast, most of
the ¢; scenarios yield very smooth BTCs, where statistics show only one major local peak, and very few or
zero significant local peaks. The latter would indicate more traditional definitions of BTCs and more Fickian-
like transport, where solute particles are normally displaced around the centroid of the plume [e.g., Rubin,
2003], whereas the former is not easily mathematically defined.

As mentioned in section 1, bimodal BTCs have been observed due to dual-domain permeability fields, frac-
ture flow, or kinetic sorption. Here we demonstrate that heterogeneous flow fields of both continuous and
discrete K distributions can result in multipeak BTCs. These statistically based results are of the first to char-
acterize multipeak BTC behavior in three-dimensional porous media, and demonstrate (1) the ability to
quantify localized peaks of different magnitudes as a function of travel distance, (2) the array of local peak
frequencies given differences in hydrogeologic parameters and models, and (3) the ability to determine
physical mechanisms controlling the shape of the BTC, as discussed in the following sections.

From these results, a few trends are notable. First, the number of local peaks (both major local peaks and
significant local peaks) varies as a function of dimensionless travel distance, DI '. In general, the highest
number of local peaks occurs at an intermediate DI ' respective to each ¢; an explanation why is discussed
below. Then within a given anisotropy ratio, ¢, the number of local peaks diminishes as DI, ! increases, so
that the number of significant local peaks decreases towards zero, while the number of major local peaks
trends towards one or two (Figure 6). The question is what is the physical mechanism creating these local
peaks? Furthermore, why do significant and major peaks behave differently?

Conceptually, we propose these peaks are created by preferential flow in the aquifer, and that the degree
of preferential flow (as shown in section 3.1) is correlated to the degree which the aquifer has been
sampled. The conceptual model includes two types of travel pathways. Smaller peaks in the breakthrough
curve result from smaller parcels of solutes traveling either quicker or slower than the bulk of the solute
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Figure 6. Major local peaks statistics as a function of dimensionless travel distance for different cases of local dispersivity (rows) and heter-
ogeneity models (columns). Statistical anisotropy is shown by color (g,, €4, €7; see sub-plot a). Note that since all BTCs have at least one
MLP, the y-axis begins at a value of unity to illustrate those BTCs that have more than one MLP.

(i.e., via aquifer channeling through high K material or diffusion out of low K material). Major peaks are
formed from the bulk of the solute moving at the mean groundwater velocity, and resulting in fewer and
longer duration peaks in the breakthrough curve. As the number of integral scales traveled increases, a few
dynamics may be occurring. First, as more of the aquifer is sampled, the probability of small, fast, or slow
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Figure 7. Significant local peaks statistics as a function of dimensionless travel distance for different cases of local dispersivity (rows) and
heterogeneity models (columns). Statistical anisotropy is shown by color (g4, €4, €7; see sub-plot a).

travel pathways between the source and the plane decreases. Secondly, dynamics related to aquifer sam-
pling are also occurring; as solute parcels encounters both high and low K regions of the aquifer, the travel
times between different localized parcels become more similar, thus the occurrence of distinct localized
peaks decreases. This behavior is consistent with the BTC approaching a singular, monopeak curve. After
even more sampling of the aquifer is completed, a Fickian regime is then approached. Our statistical trends
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in local peak results quantitatively show agreement with this conceptual model. We attribute the number
of significant local peaks tending toward zero as localized pathways in the aquifer ending or being dis-
persed into the bulk movement of the solute, and the number of major local peaks tending towards a small
finite number of peaks (either singular or double peak depending mainly on ¢) as localized pathways mixing
with the bulk of the solute plume.

Although the disappearance of significant local peaks and rise to a finite number of major local peaks indi-
cates the Fickian regime is being approached, the true Gaussian setting time where purely Fickian behavior
is observed may not be reached at this point. One way to assess such properties is by means of moment
analysis [Zhang and Meerschaert, 2011] or metrics such as the dilution index, which indicates when plumes
are well mixed or display pockets of high concentrations [Kitanidis, 1994; Trefry et al., 2003]. We define the
convergence of the BTC shape to a singular major peak as the “mono-peak regime,” a classification which
precedes the true Fickian regime. Our conceptual model is consistent with that of other numerical simula-
tions which report non-Fickian particle displacement due to opposing sequestration and channeling effects
[Trefry et al., 2003; Zhang et al., 2013].

To illustrate this conceptual model further, Figure 8a shows an example BTC with a clear bimodal major
local peak BTC. The spatial locations of particle breakthrough at the measurement plane are also shown at 2
times corresponding to the bimodal peak breakthrough in Figures 8b and 8c. The highest concentration of
particle breakthrough locations differs between the first and second major local peak (i.e., in Figure 8b the
highest particle concentration is centered near Y = 285 (m), Z = 45 (m), whereas in Figure 8c the highest
particle concentration is centered near Y = 275 (m), Z = 52 (m). From this illustration, we can infer that a
plausible mechanism for the bimodality of the BTC in the example is that a portion of the plume has been
physically rerouted in the aquifer; otherwise, the breakthrough of both peaks would occur at the same spa-
tial location in the measurement plane. Physical rerouting occurs when contrasts in the K field lead to shear-
ing of the plume. A simplified schematic of a plume before and after a shearing event is shown in Figures
9a and 9b, respectively. These individual shearing events lead to different solutes routes, and ultimately
appear as individual peaks in the BTC. Initially, the number of local peaks in the BTC is driven by the number
of different velocity pathways connecting the source to the plane; for a Gaussian model this number will be
greater than that resulting from a discrete facies model. Assuming the source samples all facies types, and
without any local dispersion, the number of major local peaks in a facies simulation at short travel distances
will be equivalent to the number of K values present (see Figure 6b). For both models, as the bulk of the
plume has traveled some distance, shearing events occur, effectively dividing portions of the plume. After
long travel distances, the plume has been separated by these shearing events, making the shearing of a
large, concentrated parcel less probable. This is why the highest amount of significant and major local
peaks occurs at intermediate travel distances (Figures 6 and 7). In the following sections (sections 3.2.2—
3.2.4), the effects of hydrogeologic modeling parameters (anisotropy, heterogeneity model, and local dis-
persion, respectively) which affect preferential flow and the conceptual model explaining how a local peak
is formed, are quantitatively assessed.

3.2.2. Effect of Anisotropy on Local Peak Statistics

For both major local peaks and significant local peaks, the frequency of local peaks is very sensitive to ani-
sotropy. Specifically, the larger the statistical anisotropy (¢;) the greater the frequency of local peaks (both
major local peaks and significant local peaks). Because statistical anisotropy has been linked to the concept
of aquifer connectivity [Siirila and Maxwell, 2012a, 2012b; Siirila et al., 2012; Navarre-Sitchler et al., 2013], we
hypothesize that this effect is linked to the concept of preferential flow (see Figure 5). Our results show that
more isotropic aquifers are unlikely to result in BTCs with more than one major local peak, regardless of het-
erogeneity model or local dispersivity. As more integral scales have been traveled, most ¢; BTCs will contain
only one major local peak and very few or zero significant local peaks. In contrast, highly anisotropic aqui-
fers result in BTCs which are very non-Gaussian, often characterized by 5-20 major local peaks and up to 50
significant local peaks. To illustrate this further, Figure 10a shows three BTCs at the same arrival plane (plane
9 in this case), produced with the truncated Gaussian model. In this example, the most anisotropic case
yields a very noisy BTC with multiple major local peak and significant local peaks, whereas the least aniso-
tropic case produces a singular major local peak and zero significant local peaks. Of intermittent BTC noisi-
ness is the intermediate anisotropy ratio, showing a clear bimodal major local peak and one significant local
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Figure 8. a) Example breakthrough curve and b-c) corresponding particle breakthrough locations in the plane orthogonal to the x-axis at
two snapshots in time (dictated by arrows). The highest concentration of particles passes the plane at different spatial locations at these
local peaks (i.e. in Figure 8b the highest particle concentration is centered near Y = 285 m, Z = 45 m, whereas in Figure 8 c the highest par-
ticle concentration is centered near Y = 275 m, Z = 52 m), exemplifying the concept of preferential flow being the main mechanism caus-

ing the occurrence of local peaks in the breakthrough curve.

HighK
Low KB

a) Plume before shearing event

b) Plume after shearing event

Figure 9. Schematic illustration of plume shearing due to contrasts in K in the
direction of mean flow.

peak. Although the numbers vary with
the choices of heterogeneity model and
local dispersion cases, statistical anisot-
ropy of K is a key parameter in determin-
ing the BTC shape.

The number of integral scales required
to reach the aforementioned monopeak
regime varies with ¢. For example, in
some cases after 10 integral scales have
been traveled, the monopeak regime is
approached in the most anisotropic
cases (&7) but not in the intermediate
anisotropy case (g4). This result is con-
trary to the results of many earlier stud-
ies, which typically only consider the
Gaussian setting time from the evolution
of plume spreading as a function of
dimensionless travel distance, and with-
out considering the presence of multiple
peaks. For example, the number of
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Figure 10. a) Example breakthrough curves in semi-log space showing differences in the number of major and significant local peaks
(MLP and SLP, respectively). For the three anisotropy ratios (see colors key), each breakthrough curve is at the same travel distance (i.e. P9
in this example). b) Example evolution of a mono-major local peak breakthrough curve as a function of travel distance. The curve shown is
the same produced from the ¢ field as in a) for planes 3, 13 and 23. Corresponding slopes, s, are also noted.

integral scales needed to reach the Fickian regime is typically thought to be on the order of several hun-
dreds of integral scales [Trefry et al., 2003; Zhang and Meerschaert, 2011; Zhang et al., 2013], regardless of
anisotropy. Dagan [1988] showed that compared to more isotropic media, the longitudinal macrodispersion
asymptote for highly anisotropic media is reached after fewer integral scales traveled, although the differ-
ence was very small. In fact, our simulations show the opposite; more integral scales are required to reach a
monopeak regime for more anisotropic aquifer. A possible hypothesis for this phenomenon is that over the
same dimensionless travel distance, in more anisotropic media there is more preferential flow, less plume
mixing, and less parcels of the plume converging, thus leading to more peaks in the BTC when compared
to more isotropic media.

As the number of integral scales traveled for each ¢ scenario differs, it is difficult to decipher how sensitive
reaching this regime is to ¢. Regardless, because the overall trends in major local peaks and significant local
peaks are similar within each ¢, importance may be stressed on BTC shape with regards to true travel dis-
tance, D, opposed to dimensional travel distance, DI '. That is, while anisotropy may be important in
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determining the number of local
peaks, the travel distance required to
reach the monopeak and Fickian
regimes is not necessarily propor-
tional to the magnitude of the inte-
gral scale.

3.2.3. Effect of Heterogeneity
Model on Local Peak Statistics
The effect of heterogeneity model
selection has a large impact on the
frequency of local peaks. The trun-
cated Gaussian models result in a
larger number of major local peaks
and significant local peaks as com-
pared to the facies model results
(Figures 6 and 7, left versus right column, respectively). Following section 3.1, we see that the lack of strong
transport connectivity resulting from the zonal representation of the In(K) field in the facies model (Figures
6 and 7) results in a reduction of the frequency of peaks in the facies model. This is consistent with the
model comparison results of Siirila-Woodburn and Maxwell [2015], which show that there is more uncer-
tainty in transport metrics for the truncated Gaussian model, a possible indication of more variability in the
BTC.

Figure 11. Example cross-sections showing isolation of high and low K values in TG
fields (a) and adjacency of high and low K values in F fields (b).

It is also important to note that while the distribution of K in these models is similar, they are not exact (see
Figure 2). The intermediate values of K in the truncated Gaussian model, i.e., K> 0.1 and <1.0 (m d Yor
K>1.0and <10.0 (m d™"), are likely responsible for the differences in truncated Gaussian and facies plume
behavior. For example, our results show that facies models result in smoother BTCs compared to truncated
Gaussian models. Due to the discrete nature of the K field in the facies model, resulting plumes are likely
affected by two mechanisms: (1) a smaller number of concentrated, localized pathways in the flow field and
(2) the range and combination of local velocities are much fewer in number when compared to the trun-
cated Gaussian model (see plume snap-shots in Figure 6 of Siirila-Woodburn and Maxwell [2015]). Lastly,
recall that Gaussian models result in smoothly varying spatial changes in K, resulting in areas of spatially iso-
lated high or low K materials, whereas facies models may result in adjacent high or low K materials (depend-
ing on the statistics and transition probabilities). This pattern is visually evident from cross sections of
representative realizations, as shown in Figure 11. This difference could affect aquifer connectivity (see Fig-
ure 5), where early breakthrough in the facies model is dictated primarily by the K, facies and late break-
through is dictated primarily by the K; facies. In contrast, flow in the truncated Gaussian model is dictated
by a range of K values. With this in mind, it is logical that there are less major local peaks and significant
local peaks in the facies model, where even if localized pathways exist, they are primarily driven by only
two discrete values of K: K and K;.

3.2.4. Effect of Local Dispersion on Local Peak Statistics

In general, as the magnitude of local dispersivity increases (rows in Figures 6 and 7), the number of both major
local peaks and significant local peaks decrease. The exception to this trend is the highest level of local disper-
sivity, Case D3, for significant local peaks (Figures 7g and 7h) and for the truncated Gaussian major local peak
case (Figure 6g), as discussed below. Few studies have assessed the impact of local dispersivity on the shape
of the BTC, but theoretically local dispersivity should add additional solute mixing, as it is usually implemented
in transport modeling to account for local or subgrid heterogeneity [Rubin et al., 1999].

This theoretical behavior is consistent with results for finite Pe (Case 1), and high Pe numbers simulated
(Case D1 and Case D2, see Table 3). As shown here, as local dispersivity is increased, the number of major
local peaks and significant local peaks decreases. For the lowest Pe numbers simulated (Case D3, see Table
3), we actually see an increase in both major local peaks and significant local peaks (Figures 5g, 6g, and 6h).
This increase is potentially due to solutes jumping from areas of high K to areas of low K, and vice versa.
Our results show that a certain amount of local dispersivity increases aquifer sampling, causing a homogeni-
zation effect of the plume, and thus the occurrence of less individualized peaks in the BTC. At a higher
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amount of dispersivity, however, a threshold is reached where sampling of the aquifer increases to include
very fast or very slow pathways. As a result, more potential shearing events and thus more complex shaped
plumes BTCs are observed.

Major local peaks for the facies model, Case D3 (Figure 6h) are insensitive to the increase in local dispersion,
potentially because at this level of aquifer mixing, particles jumping between the three facies types does
not greatly affect the bulk of the plume, but rather smaller pathways and hence the number of significant
local peaks (Figure 7h). Although local dispersion is often neglected, the importance of particle jumps due
to local dispersion (especially in the transverse direction) has been noted recently, where plume retardation
or acceleration in anisotropic aquifers at small scales proved to play an important role at larger scales [Siirila
and Maxwell, 2012a, 2012b]. Interestingly, this effect was observed for only very small increments in local
dispersion (zr = 0.1 (mm), equivalent to the amount of local dispersion in Case D1 in this analysis). In con-
trast, in this analysis, the possible particle jump behavior due to local dispersion is only observed when local
dispersion is 2 orders of magnitude larger (7 = 10 mm). It is possible that the degree which local dispersion
affects the BTC is sensitive to the structure of the In(K) field (i.e., a true Gaussian at a variance of 3.61 (-) ver-
sus a truncated Gaussian at a variance of 5.29 (-) as simulated here). Regardless, the effect of local dispersion
is a topic worth further investigation in hydrogeology as we show it greatly affects the BTC shape.

3.3. Evaluation of Local Peak Slopes

Figures 12 and 13 respectively show calculated slopes for major local peaks and significant local peaks as a
function of dimensionless travel distance DI} '. Slopes are determined using the cutoff and running variance
methodology, as described in section 2.4 and Appendix B, and are shown in different subplots for the four
cases of local dispersion (rows, Figures 12 and 13) and heterogeneity models (columns, Figures 12 and 13).
Differences in ¢ are denoted by color (see key in subplot a), and within each ¢ realizations 1-3 are repre-
sented by different symbols.

3.3.1. General Trends in Slope, Comparison of Major Local Peaks and Significant Local Peaks

In general, the most noted trend for both major and significant local peaks (Figures 12 and 13, respec-
tively) within each combination of heterogeneity model, anisotropy ratio, and degree of local dispersion
is the general decrease and eventual stabilization of the slope, as dimensionless travel distance
increases. In other words, the receding limbs of local peaks are very steep initially and become less
steep as more integral scales are traveled. An example of this trend is shown in Figure 10b, where the
singular major local peak slope, s, of this particular simulation is noted, and decreases with the evolu-
tion of BTC travel distance. This is most evident for significant local peaks (Figure 13), where s trends
downward for all DI "; in contrast, for major local peaks (Figure 12) the trend is not as pronounced as
more integral scales are traveled, as it tends to reach some asymptote. To explain this behavior, it is
necessary to revisit the conceptual model of aquifer sampling, and to embed s within a framework of a
mass transfer model.

In these numerical simulations, s represents the rate of mass discharge leaving the plane (computed in dou-
ble log space), and should not be confused with the rate at which the solute is moving. Any previous rates
at which the solute moved can only be inferred relative to the local peak’s location in the BTC. The relative
location of local peak s in the BTC (i.e., early or late times) are not differentiated in Figure 12 or 13 for the
sake of brevity, although this separation could prove to be interesting for future work. We would like to
note that in general, the majority of local peaks occur on the general decent of the falling limb of the BTC
(although some exceptions occur). Examples are shown in the BTCs of Figures 3 and 9a, where visually the
majority of local peaks in the curve occur at times after the global peak of the breakthrough has occurred.
In other words, the portions of the plume resulting in local peaks are generally arriving at the plane with
correspondingly longer travel times than the global peak breakthrough point. The combination of these
local peak transport characteristics (delayed breakthrough time denoted by the position in the curve, but
with high breakthrough slopes) indicate two things: (1) that these portions of the plume were once travel-
ing slowly, resulting in the delayed breakthrough time, and (2) that these portions of the plume are later
traveling quickly, resulting in the high slope value.

Regarding the overall trend of s decreasing with increasing travel distance, recall that after short travel dis-
tances (and low DI ") only a small portion of the aquifer has been sampled and a high probability of
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Figure 12. Major local peaks slopes as a function of dimensionless travel distance for different cases of local dispersivity (rows) and hetero-
geneity models (columns). Statistical anisotropy cases are distinguished by color (g4, €4, £7; see sub-plot a) for three realizations each
(denoted by different symbols).

continuous, fast pathways from the source to the plane exist. Thus, the presence of high s values at this
travel distance (for both major local peaks and significant local peaks) is merely indicative of the fast mass
transfer rates leaving the plane due to this connectivity between the source and the plane. As shown by
our numerical results, the presence of high s values at longer travel distances (and high DI ') where a larger
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Figure 13. Significant local peaks slopes as a function of dimensionless travel distance for different cases of local dispersivity (rows) and
heterogeneity models (columns). Statistical anisotropy cases are distinguished by color (g4, &4, £7; see sub-plot a) for three realizations
each (denoted by different symbols).

portion of the aquifer has been sampled and fast pathways between the source and plane are less proba-
ble, results in a less profound impact as travel distances are greater. As stated above, the presence of local
peaks after the global peak of the BTC is indicative of solute rerouting from slow to fast pathways in the

aquifer. The impact is simply less profound as travel distances increase.
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Again, this affects the bulk of the plume and more localized parcels of solute differently. As discussed in sec-
tion 3.2.1, smaller parcels of the solute are indicative of smaller, localized peaks in the BTC (by our definition,
significant local peaks) whereas the bulk of the plume will appear as larger maxima in the BTC (by our defi-
nition, major local peaks). Major local peaks decrease with greater D' (Figure 12) and then reach a quasi-
steady state value of s whereas significant local peaks s trends towards zero (Figure 13). The point where
the s of significant local peaks trends towards zero and the s of major local peaks no longer changes coin-
cides with the same times in which the monopeak regime is approached (see Figures 6 and 7) and where
more Fickian-like behavior is expected. Although we could validate this conceptual model with the local
peak statistics alone, we also see agreement with respect to trends in s.

The evolution of s as a function of travel distance also sheds a new light on previous efforts to identify the
nature of s. Our results show that the magnitude and meaning of s must be assessed only in conjunction with
the plume’s proximity to the monopeak regime, otherwise the quantity of s is arbitrary. The physical drivers
which affect significant and major local peak s (i.e., rerouting of fast pathways or the bulk movement of the
plume) also explain why there is a large span of s in the significant local peak results (ranging over 4 orders of
magnitude). For major local peaks, our results show that the small range of s for power law tails previously
reported (i.e., ranging between 1 and 3.5) [Tsang, 1995; Haggerty et al., 2000; Zhang et al., 2007; Pedretti et al.,
2013; Zhang et al., 2013] may be a limiting range given the variable range of s for heterogeneous aquifers,
depending on travel distance relative to /, and depending on the proximity to monopeak regime. The need to
discuss s with reference to something such as relative travel distance to / is analogous to well-documented
discussion on assessing the Fickian regime relative to the number of / traveled, as high as tens to hundreds of
meters from the source [e.g., Matheron and De Marsily, 1980; Gelhar and Axness, 1981; Dagan, 1982].

Another distinction with this methodology and with traditional analyses of BTC slopes is that as we show
here, there is a significant difference between the average slope in a BTC and the local slopes visible imme-
diately after each local peak (s). In many cases, the local peak slope is much higher than the global slope.
For example, the illustrative ¢; BTC in Figure 10a (green line) contains 20 major local peaks, with s ranging
from 1.7 to 14.3 and with the average local peak s equaling 6.6. In contrast, the global slope of the BTC is
much less steep, closer to 1.0.

3.3.2. Effect of Anisotropy on Slope

In general, the aforementioned s-DI; ' trend is true for all anisotropy ratios, ¢. The range, or variance of s
along this trend, however, is sensitive to ¢. For most scenarios (Figures 12 and 13), the smallest anisotropy
ratio, &7, has the most variability in s and the highest anisotropy ratio, ¢;, has the least variability. This finding
is in agreement with previous studies, which found that connectivity is the hydrodynamic parameter that
most influences late-time BTC behavior [Zinn and Harvey, 2003; Willmann et al., 2008; Pedretti et al., 2013].In a
hydrofacies investigation of the impact of mean lengths on power law late-time tails, Zhang et al. [2013]
found that increasing the horizontal mean length (equivalent to decreasing ¢) only shifted the BTC arrival
time, while increasing the vertical mean length (equivalent to increasing ¢) resulted in a longer tail. In their
sensitivity analysis, the thickness of floodplain layers controls late-time BTC shape more than statistical
anisotropy.

For major local peaks, the quasi-steady state s value reached as more integral scales are traveled is not sen-
sitive to ¢. For most cases, the s value after a large number of integral scales have been traveled with respect
to each ¢ scenario is approximately 0.5. For cases with less major local peaks to be analyzed (e.g., Figure
12h), it is difficult to speculate if these slopes are representative of late times, and thus if a steady state s
can be determined. Recall from above that the significant local peaks do not reach a quasi-steady state s
value, and in general trend toward zero for all e.

3.3.3. Effect of Heterogeneity Model on Slope

Differences in heterogeneity models (TG versus F columns Figures 12 and 13) affect significant local peaks
more than major local peaks. With the exception of one case (F-Case D3, Figure 12h) differences between

truncated Gaussian and facies model major local peak slopes are negligible. The range of significant local

peak slopes differ given the heterogeneity model used, although there does not seem to be a clear trend

suggesting why. In general, these differences are small when compared to sensitivity in other parameters

affecting the slope, such as anisotropy.
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3.3.4. Effect of Local Dispersion on Slope

In general, the effect of local dispersion (rows, columns, Figures 12 and 13) does not play a major role on
the evolution of the s-DI " trend. Pedretti et al. [2013] found that an increase in local dispersivity affects par-
ticle arrival times, but does not affect the BTC s. Instead, their results show that s is more sensitive to aquifer
stratification and connectivity. This is in agreement with our results, which show that the number of peaks,
and the shape of the BTC is sensitive to local dispersion (see discussion in section 3.1.4), but does not neces-
sarily affect the rate of particle transfer at the plane.

4, Conclusions

The traditional approach in BTC analysis considers that the curve has distinct rising and receding limbs,
thus displaying a single unique peak. A number of studies have shown that real aquifer BTCs may not follow
this pattern, so that the actual curve may contain a number of local peaks. With recent advances in data
analysis, we are able to reconstruct high-resolution BTCs from a finite number of particles with low error. By
comparing the mean reconstructed curve with the uncertainty about the mean, we quantitatively demon-
strate that the presence of multiple peaks in BTCs is more the rule rather than the exception for individual
plumes resulting from a fixed size source. A conceptual model is proposed showing how preferential flow,
shearing events, and aquifer sampling create local peaks, followed by a quantitative analysis of how differ-
ent modeling parameters and heterogeneity models affect these processes and thus the formation of local
peaks. A number of high-resolution numerical simulations were performed using three-dimensional syn-
thetic aquifer in order to study the number of BTC local peaks, their duration, and corresponding slope. Sen-
sitivity to the travel distance, heterogeneity model of In(K), statistical anisotropy, and Peclet number were
explored. As shown in this study, the presence of multiple local peaks is particularly true for highly aniso-
tropic media and after small travel distances. As distance evolves, transport tends to more Fickian-like
behavior and the traditional, single peak curve prevails. Other key findings include:

1. The analysis of the transport connectivity index, C, reveals that connectivity increases with statistical ani-
sotropy and decreases with travel distance, consistent with the parameters characterizing the develop-
ment of a monopeak BTC. Our results show that simulations with higher transport connectivity display
more local peaks. Furthermore, the truncated Gaussian model generates random fields with better well-
connected heterogeneous structures when compared to a facies model, especially for high Pe.

2. The number of local peaks (both major local peaks and significant local peaks) is clearly affected by both
travel distance (negative correlation) and by the degree of statistical anisotropy (positive correlation), but
also by the heterogeneity model used. For the same global statistics, the truncated Gaussian models
result in a larger number of major local peaks and significant local peaks as compared to facies models.

3. The increase in local dispersion tends to lessen the effect of the other parameters by producing a homog-
enization of concentrations via enhanced mixing. In general the smaller the Pe value, the smaller the
transport connectivity index, Cl, and the smaller the number of local peaks. For the smallest Pe scenario
simulated, we actually see an increase in the number of local peaks, potentially due to solutes jumping
from areas of high to low K and vice versa.

4. There is a significant difference between the average slope in a BTC and the local slopes visible immedi-
ately after each local peak (s), the latter being much higher than the global slope. In general, such local
slopes are very steep initially and become less steep as more integral scales are traveled, associated with
the different mass transfer processes taking place between the high-flow and low-flow areas as a function
of distance. Statistical anisotropy mainly affects the range of s values more than other parameters (Pe,
model of heterogeneity), a factor probably associated with the degree of connectivity of the aquifer. For
major local peaks, s tends to a constant value after long travel distances, a value that seems not to be
related to anisotropy but somehow to the heterogeneity model used in the simulations. In contrast, sig-
nificant local peak slopes trend downward as travel distance increases, consistent with the disappearance
and smoothening of sharp local peaks in the BTC.

Local peaks may be important in assessing environmental concentrations in human and environmental risk
analysis, as recent work has shown that time dependence in the entire concentration signal may be impera-
tive in accurate hazard assessment and management. For example, overlooking local peaks in BTCs may
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lead to discrepancies in exposure concentrations, depending on the magnitude and duration. As we show
here, knowledge of the frequency and slope of local peaks in a BTC may be linked to physical aquifer
parameters, and may inform modeling and site characteristics efforts.

Appendix A
Consider a series of travel times {t;, .. ., t,} obtained at a given control plane during a particle tracking simu-
lation. When all particles share the same mass, the kernel density estimator of the normalized BTC is:

1 " t—t;
p(t)=—np h ZKKDE<T) (A1)
=1

where h is the bandwidth of the bin size that ultimately controls the degree of smoothing and Kkpg [T '] is
the kernel density estimator. Large h values will smooth out the solution and small h values will generate
excessive noise, providing jagged curves (the extreme case would be a Dirac delta function). Fernandez-Gar-
cia and Sanchez-Vila [2011] demonstrated that the optimal bandwidth h,, [T] is proportional to some nega-
tive power of the number of particles, actually h,pe = C np~'"®, where C is a constant that mainly depends
on the curvature of the BTC (norm of the second derivative). Then, the standard deviation of the kernel den-
sity estimate p approaches in the limit to

ap(t)=n"2 /K, I 3p(H)C! (A2)

where ||K,|| is the second norm of the kernel density function. Assuming a Gaussian shape of the kernel
density function

1 u?
Kkpe(u)= ——=exp| — = (A3)
o) o p( 2)
then the norm becomes
HKpH§=JKp(u)2du=(2n)“ﬁ (A4)

With the use of equation (A2), the coefficient of variation, CV=100 ¢, [%], is calculated to ensure low error
due to the use of the KDE and np. As shown in Figure A1, for the example BTC in Figure 3, extremely low CV
values are present for the np = 400,000 simulation, except for very late times where concentrations are low.
For less jagged BTCs, the CV is generally even lower.

Appendix B

r As stated in section 2.4, to
4KKDE + . i
sl RKIE o ensure that the tail end of the
slope is not oversampled, the
q final sampling time of the local
g i | peak slope (tsampre) is NOt Nec-
- essarily tn. For example, if the
! i slope changes very drastically
as t approaches t;, the portion
of the local peak may not be
representative of the overall
local peak slope and should be
excluded from the calculation.
To do so, first the arithmetic
running average of the slope,
10000 20000 30000 40000 50000 .
Tme Tl Savg(ts), is calculated as a func-
tion of time, t,, within this

40

oV (%]
"I-.-..

Figure A1. Coefficient of variation of an example KDE reconstructed BTC (same as Figure 3)
for varying number of particles (see color key).
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duration (beginning at t = t; and until t =ty as:

18
Z s (—t-1) (B1a)

j=i+

Savg(tn) = P—
n 1
_ logm;—log m;—4

B1b
log t;—log tj— (B15)

j
where {t;, t,, . . .} are the sampling times of the BTC, s; is the slope in the jth time interval [t;_, t]], and m; is
the mass discharged at time t;. To determine t;mpre, the arithmetic running variance of the slope, af(t,,), is
required, as it is a measure of the slope’s dispersion from the average value. Similar to sq,4(t5), a2(t,) is calcu-
lated as a function of time within this duration (beginning at t = t; and until t = t) as:

1

)= = 2 Goalt) =) (600 (82

j=it1

Once o2, has exceeded a certain threshold, sa,4(t,) is no longer representative of the tail edge of the local
peak, and therefore should not be included in the sample. In this case, t;ampre is defined as the time at which
this threshold is exceeded (see Figure 4d). For our simulations, a threshold variance of 0.01 (-) was found to
accurately represent the slope without oversampling the tail. Two additional constraints were added to
determine sq,4(tp): (1) if after 20 time steps for significant local peaks or if after 100 time steps for major local
peaks, O'f,r exceeded the 0.01 (-) cutoff, or (2) if after sampling the entire duration of local peak (i.e., from at

t =t;and until t =t the 0.01 () cutoff was not exceed, t;gmpe = 20 for significant local peaks or t;gmpe = 100
for major local peaks. Given these two conditions, we found an accurate sampling of the local peak slope.
Note that similar to the determination of the local peak cutoffs (section 2.3), the determination of tsmpe Will
likely be data set specific. Lastly, to ensure statistical significance, only BTCs where at least 95% of the origi-
nal mass is retained are analyzed. For brevity, the value of s,,4(t,) when t,, = t;qmpie are referred to as simply
s, and are the values reported in section 3.2.

Notation

BTC  breakthrough curve

TG truncated Gaussian model

F facies model

KDE  kernel density estimator

UAB  universal adaptive bandwidth
SLP  significant local peak

MLP  major local peak

Symbols
Pi_ss Plane number [-]
Pax distance between each plane [L]
K hydraulic conductivity [L T~ ']
/ integral scale [L]
€ anisotropy ratio [-]
porosity [-]
Ah change in head [L]
J gradient [-]
Ks geometric mean of K[L T ']
o2 variance of In(K) [-]
KieL hydraulic conductivity of facies [L T ']
Puri proportion of facies [-]
ruury - facies off-diagonal transition probabilities [-]
Pe peclet number [-]
oy, or longitudinal and transverse dispersivity [L]
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np number of particles [-]

cl connectivity indicator [-]

tso ts times which 50% and 5% of the plume mass pass the plane [T]
s slope [-]

m mass discharge [M T~ ']

t time [T]

t; time at which slope changes from positive to negative [T]

te time at which slope changes from negative to positive [T]

tsample  final sampling time of local peak [T]

Savg(tn)  arithmetic running average of s [-]

a2(ty)  arithmetic running variance of the slope [-]

D x direction travel distance from the source to plane [L]
h bandwidth of the bin size [L]

hopt optimal bandwidth of the bin size [L]

Keoe kernel density estimator [T ']

op(t) standard deviation of the kernel density estimate [T~ ']
(1Kol second norm of the kernel density function

cv coefficient of variation [-]
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Erratum

1. Table 2 was incorrectly formatted in the following ways: (1) A second instance of "Anisotropy Ratio" appeared underneath the same
header. (2) Parentheses needed to be placed around the units “m d™ " in three places toward the end of Table 2 to match the same for-
matting as the line that starts with "Geometric mean of K," which appears correctly as “(m d~')".

2. The reference and citations for Siirila-Woodburn and Maxwell [2014] throughout the paper have been updated to reflect the current pub-
lication year. This version may be considered the authoritative version of record.
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