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Part I - Proposed algorithm

The paper outlines the formulation of a novel algorithm which can be
used for the solution of both compressible and incompressible Navier-Stokes
or Euler equations. Full incompressibility can be dealt with if the algorithm is
used in its semi-explicit form and its structure permits arbitrary interpolation
functions to be used avoiding the Babuska-Brezzi restriction.

In a fully explicit version it introduces a rational form of balancing
dissipation avoiding the use of arbitrary parameters and forms for this.






1. INTRODUCTION

The extensive development of the finite element procedures for the
solution of compressible, high speed flow problems occured only in the last
decade. Without doubt this was due to the “rediscovery” of the Lax-
Wendroff methods [1] in the context of elements as the Taylor-Galerkin
process [2][3] and the introduction of the Characteristic Galerkin Method
[4-6]. However while the former, Taylor-Galerkin, formulation could be used
for a general form of conservation equations typical of Navier-Stokes or Euler
problems with multiple variables and characteristic speeds, only the latter,
Characteristic Galerkin Method, justifies the use of the particular, Galerkin,
spatial discretization yielding an identical approximation only when a single
variable and one characteristic speed exists. In the section 2 of this paper we
recall the essentials of the Characteristic Galerkin process and its rationale.

While the original, Taylor-Galerkin, stabilization of the finite element
discretization has been widely suplemented by the use of, empirical, artificial
diffusion forms developed in the context of finite difference methods and
results consequently improved, it appeared to the Author that a return to
the single characteristic speed, for which the procedures were proved, could
be achieved by a suitable operator splitting procedure.

The key to such a split lies in a fractional step method devised
originally by Chorin [7][8] and subsequently developed by others [9-19] for
incompressible flows. By adding compressibility the acoustic or compressible
wave phenomena can be separated and solved by standard self adjoint
formulation leaving the convection equations with the fluid velocity as a
single characteristic speed [20-23].

The original Chorin method was initially devised for the purpose of
implementing a time stepping process for the momentum and continuity
equations in which the essential variables were the flow velocity u and
pressure p. The process, applicable to incompressible flows and sometimes
interpreted as a projection method, starts by obtaining an approximate
velocity field using the momentum equation with the pressure gradients
omitted. This first step is followed by solving for the unknown pressures by
inserting the velocity approximation into the continuity equation. The final
stage is the correction of the velocity vector using the computed pressure
terms. This led to the process sometimes being known as the velocity
correction method.

The method essentially separates the pressure calculation into one
involving a Laplacian form which is self adjoint and only a single
characteristic velocity is involved in the first and final stages clearly achieving
the desired effect. However when the transient form is used for steady state
solution further benefits can arise. One of these, observed by Schneider
and Rathby [11] and by Kawahara [15], is that the Babiska Brezzi stability
restrictions, well known in the velocity-pressure finite element discretization,



no longer apply as the steady state equations do not have a zero diagonal
term. Now a term proportional to the time increment is there inserted and
this allows arbitrary and convenient interpolations to be used for u and p.
Here for instance any equal interpolation is possible avoiding the difficulties
frequently encountered in the use of such interpolation coupled with the
previously mentioned Taylor-Galerkin procedures.

The result here is in essence similar to that obtained by Hughes et al.
[24], Sampaio [25] and the wider interpretation of it described by Zienkiewicz
and Wu [26].

These combined merits of the use of the fractional step procedures have
been realised by the author earlier [21] but so far success has been limited to
applications in a non-conservative form of equations of Navier-Stokes and
Euler [22] or to shallow water equations [23]. In the present paper the
approach is considerably modified allowing the full form of conservation
equations to be dealt with. Indeed the new approach can be simply
extended to deal with the transport of additional variables such as turbulence
parameters or chemical reactions.

The essential step of the new procedure is the realization that in each
computational step the transport of a single scalar quantily occurs and the
treatment of this is decribed in the next section.

2. THE SCALAR CONVECTION-DIFFUSION PROBLEM AND
THE CHARACTERISTIC GALERKIN EXPLICIT APPRO-
XIMATION

Before proceeding with the description of the full algorithm we shall recall
the application of the characteristic Galerkin method in the explicit form to
a typical convection-diffusion process with a scalar dependent variable ®.

The governing equations can here be written always in a conservation
form as
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with z; being ¢ — th the coordinate (: = 1,2,3),

Fj = uJ"I’ (2a)
the convected flux,
0®
G; = _ka_:ci (20)
the diffusion flux,
Q= Q(x) (2¢)



the source term, and
u = u(x) (2d)

is the velocity field which is assumed to be known.
The full equation can thus be alternatively written as
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in which only the first term on the R.H.S. is not self-adjoint. As that term
corresponds precisely to an advection wave moving with a velocity u;, a
change of co-ordinates to the characteristic ones given by

dzl = de; — u;dt (4)

makes the offending term vanish leaving a fully self-adjoint system.

For such a self-adjoint system it is known that the standard Galerkin
approximation in space is optimal but the inconvenience of a moving co-
ordinate system is introduced. To avoid this difficulty a local approximation
has been used [3-5]. This is fully described in [6] and results in an explicit
form written in fixed co-ordinates (noting that the last term of Eq.3 simply
adds to the source) as
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An identical expression can be here derived by using a higher order time
approximation for a single scalar variable of the Lax-Wendroff type. However,
as Eq.(5) is derived from a self-adjoint form spatial discretization by the
Galerkin method is optimally used. We can write thus the approximation

®=Nd (6)



and use the weighting N7 in the integrated residual expression. Thus we
obtain

M(3"! — @™) = —A¢[(C®" + K&" + ) — AL(K, 8" + )]  (7)

where
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and Ky and f} come from the new term introduced by the discretization
along the characteristics. After integration by parts, the expression of K,

and fs is
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The approximation is valid for any scalar convected quantily even if
that is the velocity u itself, as is the case with the momentum conservation
equations. For this reason we have elaborated the full details of the spatial
approximation as the matrices will be repeatedly used.

It is of interest to remark that the explicit form of the equation (7) is
conditionally stable. For one-dimensional problems, the stability condition
is given by (neglecting the effect of sources)
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for linear elements. In above the Peclet number P is defined as

luik

P=
2k

(10)

In 2D problems the critical time step size may be computed as [27]

AtzAt,
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where Aty is given by (9) and At, = h2/2k is the difusive limit for the

critical one-dimensional time step size.



Further, with At = At..;; the steady state solution results in an (almost)
identical diffusion change to that obtained by using the optimal stream line
upwinding procedures [6]. Thus if steady state solution are the main objective
of the computation such a value of At should be used in connection with the
K, term.

3. THE GENERAL FRACTIONAL STEP ALGORITHM FOR
THE NAVIER-STOKES EQUATIONS

3.1 The equations of flow
The full conservation form of the Navier-Stokes equations for
compressible flow is traditionally written as
ov OF; 0G;
+ +
ot Ox; 0%;

+Q=0 (11)
with
VT = [p, puy, puy, pus, pE) (12a)

being the independent variable vector

F7 = [pu;, pugu; + 81:p, pugu; + 62ip, pusu; + 63;p, uz(pE + p)] (120)

defining the convective flux vector and

oT
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T
defining the diffusion flows. Finally
Q" =10,91,92,93,0] (12d)

gives the source terms.
In above the stress components 7;; are related to velocity gradients by
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p is the density, u; are the velocity components, p is the pressure, E the
internal energy and T' the absolute temperature.
The equations are completed by the universal gas law

p = pRT (14)



where R is the gas constant.
The sound velocity is defined assuming constant entropy as

2o _ar (15)
9 p
Further we can write conveniently
Op 0Opdp 10p (16)

ot  Opot 20t

though this expression assumes again constant entropy and is therefore only
an approximation. We shall, in what follows use Eq. 16 but later will discuss
the possibility of correcting any errors involved by an amendment of the
algorithm.

While in gas flow all the equations are fully coupled, for incompressible
flow in which ¢ = oo the energy equations can be solved independenty after
the velocity field has been established. Nevertheless a single algorithm for
the solution of both problems is possible as we shall now show.

3.2 The general algorithm

For convenience we shall rewrite the Eq.(11) in a more direct form,
omitting initially the energy equation. These equations can be solved
completely in a time increment At as the only coupling which exists is
through the speed of sound ¢ for which we shall simply use the value at
time ¢, due to the explicit nature of the time stepping algorithm.

We thus write the first of equations (13), i.e. the mass flow continuity as

dp _10p _ U,
ot 20t Oz

(17)

in which we use the Eq.(16). Further, for each of the momentum conservation
equations we write similarly

oU; _ 8F-j 8rij Op
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In above we define
Ui = pu;
and
F = uj(pus) = wil; (19)



Since

OF!  Bu; aU;
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(20)

we can discretize in time Eq.(8) using the Characteristic Galerkin process.
Except for the pressure term this equation is similar to the convection-

diffusion problem of Eq.(3). We shall have
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Observe that the pressure term has been evaluated at t, + §;At.
Before proceeding further it is convenient to introduce an auxiliary
variable U; such that
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where Ap = p"*1 — p™ and the last term as before represents the “source”
correction. From Eq.(17) we have omitting third order terms

1 aurth
Ap = (c—z)nAp = —At (';:1:
3
auUr AAT; 82p™ 2Ap " (24)
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It is clear that the equations can be solved after spatial discretization in
the following order



Eq.(22) giving AU;
Eq.(23) giving Ap
Eq.(24) giving AU; thus establishing the values at ¢,

In all of the equations given below the standard Galerkin procedure can
be used with a discretization

U; = NU;, AU; = NAT; Aifz = NAI:Ji (25)

and
D= pr’

This gives from Eq.(22) the solution for I:Ji as

Step1  |AU = -—M"1At[(CTU + KU - f) — At(K,U + £,)| (26)

where all the discretization matrices are the same as those defined by Eq.8.
Discretization of eq.24 gives similarity

Step 2 | (M + At20,6,H)Ap = A¢[Q(TU" + 6,AT) — Ato;Hp — £ | (27)

which can be solved for Ap.

The new matrices arising here are

ONT
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The question of establishing the boundary conditions for the pressure is
discussed in detail in Appendix A.

The final stage of the computation of the mass flow vector U?'H is
completed by discretization of Eq.(23) and we have now simply

Step 3 AT = AU - M 1ALQT(P™ + 6,Ap) + 4LPp™] (29)




where
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At the completion of this stage the values of I_J?—H and p"t! are fully
determined but the computation of the energy pE™t! is needed so that new
values of ¢"t1, the speed of sound, can be determined.

The last of Eq.(11) i.e., the energy conservation equation can be written
as

d(pE) @ 8 T

9
o~ 0w, PP T 5y (R g, ~ B, (4iP) (30)

Once again the equation is identical in form to that of the scalar problem
of Eq.(3) if we observe that p, U; etc. have been determined. Now the last
term can be evaluated at time (n + 63) for improved accuracy but in what
follows we shall take 83 = 0 for simplicity.

Using the Characteristic Galerkin a.pprox_lmatlon of Eq.(5) and
discretizing as

pE = NgE, (31a)
we have
Step 4 AE, = —At[CE, + KT" + f? — At(KE, +f%)]| (313)

where E, contains the nodal values of pE and again the matrices are identical
to those previously obtained (assuming that pF and T' can be suitably scaled
in the conduction term).

Again the forcing vectors can be appropriately defined as

fe = / N%%(wp)dﬂ
(32)
f0=— = / (i) (u]p)dﬂ

It is of interested to observe that the process of Step 4 can be extended in
an identical manner to equations describing the transport of such quantities
as turbulence parameters, chemical concentrations etc. once the first essential
steps 1-3 have been completed.

10



4. SEMI-IMPLICIT AND EXPLICIT FORMS OF THE
ALGORITHM

The algoritm described can be used in a semi-implicit form and indeed
only in this form can incompressible problems in which ¢ = co and M = 0

be solved. Taking

-
v
=
A%

—
vV
N
v

(33)

NN

the algorithm is conditionally stable. The permissible time step is governed
by the critical step of the explicit relation solved in Step I of the algorithm.
This is the standard convection-diffusion problem discussed in section 2 and
the same stability limits apply reaching for an inviscid fluid a value close to

h
|u|

Atcrit = (34)

For slighty compressible or incompressible problems in which M is small
or zero the semi-implicit form is efficient and it should be noted that the
matrix H of Eq.(27) does not vary during the computation process and can
be partially inverted.

In other semi-implicit forms when compressibility exists the question of
the correctness of the approximation of Eq.(16) remains still unanswered and
has to be further investigated. Here of course an iterative correction can be
used.

However it is possible to revert to a fully explicit form by putting 6 = 0.
Now of course the critical step will be reduced to the order of

i (35)

and this is indeed the same limit as that encountered in other explicit forms
of Euler or Navier-Stokes computational schemes currently effectively used.
The four Eqs.(26), (27), (29) and (31) can be solved simultaneosly if
the correction step in the R.H.S of Eq.(27) is omitted. This of course is an
additional approximation and is not necesary but is here introduced to mimic
artificial diffusions previously extensively used with standard Galerkin form.
Further the use of the approximation of Eq.(16) is now no longer
necessary as the density increment is directly obtained if we note that

MAp = MAp (36)

11



With above simplifications we can return to the original equations (11)
and using the Galerkin approximation on these we can write directly

8G~
(9:1:Z Oz;

AV = —M~1A¢ { / NT( 2)dQ + %At /9 NTDdQ] (37)

n

omitting the source terms for clarity. The added diffusion terms D are defined
below and have to be integrated by parts in the usual manner.

9? )
2 dz;0z; P

s |52
D = { vigg; [ o (v Pu2)+am2] ? (38)
|

The “diffussions” added are simple and largely streamline oriented (for
divergence-free velocities) thus not masking the true effects of viscosity as
happens in some schemes. The importance of the various terms will be
discussed in Part II of this paper where detailed comparisons with other
explicit schemes are made.

If steady state results only are sought it would appear that At in the
definition of the matrix D should be set at its optimal value of At .;; ~ th

However the oversimplified sheme of Eq.(38) looses some accuracy and
even when steady state is reached will give slightly different results than those
obtained using the full sequential updating. The additional cost involved in
computing the sequence AU — Ap — AU — AE, will have to be balanced
against the accuracy increase.

It is of interest to note here in passing that the full sequential scheme
introduces a so called “fourth order” diffussion proportional to AtQTM ™1 Qp
in addition to the second order diffusion proportional to A¢Hp into the
computation. We shall indicate how this arises in the next section.

5. WHY THE BB RESTRICTIONS ARE CIRCUMVENTED

Steady state results

We examine here the structure of equations reached in steady conditions.
For simplicity we shall consider here only the Stokes form of governing
equations in which the convective terms disappear. Further we shall take
the fluid as incompressible and thus uncouple the energy equations. Now the
three steps of Eqs.(26), (27) and (29) are written as

12



AT = — AIM U KU" — f] (39q)
Ap = H™[Q(T" + 6,A0) — At6;Hp" — £ (395)

At016,
AT =AU — AtM QT (B, + 6,AD) (39¢)

In steady state Ap = AU = 0 and eliminating AU we can write
(dropping now the superscript n)

KU+Qlp=rf (40)
from Eq.(39a) and (c) and
QU +6,AtQM~1QTp — At;Hp — £, = 0 (41)

from Eqgs.(39b) and (c).

We finally have a system which can be written in a form

U £
o p= 42
{P} {ﬁ} (#2)
where f; and f; arise from the forcing terms.

This system has a non-zero diagonal which is proportional to A¢ and
which, as already mentioned, is very similar to the forms suggested by other
reasoning [27,24].

Further it will be immediately observed that if the additional
simplification introduced in Eq.(38) is made to avoid the sequential
operations, the term AtQM_lQT disappears. This term is however very
useful adding a “smoothing” by spreading the effect of jumps etc. to a wider
pattern of elements.

It can be easily verified that if the pressure gradient term is retained in
Eq.(22) (which would seen to give a better approximation) the diagonal term
of Eq.(42) is identically zero and the BB conditions are still necessary.

K QT
—Q Atf;[H- QM~1Q7]

5. SUMMARY

The algorithm here introduced follows similar lines of reasoning as
were used in previous attempts to derive the “universal”algorithm. Details
however are different and in particular the introduction of the “Characteristic
Galerkin” diffussion is more direct and different. In further parts of this paper
numerical tests will be made and accuracy tested in various applications.

Application of the identical procedure to shallow water equation is
obvious and indeed very similar to that given in ref [23].

13



APPENDIX A

We shall consider in this appendix the boundary conditions to be imposed
for equation (24). Observe first that Eq.(23) may be written as

AU; = AT; — Ata”n:gz (14)
where
P02 (x) =(1 - 62)p™(%) + ozp"“(x)
24
=(1 — 62)[p"(x) — aa "(x)] + 629" (x) (24)

The pressure boundary conditions we use are the continuity of the normal
component of the momentum equation at the boundary. It may be readily
checked that this is equivalent to the verification of the normal component
of Eq.(1A) at the boundary, that is

apn+92

n;AU; = n;AU; — Atn;—— (34)

Zi

Multiplying Eq.(24) by a pressure test function N, and integrating by
parts we obtain, using Eq.(3A)

1
/ = NI ApdQ = —At[ / 5 Ny UrdQ + Ng’niUg‘dr
Q c? z;

ONT . ONT gpnt02
—1—01/ NgniAUidI‘ - 01/ PAT0 + At6, o™
o0 q Oz q Oz; Oz,
(44)
from where it follows that the term f, in Eq.(27) is given by
f,=— | NInu! -0, [ NIn;AUT A
P = p Y, 2 p iRUg (54)

onN onN

This expression involves AU;, which is unknown at the moment of solving
the pressure equation. However, the second term in the RHS of Eq.(5A) may
be neglected. This approximation is exact if U is prescribed on the whole
boundary 0. On the other hand, and in order to avoid the need to compute
the boundary integral, in Eq.(4A) we may rewrite

14



P n T n z
—d
/ 50, Ul o + N n;UMNT = / Np 5. 0 (6A)

Instead of Eq.(27) we shall have

(M + At26,6,H)Ap = At[QU™ + 0,QAT — A6 Hp|®  (7A)

where

BN
T
/ Np 631

Observe that no term f, appears in Eq.(7A).
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