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Abstract

We analyze how future costs must be balanced against present costs. This is traditionally done
using an exponential function with a constant discount rate. The choice of discount rate can
dramatically effect the question on what is the value of the future. This is specially critical for
environmental problems such as global warming, and it has generated a controversy as to the
urgency for immediate action (Stern, 2006; Nordhaus, 2007a,b). We briefly review the issue for
the nonspecialist and take into account the randomness of the economic evolution by studying
the discount function of three widely used processes for the dynamics of interest rates: Ornstein-
Uhlenbeck, Feller and log-normal. We also outline our previous empirical survey on 14 countries
over time spans ranging up to more than 300 years We estimate the parameters of one of the
models studied (the Ornstein-Uhlenbeck process) and obtain the long-run discount rate for all these
countries. The long-run discount obtained for stable countries (countries that have not suffered
periods of destabilizing inflation) supports the low discounting rate proposed by Stern (2006) over
higher rates that have been advocated by others (Nordhaus, 2007a,b).

I. Introduction

One important quantitative procedure in economics and finance is that of “discounting”. This
process tries to answer a key question: How can we value the future? The discounting mechanism
weights the future relative to the present and the weighting method is carried through a discount
function which usually takes the form of a decreasing exponential (Samuelson, 1937). Indeed, under
a steady rate of interest r, a dollar inverted today, at time t = 0, will yield ert at time t > 0. That
is to say, a dollar in any future time t is worth e−rt today.

In this simple example r is fixed but in practice rates are uncertain and it is not realistic to
represent discounting by a deterministic function of time such as the decreasing exponential with
a fixed rate and some kind of average over all possible interest rate paths must be taken. Before
developing these ideas, let us remark that the problem of discounting shows its great importance not
only in finance but in long-run environmental planning (Dasgupta, 2004). Indeed, and assuming
again a steady rate of interest, an environmental problem that costs X to fix at time t in the
future is equivalent to an investment of e−rtX today. Thus if r is substantial, any benefit at some
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distant time would justify a negligible investment now. Letting interest rates to be a proxy for
economic growth, a different version of the above argument is that technologies in the future will
be so powerful that they will overshadow anything we can achieve with present day technology. In
this sense it is more rational to follow policies fostering economic growth than try to combat global
warning now.

Remaining within long-run discounting, it is no surprise that the choice of a discount rate has
vast consequences and is the object of intense debates and contradictory estimates (Arrow et al.,
2013). For example, in a highly influential report on climate change commissioned by the UK
government, Stern (2006) uses a discount rate of 1.4%, which on a 100 year horizon implies a
present value of 25 % (meaning the future is worth 25% as much as the present). In contrast,
Nordhaus (2007b) argues for a discount rate of 4%, which implies a present value of 2%, and at
other times has advocated rates as high as 6% (Nordhaus, 2007a), which implies a present value
of 0.3%. Stern has been widely criticized for using such a low rate (Nordhaus, 2007b,a; Dasgupta,
2006; Mendelsohn, 2006; Weitzman, 2007; Nordhaus, 2008). The choice of discount rate is probably
the biggest factor influencing the debate on the urgency to respond to global warning and the issue
is far from being settled. What is the right number? And is it even correct to use an exponential
discount?

For environmental problems normative approaches to choosing discount rates are based on
ethical grounds (Stern, 2014a,b) and assumptions about economic growth. They also depend on
arguments involving the maximization of utility functions that are chosen for mathematical conve-
nience Heal and Milner (2014). Economists present a variety of reasons for discounting, including
impatience, economic growth and declining marginal utility; all of them embedded in the Ramsey
formula (Ramsey, 1928), which forms the basis for standard approaches to discounting (Arrow
et al., 2013).

However, as mentioned above, rates are uncertain and it is not realistic to represent discounting
by deterministic functions of time such as decreasing exponentials with a fixed rate and, therefore,
some kind of average over all interest rate paths must be taken. This problem is particularly severe
for environmental problems, where in questions such as global warming one must consider costs
and benefits 100 or more years in the future. It also occurs in finance, where discounting times are
typically thirty years or less, where it has long been recognized that interest rates must be modeled
as random processes Vasicek (1977); Cox, Ingersoll, and Ross (1985); Dothan (1978); Brigo and
Mercurio (2006).

A more positive approach to discounting consists in figuring out how the market trades off
present consumption for future consumption. For the near future one can readily find the corre-
sponding market interest rate for money, and by making assumptions about likely inflation one can
infer the market discount rate for real consumption (see, for instance, Newell and Pizer 2003, or
Farmer et al. 2014). For the distant future, a practical economist engaged in the environmental
debate might try to use, as the forward discount rate, the average of historical interest rates which
occurred in the last 200 hundred years (2.7 % in stable countries (Farmer et al., 2014)), or take
the average of Wall Street forward looking models which price bonds of maturity as long as 30
years. However, we have shown (Farmer et al., 2014) that, due to historical fluctuations of short
real interest rates, the appropriate rate is considerably below these averages.

Moreover, the presence of fluctuations can dramatically alter the functional form of the discount
function. If interest rates follow a geometric random walk, for example, Farmer and Geanakoplos
(2009) (see also Geanakoplos et al., 2014) have shown that in some circumstances the discount
function decays as a power law of the form t−1/2. They called this hyperbolic discount because the
discount factor obeys the equation of an hyperbola instead of the usual exponential function. In the
large time limit a hyperbolic function is much greater than any exponentially decaying function,
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showing that there is no positive long run rate of interest in this case. The hyperbola assigns an
infinite value to any permanent positive flow of consumption, meaning that the infinite future is
infinitely valuable.

Nonetheless, anecdotal evidence suggests that long-term exponential behavior is the typical case.
We have examined a variety of different processes, including more general log-normal processes,
the Feller process, and the Ornstein-Uhlenbeck process (Farmer et al. 2015). We have found that
the case of the simple log-normal process studied by Farmer and Geanakoplos (2009) was the only
one that did not display long-term exponential behavior. All the other examples deviated from
exponential behavior for short times, but, for a wide range of parameters, eventually converged to
an exponential function. This suggests that, while the transient non-exponential behavior can be
important for a few decades, the most important question is the long-term discount rate.

Which model is most appropriate depends on the problem under study. Thus if we deal with
environmental problems we should use real rates which are nominal interest rates corrected by
inflation. In Sect. IV we present the main results on an empirical survey we have recently done
on real rates of 14 countries covering 87 to 318 years (see Farmer et al., 2014, and Sect. IV for
details). Data clearly show that in many epochs and for all countries real rates frequently become
negative, often by substantial amounts and for long periods of time. In environmental problems we
are, therefore, lead to the Ornstein-Uhlenbeck process, since that model allows for negative values,
while other processes, such as Feller or log-normal, exclusively deal with positive values. However,
financial settings use nominal rates which usually are positive and, therefore, either the Feller or
the log-normal processes are more appropriate (Brigo and Mercurio, 2006). In Sect. III we will
present a summary on the key results of each model.

Let us finally stress three important facts. Firstly, assuming that costs and benefits can be
reduced to monetary values, the discounting problem is equivalent to bond pricing. A bond is an
instrument that one can purchase now that delivers a payment in the future. Similarly, to combat
climate change we must spend now in order to receive environmental and economic benefits in the
future. If we can quantify both the expenditure required now and the likely cost of inaction in
the future, then the price of the corresponding bond gives us an indication of the discount factor.
We must say, nonetheless, that there are always intangible effects that are difficult to quantify in
monetary terms, and one should be suspicious of any procedure that reduces the existence of a
species or a human life to a dollar value. But it is nonetheless informative to see what a purely
monetary analysis implies.

Secondly, the interest rate for bonds as a function of their time to maturity is called the yield
curve. Most bonds have a time to maturity of 30 years or less, but for environmental problems
such as climate change we need to know the discount 100 years or more into the future. We don’t
have data on bonds of such long maturity. Thus we are faced with the problem of inferring the
price of long maturity bonds from data on much shorter maturity bonds. Furthermore, the yield
curve fluctuates substantially from year to year, so we need sufficient historical time series for
reliable statistical inference. In order to do this we need a reasonable model for real interest rates
at different maturities.

Thirdly, in addition to the factors that determine the overall level of short term rates, there is
one effect influencing long term rates that must be taken into account. This is the so-called “risk
aversion”. The far future is less certain than the near future, so all else equal, we expect that longer
term bonds bear greater risk, which should imply higher interest rates.

In the rest of this paper we will develop and summarize all these ideas concerning discounting
into a consistent framework which I will try to expose in a clear and intuitive way.
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II. The process of discounting

In economics the increment at a given time of the quantity of wealth, exemplified by some
magnitude M = M(t), is assumed to depend linearly on the quantity itself and the duration of the
variation. For a continuous and instantaneous variation one then writes:

dM(t) ∝M(t)dt. (1)

This is a phenomenological law based on the empirical fact that the bigger M(t), the greater its
variation at a given time, but also on the simplifying assumption that the increment is linear in M(t)
and not, for instance, quadratic. Let us incidentally note that linearity is equivalent to assuming
that the interest rate, defined as the relative time derivative

r =
1

M(t)

dM(t)

dt
, (2)

is independent of M(t). Note that this definition can be written as

r =
d lnM

dt
, (3)

so that the rate is the derivative of the logarithm of wealth.
In the simplest situation the growth law (1) represents a completely linear law with direct

proportionality in which r is constant:

dM(t) = rM(t)dt, (4)

where r is the rate and is measured in units of 1/(time). Now the growth law is readily integrated,
giving

M(t) = er(t−t0)M(t0), (5)

which yields an exponential growth connecting wealth at some earlier time t0.
Before proceeding further we recall that the growth law (1), often in the simplest version (4),

appears in numerous branches of physical and social sciences. Thus, for example, in radioactivity
if N(t) is the number of active nuclei at time t, the usual hypothesis is that this number decreases
as

dN(t) = −λN(t)dt,

where λ > 0 is the decay constant. Similar considerations apply to other situations, as they are
found in chemical reactions, population dynamics, as in many other places.

In economics, discounting refers to the process of connecting wealth at different times. Specifi-
cally the discount function, which we denote by δ(t), is defined by

δ(t) ≡ M(t0)

M(t)
, (6)

so that M(t0) = δ(t)M(t) in accordance with the fact that discounting specifically refers to weight-
ing the future at some time t relative to t0 (t > t0).

In the simplest case of Eq. (5) the discount function is given by the decreasing exponential:

δ(t) = e−r(t−t0), (7)

where r > 0 is the interest rate. However, as we have mentioned above, this simple form of
discount, in which the interest rate is always constant, is unrealistic. A first generalization consists
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in assuming rates to be deterministic functions of time r(t). In such a case the growth law (4) is
replaced by

dM(t) = r(t)M(t)dt (8)

and discount is given by

δ(t) = exp

(
−
∫ t

t0

r(t′)dt′
)
. (9)

Obviously if r(t) = r is constant we recover the simple exponential decay of Eq. (7).
However, the assumption of rates being given by constants or by deterministic functions of time

is unreasonable, at least over long periods of time. Financial interest rates are typically described as
random, as the many models for stochastic interest rates appearing in the literature show (Brigo and
Mercurio, 2006). Population dynamics are subject to random influences, as are chemical reactions
and other physical processes where rates appear.

We therefore assume that r(t) is a random function of time. This naturally means that dis-
counting δ(t) is also random, as is clearly seen in Eq. (9). In these circumstances the effective
discount function is defined as the average of δ(t):

D(t) = E
[
exp

(
−
∫ t

t0

r(t′)dt′
)]

, (10)

where the expectation E[·] represents the average over all real trajectories of r(t) up to time t and
t0 is an arbitrary initial time.1 Let us note that this is formally identical to the problem of pricing
bonds. The price B(t0|t+t0) of a zero-coupon bond issued at time t0 with unit payoff and maturing
at time t+ t0 (t ≥ 0) is (Brigo and Mercurio, 2006)

B(t0|t+ t0) = E
[
exp

(
−
∫ t

t0

n(t′)dt′
)]

,

where n(t) is the nominal rate. The differences between these two problems is that for discounting
we are interested in real interest rates r(t) –which can be negative due to inflation– whereas for
bond pricing we are typically interested in the nominal rate n(t).

The function r(t) can, in principle, be any random process. However, the simplest and most
common hypothesis consists in assuming that is that rates are described by a Markovian process
with continuous sample paths. That is, we assume that r(t) is a diffusion process whose time
evolution is governed by a stochastic differential equation of the form

dr = f(r)dt+ g(r)dW (t), (11)

where f(r) is the drift, g(r) > 0 is the noise intensity and W (t) is the standard Wiener process.
In terms of the cumulative process

x(t) =

∫ t

t0

r(t′)dt′, (12)

the discount function can be written as

D(t) = E
[
e−x(t)

]
.

1Usually t0 refers to the present time, which in our case and without loss of generality (see below), can be taken
equal to zero, i.e., t0 = 0.
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Therefore,

D(t) =

∫ ∞
−∞

dr

∫ ∞
−∞

e−xp(x, r, t|x0, r0, t0)dx, (13)

where p(x, r, t|x0, r0, t0) is the probability density function (PDF) of the bidimensional diffusion
process (x(t), r(t)). The measure corresponding to the density p is sometimes referred to as the
data generating measure.

From Eqs. (11)-(12) we see that (x(t), r(t)) is defined by the following pair of stochastic differ-
ential equations

dx = rdt,

dr = f(r)dt+ g(r)dW (t), (14)

which implies that the joint density obeys the (forward) Fokker-Planck equation (Gardiner, 1986)

∂p

∂t
= −r ∂p

∂x
− ∂

∂r
[f(r)p] +

1

2

∂2

∂r2
[g2(r)p]. (15)

Since x(t0) = 0 and r(t0) = 0, the initial condition of this equation is

p(x, r, t0|x0, r0, t0) = δ(x)δ(r − r0). (16)

Let us incidentally note that since f(r) and g(r) do not depend explicitly on time, the process
is time homogeneous, that is to say, invariant under time translations (t→ t− t0) and we can set
t0 = 0 without loss of generality.

There are two different approaches for obtaining the discount function D(t). One of them,
which is standard in the financial literature, is based on the backward Fokker-Planck equation and
it is called the Feynman-Kac approach (Brigo and Mercurio, 2006). A second procedure is based
on Fourier analysis (Farmer et al., 2015). Let us next succinctly present both approaches.

Feynman-Kac approach

The Feynman-Kac approach obtains a a partial differential equation for the discount function
D = D(t|r0) which is based is the backward Fokker-Planck equation. This equation is called the
Feynman-Kac equation and reads (Brigo and Mercurio, 2006)

∂D

∂t
= −r0D + f(r0)

∂D

∂r0
+

1

2
g2(r0)

∂2D

∂r2
, (17)

with the initial condition
D(0|r0) = 1. (18)

Fourier transform approach

We have recently presented an alternative method for obtaining the discount function (Farmer
et al., 2014, 2015) which turns out to be quite advantageous in linear cases and it is based on the
characteristic function. The latter defined as the Fourier transform of the joint density:

p̃(ω1, ω2, t|r0) =

∫ ∞
−∞

e−iω2rdr

∫ ∞
−∞

e−iω1xp(x, r, t|r0)dx. (19)

6



One of the chief advantages of working with the characteristic function is that obtaining the
effective discount is straightforward. Indeed, comparison of Eq. (13),

D(t|r0) =

∫ ∞
−∞

dr

∫ ∞
−∞

e−xp(x, r, t|r0)dx,

with Eq. (19) shows that
D(t|r0) = p̃

(
ω1 = −i, ω2 = 0, t|r0

)
. (20)

Therefore, in order to obtain the discount function we only need to know the joint characteristic
function of the bidimensional process (x, r).

Adding risk aversion

As we have mentioned at the end of Sect. I, the far future is less certain than the near future
and we should expect that longer term discount bear greater risk, which would imply higher interest
rates. In finance these risk factors are taking into account by considering the so-called “market
price of risk” (Vasicek, 1977; Brigo and Mercurio, 2006).

In the context of bond pricing, if investors are risk neutral then prices can reasonably be
modeled based on the data generating measure p which is the solution of the Fokker-Planck equation
(15) with initial condition (16). The discount function D(t) is then obtained through the Fourier
transform p̃ or, alternatively, by solving the Feynman-Kac equation (17) with initial condition (18).
This is sometimes called the Local Expectation Hypothesis (Cox, Ingersoll, and Ross, 1981; Gilles
and Leroy, 1986). However a more general assumption is that investors are sensitive to risk, in
such a case bonds can no longer be priced in this way. Instead they are priced with an artificial
probability density function, p∗, usually called risk-neutral measure. The two measures p and p∗ are
related by the market price of risk, which is the extra return per unit risk that investors demand to
bear risk. This additional return is given by a quantity q = q(r, t) that in its most general form may
depend on the rate r and current time t. although the most usual assumption is that q = q(r) only
depends on the rate (Vasicek, 1977). Following a standard procedure for bond pricing (Vasicek,
1977; Piazzesi, 2009) one takes risk into account by replacing the drift f(r)→ f∗(r), where

f∗(r) = f(r) + g(r)q(r), (21)

where q(r) ≥ 0 is the market price of risk.2 In this case the risk-neutral measure p∗(x, r, t|r0) will
be given by the Fokker-Planck equation (15) with f(r) replaced by f∗(r), that is,

∂p∗

∂t
= −r∂p

∗

∂x
− ∂

∂r

[[
f(r) + g(r)q(r)

]
p∗
]

+
1

2

∂2

∂r2
[
g2(r)p∗

]
, (22)

with initial condition given by Eq. (16). In an analogous way, the discount function, adjusted
for risk, will now be given by the Feynman-Kac equation (17) with f(r) replaced by f∗(r). Using
the Fourier method the discount function will be given in terms of the risk-neutral characteristic
function, p̃∗(ω1, ω2, t|r0), by [cf. Eq. (20)]

D(t|r0) = p̃∗
(
ω1 = −i, ω2 = 0, t|r0

)
. (23)

2The form of q(r) is, in principle, unknown and has to be conjectured. The simplest and habitual assumption is
that q(r) = q is constant. In such a case the value of q is estimated from empirical data.
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III. Some models

Financial economists have developed a large number of models of interest rate processes to
enable them to price bonds and other cash flows. In these models interest rates are described by
positive random processes since financial interest rates never (or very rarely) go negative. Although
the models could in principle be extended to arbitrary horizons, they have only been studied
carefully over time horizons of up to 30 years, since bonds are rarely issued for periods longer than
this.

Environmental economists are nevertheless interested in the real behavior of the economic
growth over much larger horizons, in contrast to financial economists, who are typically more
interested in nominal rates over shorter horizons. Their behavior is essentially different due to the
fact that real rates can take on negative values. Indeed, taking nominal rates corrected by inflation
as a proxy of economic growth, we have recently shown (Farmer et al., 2014) thorough an empirical
study on many countries that real interest rates are negative around 25 % of the time (see Sect.
IV).

To understand how discounting depends on the random process used to characterize interest
rates we have studied three different models and obtained exact analytical expressions for the
discount function (Farmer et al., 2015). The three models describe to varying degree a number of
relevant characteristics observed in rates, while being simple enough to allow for complete analytical
treatment.

The first model is based on the Ornstein-Uhlenbeck process (called Vasicek model in finan-
cial literature) which allows for negative rates and is therefore suitable for pricing environmental
problems. The model has a stationary probability distribution and exhibits reversion to the mean,
which means that the process tends to return to its average stationary value. The second and
third models considered are given by the Feller and log-normal processes respectively. For these
processes rates cannot be negative. The Feller process –also known as Cox Ingersoll and Ross (CIR)
model– has reversion to the mean and a stationary probability distribution. It is one of the most
popular models in finance. On the other hand, the log-normal process (Dotham model) does not
have reversion to the mean and does not have a stationary distribution. Despite these shortcomings
the process has also been used in the financial literature mainly because it is positive and allows
for analytical treatment (Brigo and Mercurio, 2006). Let us next briefly review these models and
summarize their main results.

1 - Vasicek model

In this model rates are described by the Ornstein-Uhlenbeck process (Vasicek, 1977), which is
characterized by linear drift and constant noise intensity

dr(t) = −α[r(t)−m] + kdW (t), (24)

where r(t) is the rate and W (t) the Wiener process. The parameter m, sometimes refereed to
as “normal level,” is a mean value to which rates revert, k > 0 is the amplitude of fluctuations,
and α > 0 is the strength of the reversion to the mean. As we will see in the next section these
parameters are estimated from empirical data.

The model is Gaussian and has a stationary probability distribution (as t → ∞) given by
(Gardiner, 1986)

ps(r) = (α/πk2)e−α(r−m)2/k2 ,

which proves that the normal level m is the stationary mean value,

m = E[r(t)]. (25)
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It can also be shown that the correlation function of the process, defined as the average

C(τ) = E
[
r(t+ τ)r(t)

]
−
[
E
[
r(t)]

]2
,

in the stationary state reads
C(τ) = (k2/2α)e−ατ , (26)

which means that α−1 is the correlation time of the rate. Let us observe that the volatility,
σ2 = C(0), is independent of the normal level and given by

σ2 = k2/2α. (27)

For this model it is possible to obtain an exact expression for the discount function D(t) that
reads (Farmer et al., 2015)

lnD(t) = −r0
α

(
1− e−αt

)
+

k2

2α3

[
αt− 2

(
1− e−αt

)
+

1

2

(
1− e−2αt

)]
−m

[
t− 1

α

(
1− e−αt

)]
, (28)

where r0 = r(0) is the initial rate. Note that the exponential terms in Eq. (28) are only significant
at small times, that is to say, for times smaller than the correlation time of the rate (t < α−1) but
they are negligible at longer times. We thus have

D(t) ' e−r∞t, (29)

where
r∞ = m− k2/2α2, (30)

is the long-run discount rate. Let us note an important fact that the long-run discount rate is
smaller than the mean value of the return given by the normal level m. This reduction is quantified
by the ratio k/α, which means, for instance, that long persistence (recall that this is equivalent to
long correlation time, i.e., α small) or else increasing noise fluctuations (i.e., k large) decrease the
long-run discount rate as compared with the average rate.

Risk aversion

As mentioned above risk aversion is taken into account by introducing the market price of risk
q(r) and changing drift according to Eq. (21). For the Vasicek model, in which f(r) = −α(r −m)
and g(r) = k, we have

f∗(r) = −α(r −m) + kq(r), (31)

and taking q constant, we write
f∗(r) = −α(r −m∗), (32)

where

m∗ = m+
qk

α
. (33)

Since the modified drift f∗(r) has the same form that f(r) we conclude that the adjusted-for-risk
discount function will be given by Eq. (28) after the replacement m → m∗. In particular, the
adjusted long-run discount now reads [cf. Eq. (30)]

r∗∞ = m+
qk

α
− k2

2α2
. (34)
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Thus we see that the long-run discount depends on the historical rate m, but this is shifted by
two terms. The first term raise the long-run rate due to the market price of risk. The second shift
lowers it by an amount given by the ratio of uncertainty (as measured by k) and persistence (as
measured by α). We can trivially rewrite the equation above as

r∞ = m+
k

α

(
q − k

2α

)
. (35)

This makes it clear that whether or not the overall shift in the long-run discount rate is positive
or negative depends on the size of the market price of risk in relation to the ratio of the volatility
parameter and the reversion rate.

It is not surprising that the market price of risk raises the long term rate, but it is not so
obvious that uncertainty and persistence can lower it. Indeed for the Orstein-Uhlenbeck process it
can make it arbitrarily small. For any given mean interest rate m, by varying k and α, the long-run
discount rate r∞ can take on any value less than m, including negative values, while at the same
time the standard deviation σ can also be made to take on any arbitrary positive value.

It is even possible for the long-run rate to be negative. This is due to the amplification of
negative real interest rates r(t). Computation of the discount function involves an average over
exponentials, rather than the exponential of an average. As a result, periods where interest rates are
negative are amplified, and can easily dominate periods where interest rates are large and positive,
even if the negative rates are rarer and weaker. It does not take many such periods to substantially
reduce the long run interest rate.

To summarize, in the Vasicek model, and even taking into account risk aversion, the long-run
discounting rate can be much lower than the mean, and indeed can correspond to low interest rates
that are rarely observed.

2 - CIR model

In this model rates are described by the Feller process (Cox, Ingersoll, Ross, 1985). The process
is a diffusion process with linear drift and linear diffusion coefficient (Feller, 1951),

dr(t) = −α[r(t)−m]dt+ k
√
r(t)dW (t), (36)

where, as in the Ornstein-Uhlenbeck process, m > 0 represents the mean stationary rate and α−1 is
the correlation time. It can be shown that the Feller process never attains negative values (Feller,
1951; Masoliver and Perelló, 2012) and it is, therefore, suitable for modeling financial nominal rates
rather than real rates. The process is not Gaussian and the stationary density is given by the
Gamma distribution (Farmer et al., 2015)

ps(r) =
(2α/k2)θ

Γ(θ)
rθ−1e−(2α/k

2)r,

where

θ =
2αm

k2
(37)

is a positive constant that combines all the parameters of the model into a single expression. As
in the Vasicek model m is the stationary mean value at which the process reverts. The stationary
correlation function is also given by an exponential decreasing in time,

C(τ) = (mk2/2α)e−ατ .
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Note that α−1 is again the correlation time but, contrary to the Vasicek model, the volatility
σ2 = mk2/2α depends on the normal level m as well.

For the CIR model it is also possible to obtain the exact expression for the discount function.
The result reads (Brigo and Mercurio, 2006; Farmer et al., 2015)

D(t) =

[
2λe−(λ−α)t/2

(λ+ α) + (λ− α)e−λt

]θ
exp

{
− 2(1− e−λt)r0

(λ+ α) + (λ− α)e−λt

}
, (38)

where r0 is the initial rate, θ is defined in Eq. (37), and

λ =
√
α2 + 2k2. (39)

Notice that λ > α and the time scale represented by λ−1 is smaller than the correlation time α−1.
As time increases (in fact, when λt� 1) the effective discount (38) reduces to

D(t) ' e−r∞t (40)

(t→∞), where

r∞ =
1

2
(λ− α)θ (41)

is the long-run discount rate of the CIR model. Substituting for Eqs. (37) and (39) this can be
written as

r∞ =
2m

1 +
√

1 + 2k2/α2
, (42)

which clearly shows that
r∞ < m.

Therefore, like the Vasicek model, the CIR long-run discount rate is smaller than the stationary
average rate by an amount that also depends on the square of the ratio k/α. Notice that, again,
either a long persistence (α small) or an increase of the noise intensity (k large) diminish the
long-run discount rate.

Risk aversion

For the Feller process [cf. Eq. (36)] f(r) = −α(r−m) and g(r) = k
√
r and the adjusted drift is

f∗(r) = −α(r −m) + kq(r)
√
r. (43)

For any function q(r) (including a constant market price of risk) this leads to an unsolvable Fokker-
Planck equation which no analytical expression for the adjusted discount and the long-run discount
rate. It is, nonetheless, possible to get analytical expressions for these quantities if the market price
of risk has the functional form

q(r) = q
√
r, (44)

where q ≥ 0 is a positive quantity. In such a case we may write

f∗(r) = −α∗(r −m∗), (45)

where
α∗ = α− kq, m∗ =

αm

α− kq
. (46)
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The adjusted drift has the same form than f(r). Therefore, the adjusted discount function will
be given Eq. (38) with the replacements α → α∗ and m → m∗ and the long-run discount is [cf.
Eq. (42)]

r∗∞ =
2m∗

1 +
√

1 + 2k2/α∗2
. (47)

From the definitions of α∗ and m∗ we easily see that α∗ ≤ α and α∗m∗ = αm. Hence, writing
r∗∞ as

r∗∞ =
2α∗m∗

α∗ +
√
α∗2 + 2k2

,

we see at once that r∗∞ ≥ r∞. We therefore conclude that if the market price of risk has the special
functional for given by Eq. (44), in the CIR model risk always increases the long-run discount rate
regardless noise intensity and persistence.

3 - Log-normal model

In this mode rates are described by the the geometric Brownian motion (log-normal process).
It can be written as

dr

r
= αdt+ kdW (t), (48)

where r is the interest rate, α and k are constant parameters, α may be positive or negative
whereas k is always positive and W (t) is the Wiener process. Equation (48) can be integrated at
once yielding

r(t) = r0 exp

{(
α− k2

2

)
t+ kW (t)

}
, (49)

showing that r(t) is never negative (r0 > 0). Therefore, the log-normal model is more suited for
modeling nominal interest rates in finance, which are never negative, than for modeling real rates
in environmental economics. Contrary to OU and Feller processes, the log-normal process does
not show reversion to the mean. Indeed, as t increases we see from Eq. (49) that the rate either
diverges when α > 0 or goes to zero if α < 0. In an equivalent way one can also show from Eq.
(49) that the mean and variance of the process are

〈r(t)〉 = r0e
αt, Var[r(t)] = r20e

2αt
(
ek

2t − 1
)
.

The discount associated with the log-normal process model was studied in 1978 (Dothan, 1978)
and in finance is usually known as the Dothan model. Because it allows for analytical treatment it
is one of the models used in the literature (Brigo and Mercurio, 2006). In Farmer et al. (2015) we
have obtained the discounting function and discussed some of its interesting asymptotic properties.
Let us here summarize the main results.

Contrary to Vasicek and CIR models where it is possible to obtain exact expressions for the
discount function D(t). For the log-normal case we can only obtain the exact expression of the
Laplace transform,

D̂(s) =

∫ ∞
0

e−stD(t)dt.

The resulting formula –written as an integral of special functions, the Kummer function– is rather
intricate and we won’t write it here (see Farmer et al., 2015, for more information). From that
expression we can, nonetheless, get asymptotic expressions as t→∞ for discount in real time using
the so-called Tauberian theorems which relate the small s behavior of D̂(s) with the long-time
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behavior of D(t) (Pitt, 1958). The final result are the following asymptotic expressions for the
discount function D(t) as t → ∞, which, incidentally, for long-run discount is all that matters
(Farmer et al., 2015)

D(t) ∼


constant α < k2/2,

e−r∞t α > k2/2,

t−1/2 α = k2/2.

(50)

The asymptotic form of the discount function thus depends on the values taken by the ratio α/k2

between the strength of the strength of the deterministic drift α and the amplitude of fluctuations
given by k2/2.

(i) The case k2/2 > α corresponds to strong fluctuations, where the noise intensity k2/2 is
greater than the drift parameter α. In this case the discount asymptotes to a constant value (see
Farmer et al., 2015, for the actual value of this constant).

(ii) The case k2/2 < α corresponds to mild fluctuations for which deterministic drift is stronger
than noise. In such a case the discount function has the expected exponential decay (Farmer et al.,
2015)

D(t) ∼ e−r∞t, (51)

with a long-run rate of discount given by

r∞ =
1

δ

(
α− k2

2

)
, (52)

where 0 < δ < 1 is a positive numerical factor which only depends on the ratio 2α/k2 and reads

δ = ψ
(
2α/k2

)
+

1

2α/k2 − 1
, (53)

where ψ(·) is the digamma function.
Let us write Eq. (51) in a more suggestive form. Indeed, from Eq. (49) we see that

E
[
ln
r(t)

r0

]
=

(
α− k2

2

)
t,

and with the help of Eq. (51) we write Eq. (51) as

D(t) ∼ exp

{
−1

δ
E
[
ln
r(t)

r0

]}
, (54)

(t → ∞ and k2/2 < α). Note that the average E[ln r(t)/r0] is what a practitioner would take as
an estimate of the discount rate up to time t within the log-normal model. Since 0 < δ < 1, the
analytical result (54) shows that the actual long-run rate of the model is a fraction of the average
rate. We have shown elsewhere that the long-run discount rate is at most 73 % of the average rate
(Farmer et al., 2015). In this way when 2α/k2 > 1 the log-normal model follows a similar pattern
to that of the OU and Feller models: In all of them the long-run rate is smaller than the average
rate. This general statement is in fact a direct consequence of Jenesen’s inequality, which states
that the average of a convex function is greater than or equal to the function of the average; that
is, E[f(X)] ≥ f(E[X]). Assuming f to be the decreasing exponential and X the cumulative process
x(t) defined in Eq. (12), it follows immediately that the long-run rate r∞ must be always less than
or equal to the average rate. Nonetheless, our procedure quantifies the difference among averages
(Farmer et al., 2015).
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(iii) The critical case α = k2/2, in which deterministic motion and fluctuations are balanced,
leads to the hyperbolic discount function as obtained by Farmer and Geanakoplos (2009). The
hyperbolic D(t) is substantially greater than any exponential decaying function, showing that there
is no long-run rate of interest in this case. In fact the long-run rate of interest is 0, but that does
not convey as precise information as saying D(t) is approximately k/

√
t for all large t. Since the

sum (i.e., the integral) of all these D(t) is infinite, such D(t) assign infinite value to any permanent
positive flow of consumption: the infinite future is infinitely valuable.

Risk aversion

Let us very briefly comment on the inclusion of risk aversion in the Dothan model. For the
log-normal process f(r) = αr and g(r) = kr and

f∗(r) = [α+ kq(r)]r.

Assuming a constant market price of risk, q(r) = q ≥ 0, we have

f∗(r) = α∗r, α∗ = α+ q.

Again f∗(r) has the same form than f(r) and all previous results will apply with the replacement
α→ α∗.

IV. Empirical study

To understand how discounting depends on the random process used to characterize interest
rates, we have collected data for nominal interest rates and inflation for fourteen countries over
spans of time ranging from 87 to 318 years. The countries in our sample are: Argentina (ARG,
1864-1960), Australia (AUS, 1861-2012), Chile (CHL, 1925-2012), Germany (DEU, 1820-2012),
Denmark (DNK, 1821- 2012), Spain (ESP, 1821-2012), United Kingdom (GBR, 1694-2012), Italy
(ITA, 1861-2012), Japan (JPN, 1921-2012) (see Table I), Netherlands (NLD, 1813-2012), Sweden
(SWE, 1868-2012), the United States (USA, 1820-2012), and South Africa (ZAF, 1920-2012). Some
examples are plotted in Figure 1. Since all but two of our nominal interest rate processes are for
ten year government bonds, which pay out over a ten year period, we smooth inflation rates with a
ten year moving average, and subtract the annualized inflation index from the annualized nominal
rate to compute the real interest rate.

Real rates are nominal rates corrected by inflation. Nominal rates n(t) are determined by IG
rates constructed from the 10 year Government Bond Yield y(t|τ) with τ= 10 years.3 Nominal
rates are then estimated by

n(t) ∼ y(t|τ).

The inflation rate is estimated through the Consumer Price Index (CPI) as

i(t) ∼ 1

τ
ln
[
I(t+ τ)/I(t)],

3If B(t|t+ τ) is the government bond maturing at time t+ τ with unit maturity, B(t|t) = 1, then the yield y(tτ)
is defined as y(t|τ) = − lnB(t|t+ τ)/τ , so that B(t|t+ τ) = e−τy(t|τ).
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Country Consumer Price Index Bond Yields from to records

1 Italy CPITAM IGITA10 12/31/1861 09/30/2012 565
annual from 12/31/1861 quarterly
quarterly from 12/31/1919

2 Chile CPCHLM IDCHLM 03/31/1925 09/30/2012 312
quarterly quarterly

3 Canada CPCANM IGCAN10 12/31/1913 09/30/2012 357
quarterly quarterly

4 Germany CPDEUM IGDEU10 12/31/1820 09/30/2012 729
annual from 12/31/1820 quarterly
quarterly from 12/31/1869

5 Spain CPESPM IGESP10 12/31/1821 09/30/2012 709
annual from 12/31/1821 quarterly
quarterly from 12/31/1920

6 Argentina CPARGM IGARGM 12/31/1864 03/31/1960 342
annual from 12/31/1864 quarterly
quarterly from 12/31/1932

7 Netherlands CPNLDM IGNLD10D 12/31/1813 12/31/2012 189
annual annual

8 Japan CPJPNM IGJPN10D 12/31/1921 12/31/2012 325
quarterly quarterly

9 Australia CPAUSM IGAUS10 12/31/1861 09/30/2012 564
annual from 12/31/1861 quarterly
quarterly 12/31/1991

10 Denmark CPDNKM IGDNK10 12/31/1821 09/30/2012 725
annual from 12/31/1821 quarterly
quarterly from 12/31/1914

11 South Africa CPZAFM IGZAF10 12/31/1920 09/30/2012 329
quarterly quarterly

12 Sweden CPSWEM IGSWE10 12/31/1868 09/30/2012 135
annual annual

13 United Kingdom CPGBRM IDGBRD∗ 12/31/1694 12/31/2012 309
annual annual

14 United States CPUSAM TRUSG10M 12/31/1820 10/30/2012 183
annual annual

Table I List of the data analyzed. Notes (i) Chile: we have taken the Discount (ID) rate since the
Government Bond Yield data was not available. (ii) Germany: From 06/30/1915 to 03/31/1916 IGDEU is
empty and the previous available record has been repeated . (iii) Spain: From 07/31/1936 to 12/31/1940
no records available. 07/31/1936 is empty and the previous available record has been repeated . (iv)
Netherlands: 2/31/1945 is empty and the previous available record has been repeated : (v) Japan: From
12/31/1946 to 09/30/1948 is empty and the previous available record has been repeated .
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Figure 1. (Color online) Real interest rates display large fluctuations and negative rates are
not uncommon. We show nominal interest rates (top), inflation (middle), and real interest rates
(bottom) for Italy (ITA), United States (USA) and South Africa (ZAF).

where I(t) is the aggregated inflation up to time t, and τ =10 years.4 Finally, real interest rates
r(t) are defined via Fisher’s procedure, subtracting realized inflation from nominal interest rates

r(t) = n(t)− i(t).

A striking feature observed in many epochs for all countries is that real interest rates frequently
become negative, often by substantial amounts and for long periods of time (see Table II). On
average, real interest rates are negative one quarter of the time. This makes the CIR and Dothan
models less interesting for modeling real interest rates, as well as many other models which assume
that interest rates are positive (Brigo and Mercurio, 2006) . We, therefore, confine the empirical
work to the Vasicek model. We also assume the local expectation hypothesis for which we live in
a risk neutral world and the market price of risk is zero. This is obviously a first approximation,
specially for long-run discounting.5

4The relation between I(t) and the Consumer Price Index (CPI) is I(t + τ) = I(t)
∏τ−1
j=0

[
1 + C(t + j)

]
, where

C(t) is the time series of the empirical CPI. The instantaneous rate of inflation i(t) is, therefore, estimated by the
quantity i(t+ τ) which written in terms of the CPI reads i(t) ∼ i(t+ τ) = (1/τ)

∑τ−1
j=0 ln

[
1 + C(t+ j)

]
.

5Adding risk, after assuming a constant market price of risk, is under current investigation.
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Country Neg RI m Min Max k Min Max α r∞
Italy 28% (40y) −0.3 −9.1 5.6 6.9 0.8 10.1 0.22 −5.4
Chile 56% (43y) −6.8 −20.2 12.0 25.2 5.6 44.1 0.40 −26
Canada 22% (20y) 2.9 0.1 6 2.3 1.1 2.0 0.26 2.5
Germany 14% (25y) −10.7 −51.0 4.0 33.9 0.9 61.4 0.20 −160
Spain 25% (45y) 5.7 −0.5 13.5 2.9 1.2 3.6 0.06 −6.4
Argentina 20% (17y) 2.4 −2.9 6.8 6.2 2.8 6.7 0.39 1.1
Netherlands 17% (33y) 3.2 0.8 5.4 1.6 0.8 2.2 0.14 2.4
Japan 33% (26y) −2.2 −7.8 4.0 9.7 1.1 13.2 0.24 −10
Australia 23% (33y) 2.6 −0.7 4.9 2.3 0.7 2.8 0.19 1.9
Denmark 18% (33y) 3.2 1.5 4.3 2.3 1.1 2.9 0.23 2.7
South Africa 43% (36y) 1.8 −2.2 5.5 2.5 1.2 2.0 0.21 1.1
Sweden 28% (38y) 2.3 −0.3 3.9 2.5 0.6 3.4 0.25 1.9
United Kingdom 14% (45y) 3.3 1.4 4.3 1.9 1.0 2.4 0.19 2.8
United States 31% (36y) 2.6 1.0 4.0 1.8 1.2 2.1 0.18 2.1
Stable countries 23% (33y) 2.7 −0.14 5.0 2.6 1.04 2.94 0.23 2.1
Unstable counntries 31% (36y) −2.9 17.7 1.8 16 1.9 26.5 0.22 −42

Table II Parameter estimation of the Vasicek model (using real rates) in yearly units. Notes (i) “Neg
RI” gives the percentage of time and the total number of years in which real interest rates are negative. (ii)
The columns m, k (in %) and α are estimates taking each country time series; r∞ (in %) is evaluated from
Eq. (30). (iii) The Min and Max columns illustrate the robustness of the estimation procedure by providing
the minimum and the maximum value of parameter estimation on four equal length data blocks. (iv) α is
estimated by fitting the empirical correlation function to an exponential (cf. Eq. (26)) after using the whole
data block. (v) Countries in boldface are those considered historically more stable with positive long-run
rates r∞ > 0.

We estimate the parameters m, α and k of the Vasicek model to each of the data series. The
parameter m is easily estimated because it is the stationary mean value of the rate [cf. Eq. (25)]

m = E[r(t)].

The estimation of parameters α and k is based on the correlation function of the Ornstein-Uhlenbeck
process. Thus from Eq. (26) we have

C(t− t′) =
k2

2α
e−α|t−t

′|.

Evaluating then the empirical correlation from data and fitting it by an exponential we estimate α
(measured in year units) for each country. The third and last parameter, k, is obtained from the
empirical standard deviation σ2 = E[|r(t)−m|2], which for the Vasicek model is given by Eq. (27).
That is,

k = σ
√

2α.

The resulting parameters for all countries are listed in Table II along with its maximum and
minimum value for each country.

Once the parameters of the Vasicek model have been estimated, the long-run discount rate is
readily evaluated from Eq. (30),

r∞ = m− k2/2α2.

The fourteen countries divide into two very clear groups. Nine countries, with relative stable
(and positive) real interest rates, have long run positive rates (boldface type in Table II). The
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Figure 2. (Color online) The discount function D(t), Eq. (28), as a function of time for the
Ornstein-Uhlenbeck model for the fourteen countries in our sample (note that the vertical axis is
in a logarithmic scale, we are thus plotting lnD(t) as a function of t). In order to calculate D(t)
we have taken the parameters reported in Table II and use them in Eq. (28). Notice that D(t)
quickly reaches its long-run exponential behavior. The long-run rates of the unstable countries vary
dramatically, while most of the stable countries are fairly similar.

average historical rate for these nine countries is m = 2.7% while the average long-run rate is
r∞ = 2.1% which is on average 29% lower than m. Five countries with less stable behavior have
long-run negative rates and an exponentially increasing discount. (It may not be a coincidence that
all five have experienced fascist governments). In four cases the average rate m is negative due to
at least one period of runaway inflation; the exception is Spain, which has a (highly positive) mean
real interest rate, but still has a long-run negative rate.

In Fig. 2 we show the exact discount function D(t) given by Eq. (28) for all countries as a
function of time, illustrating the dramatic difference between the two groups. In most cases the
behavior is monotonic; however, it can also be non-monotonic, as illustrated by Argentina, which
initially increases and then decreases.

V. Concluding remarks

Financial economists have developed a large number of models of interest rate processes to
enable them to price bonds and other cash flows. In these models interest rates are described by
positive random processes since financial interest rates –the nominal rates– never (or very rarely)
go negative. Although the models could in principle be extended to arbitrary horizons, they have
only been studied carefully over time horizons of up to 30 years, since bonds are rarely issued for
periods longer than this.

On the other hand, environmental economists are interested in the real behavior of the economic
growth over much larger horizons, in contrast to financial economists, who are typically more
interested in nominal rates over shorter horizons. Their behavior is essentially different due to the
fact that real rates can take on negative values. Taking nominal rates corrected by inflation as a
proxy of economic growth, we have seen from an empirical survey on 14 countries that real interest
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rates are negative more than 25 % of the time.
To understand how discounting depends on the random process used to characterize interest

rates we have studied three different models and obtained exact analytical expressions for the
discount function. The three models describe to varying degrees a number of relevant characteristics
observed in rates, while being simple enough to allow for complete analytical treatment.

In the first model rates are represented by the Ornstein-Uhlenbeck process (Vasicek model)
which allows for negative rates and is therefore suitable for pricing environmental problems. The
model has a stationary probability distribution and exhibits reversion to the mean, which means
that the process tends to recur to its average stationary value.

In the second and third models considered rates are represented by the Feller and log-normal
processes respectively. For these processes rates cannot be negative. The Feller process (CIR
model) has reversion to the mean and a stationary probability distribution constituting one of the
most popular models in finance. On the other hand, the log-normal process (Dotham model) has
no reversion to the mean nor a stationary distribution.

We have carried out the empirical study of real rates and bearing in mind that real interest
rates may be negative we have thus used the Vasicek model. When we estimate the parameters
of the Vasicek model –that is m, α and k, assuming no risk aversion– of the nine countries which
never faced destabilizing inflation, we find an average historical rate m = 2.7 % whereas, due to
fluctuations, the long-run discounting has an average of r∞ = 2.1 %, which is around 22 % smaller
than the historical average represented by m. Let us incidentally note that our value of 2.1 % is
closer to Stern’s estimate (1.4 %) than that of Nordhhaus (4 %).

It is also worth mentioning the case of the United Kingdom where the historical rate over more
than 300 years is 3.3 % while the long-run discount rate is r∞ = 2.8 % (see Table II). This long-run
discount is very close to the one recently obtained by Giglio, Maggiori and Stroebel (2015) who,
using data on housing markets in the United Kingdom during 2004–2013 and Singapore during
1995–2013, have estimated an annual discount rate of 2.6 % for payments more than 100 years in
the future.

We finish with the following reflection aimed at environmental concerns and with which we had
finished one of our papers on the problem (Farmer et al., 2014): “Real interest rates are typically
closely related to economic growth, and economic downturns are a reality. The great depression
lasted for 15 years, and the fall of Rome triggered a depression in western Europe that lasted
almost a thousand years. In light of our results here, arguments that we should wait to act on
global warming because future economic growth will easily solve the problem should be viewed
with some skepticism. When we plan for the future we should always bear in mind that sustained
economic downturns may visit us again, as they have in the past”.
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