Note: Galois theory "in a nutshell"

Antonio Lechuga, PhD.

A condense vision on Galois group of an equation.
Let be the equation,

$$
f(t)=t^{4}-4 t^{2}-5=0
$$

whose roots are, $\alpha, \beta, \gamma, \delta$
Equation coefficients belong to Q
The enlarged field is $Q(\alpha, \beta, \gamma, \delta)$
Taken into account the symmetry equations of the roots (Newton) we write:
$\alpha^{2}+1=0, \alpha+\beta=0, \delta^{2}-5=0, \gamma+\delta=0, \beta^{2}+1=0$,
$\gamma^{2}+1=0, \beta \gamma-\alpha \delta=0, \alpha \gamma-\beta \delta=0, \gamma^{2}-5=0$
The Galois group is, $G=(I, R, S, T)$
$R=(\alpha \beta)$
$S=(\gamma \delta)$
$T=(\alpha \beta)(\gamma \delta)$
$I=I$
$G \supset(I, R)$
An equation is solvable when the Galois group can be put as the sum of a subgroup of G and the multiplication of this subgroup by one or several automorfisms of G.

The split ought to be normal or $\operatorname{proper}($ Galois). That means that, $G=U+S_{1} U$, and besides, $G=U+U S_{1}$ In our case, given G, U is the subgroup and T is the automorfism.

Si, $U=(I, R)$ y $S_{1}=T=(\alpha \beta)(\gamma \delta)$
We will write,
$G=U+S_{1} U$
and
$G=U+U S_{1}$
That completes the example.

