
Experimental Analysis of the SABUL
Gongestion Control Algorithm *

Phoemphun Oothongsap, Yannis Viniotis, and Mladen Vouk

North Carolina State University, Raleigh NC 27606, USA

Abstract. Several new protocols such as RBUDP, User-Level UDP,
Tsunami, and SABUL, have been proposed as alternatives to TCP for
high-speed data transfer. The purpose of this paper is to analyze exper­
imentally the effects of SABUL congeston control algorithm on SABUL
and performance metrics such as bandwidth utilization, self-fairness, and
aggressiveness. Our results confirm some expected behavior of SABUL
and reveal some less expected one. Our experiments also indicate that
SABUL implementation and design can result in an even more erratic
behavior and degraded performance under high-congestion conditions.

1 Introduction

The high-performance networks being developed at present offer the promise
of connectivity at speeds upto 40 Gbps or more. Such networks can en­
able new classes of high-performance applications, such as remote data analy­
sis/visualization and high-performance grid-based computation. Although there
is significant bandwidth available for such applications, the effective use of the
available bandwidth is a challenge.

Several studies (e.g., [3] and references therein) have shown that, in prac­
tice, user-level distributed applications connected by a high-speed network (e.g.,
Abilene) cannot fully utilize the available bandwidth. The main reason for this
subpar performance is the congestion control mechanisms of the transport pro­
tocol (e.g.,TCP). Thus, to improve bandwidth utilization, two alternatives are
to:(i) improve the performance of TCP, and, (ii) develop new transport protocols
that are suitable for a high-bandwidth environment.

An Example of new hybrid protocols is SABUL [4]. SABUL uses UDP to
transfer the data and a TCP for signaling. SABUL has been evaluated em­
pirically by simulation, and theoretically [1 ,4]. However, there appear be no
published experiments that explore some more extreme behaviors of SABUL al­
gorithms and implementations in a real environment. The purpose of this paper
is to study SABUL behavior in situations where SABUL connections compete
against each other in high congestion situations. We have also investigated how

* This work sponsored in part by the National Science Foundation grant No.NSF-
9901004, DOE SciDAC grant DE-FC02-01ER25484, and IBM Corp. Shared Univer­
sity Research Program

N. Mitrou et al. (Eds.): NETWORKING 2004, LNCS 3042, pp. 1433- 1439, 2004.
© IFIP International Federation for Information Processing 2004

1434 P. Oothongsap, Y. Viniotis, and M. Vouk

SABUL send-rate calculation (and its implementation) affect SABUL perfor­
mance.

The remainder of this paper is divided as follows: Section II, experimental
results are presented and discussed. Section III focuses on one specific obser­
vation, that of unusually high bandwidth oscillations found in high-congestions
situations.

2 Experiments

To understand the general behavior of SABUL, experiments were performed
in two environments: (i) a private local area network where the round triptime
(RTT) is in microseconds (a short-haul network), (ii) Abilene network where the
round trip time (RTT) is in milliseconds (a long-haul network). For the long­
haul network, end hosts are located at three different Abilene end-point locations:
North Carolina State University (NCSU), Georgia Institute of Technology (GT)
and University of Washington (UW).

The purpose of this set of experiments was to study SABUL self-fairness,
bandwidth utilization, and factors affecting these properties. Multiple SABUL
connections were studied in both short- and long-haul networks. We emphasize
the long-haul network part because the main purpose of SABUL is to aid file
transfer in high-speed long RTT networks.

Table 1 shows bandwidth utilization of three SABUL connections (Source1 ,

Source2, and Source3). The fourth column in Table 1 is the receiver machine.
The fifth to seventh columns represent the RTT from Sourcei to destination.
The eighth to tenth columns represent the initial sending rate of each connection
in Mbjs. The eleventh to thirteenth columns represent the rate control interval
(round length) of each connection in msecs. The fourteenth to sixteenth columns
represent the average sending rate of each connection in Mb/s and the last
column represents the figure showing the instantaneous sending rate of each
experiment.

Table 1. Averagesending rate of three SABUL connections

Src1 Src2 :::;rcs Dest RTT1 RTT2 RTTs nit1 nit2 lnit3 1 2 3 Jtate, Jtate2 Rate3 Figure
nlO nll n12 n20 0.204 0.204 0.203 320 260 210 200 200 200 320 320 320 1
nlO nll n12 n20 0.204 0.204 0.203 320 260 210 600 400 200 295 310 361 2

fast! fast2 fast3 localhost 23.3 23.2 23.3 293 291 279 200 200 200 270 270 270 3
fast! fast2 fast3 fasttcp 57 57.5 57 298 293 258 200 200 200 298 310 295 4
fast! fast3 fasttcp localhost 23.3 23.2 57.5 273 282 286 200 200 200 220 280 300 5

Table 1 shows the three connections compete on the same bottleneck link.
The results show that SABUL connections may or may not be fair to each other.
In table 1, we can categorize the experiments into three cases:(i) same RTT and
rate control interval, (ii) different RTT and same rate control interval, and (iii)
same RTT and different rate control interval. We notice that all connections

Experimental Analysis of the SABUL Gongestion Control Algorithm 1435

get the similar average sending rate when rate control interval is the same re­
gardless of RTT and initial sending rate. All connections show an unfairness
behavior when the rate control interval of all connections are different. This
behavior can be explained as follows. SABUL sender recalculates a new send­
ing rate every time it receives a SYN packet from the receiver and the receiver
generates a SYN packet every constant rate control interval. For the connection
having a short rate control interval, the sender will receive a signal to increase a
sending rate more often than the connection having a Ionger rate control inter­
val. Moreover, SABUL congestion control is a variant of Multiplicative Iincrease
and Multiplicative Decrease algorithm. The sender increases sending rate ag­
gressively. Then the connection with a short rate control interval increases the
sending rate more aggressively than the connection with a Ionger rate control
interval, causing unfairness.

Figures 3 to 5 show the instantaneous sending rate of each experiment. The
x-axis represents the experimental time in seconds and the y-axis represents
SABUL instantaneous throughput in Mbitsjsec. In each figure, we notice that
SABUL still exhibits the oscillation property. And also, we notice the "syn­
chronized" behavior, i.e., sources oscillate in phase. Synchronized behavior is an
unpleasant behavior since it can reduce the overall t hroughput of the system.
Synchronized behavior occurs due to the drop-tail operations at the router, and
the round trip time (RTT) effect. With drop-tail routers, each congestion pe­
riod introducesglobal synchronization in the network as noted in (2]. When the
queues overfiow, packets from several connections are dropped and these Con­
nections decrease their sending rate at the same time. The consequence is loss
of throughput at the router. The effect of the RTT on the send rate fiuctuation
was already mentioned.

Even though it is not apparent in figures 1 and 2 due to the log scale, the
behavior is still the same.

3 Discussion

In this section, we discuss some of our results in more detail. Following are some
of the observations one can make from the tables and accompanying figures.

The sharp increase and decrease in the sending rate in almost every exper­
iment seems to be a problern with SABUL implementation, and not really a
defect of the SABUL congestion control algorithm. From the implementation
source code, one can find that

(1) SABUL sender calculates thesendingrate at the application layer.
(2) SABUL average sending rate is equal to the number of packets sent in a

particular interval divided by the time interval between two SYN packets. The
number of packets sent in a particular interval is calculated as follows (i) the
number of retransmitted packets plus the number of new packets or (ii) if the
sum of the previous value is less than the number of ERR packets, the number
of packet sent is equal to number of ERR packets.

1436 P. Oothongsap, Y. Viniotis, and M. Vouk

(3) At the receiver side, SABUL receiver has to estimate the average round
trip time once when the program starts.

(4) SABUL receiver will send the ERR packets back to the sender in two
cases: (i) once it detects the gap in packet sequence number, and (ii) periodically
every 1.5 * RTT second.

These actions can cause incorrect sending rate calculation which may cause
sharp increase and decrease in the measured sending rate. As we know, SABUL
sender calculates the sending rate from the number of packets sent divided by
the time between two SYN packets. If the number of packets sent is less than
the number of packet errors in that interval, the number of packets sent is set to
the number of error packets. Thls way of computing can cause observed effects.

(i) When the number of packets that is actually sent to the network is less
than the number of error packets, then this will cause the sending rate to have
a higher value than its actaul one.

(ii) SABUL receiver uses TCP channel to transmit SYN packet. SABUL
sender will process SYN packets upon receipt. However, if the SABUL sender
CPU is busy, then the kernel will not pass the SYN packet up to the application
layer right away. With this behavior, when SABUL sender see two SYN packets
back to back, the time difference between two packets is either larger than rate
control interval or smaller than rate control interval.(In effect, the time measured
between two SYN packets is random.)

With such unavoidable randomness and errors in the number of packets sent
and the time interval between two SYN packets, SABUL sending rate will in­
crease sharply when the sender detects a large number of losses and the time
interval between two SYN packets is very small. It will also decrease sharply
when the sender detects smalllosses (this means the actual number of packets
sent is also smaller than the number of packets lost). This behavior can be seen
clearly in Figure 4.

I
J

<00

o IO 2.0 30 ..:t.O :50 60 70 80 90

"'l.• i""'e(•e >

Fig. 1. Instantenaus sendingrate from nlO, nll, and n12 to n20 with the same RTT,
rate control interval and different initial sending rate

The number of error packets received from the receiver is sometimes higher
than the actual number of packets lost. This phenomenon happens because the
receiver periodically sends the ERR packets to the sender. When sender receives
an ERR packet, it does not check whether the associated packet has already

Experimental Analysis of the SABUL Gongestion Control Algorithm 1437

I >0

0

0 '1.0 20 ~0 .a.Q :1'0 ~0 ..,.0 80 90
'·T>·)

Fig. 2. Instantenous sendingrate from nlO, nll, and n12 to n20 with the same RTT,
and different rate control interval and initial sending rate

I
j

"'Tl.AT>.6(a"'lto>

Fig. 3. Instantenous sendingrate from fastl, fast2 and fast3 to localhost with the same
RTT, rate control interval and initial sending rate

been retransmitted. It just adds the number of packets to the number of error
packets and considers it loss total. This action, it can double the apparent error
rate.

(i) the number of error packets is higher than the actual number of packets
lost. This will cause a sharp increasejdecrease of thesendingrate as we explained
previously.

(ii) the loss rate calculation is not accurate. When the number of packets sent
is less than the number of error packets, SABUL sender sets the loss rate to one.
This value of the loss rate will effect the new sending rate in the next interval.

.. ,_

<600

0 o~~.0~2~0~3~0-.~.0~3~0~~~~~~9~0
-r.imo(lll•..,.)

Fig. 4. Instantenous sendingrate from fastl, fast2 and fast3 to fasttcp with the same
RTT, rate control interval and initial sending rate

1438 P. Oothongsap, Y. Viniotis, and M. Vouk

I
j

1 ooo r-";'11r:'.,;-,;-;::~~-~:c,.;:-;, ~;-::.;-;,. ,7.", •• :-;;<0-:::-f -rn-----;-1 .,
~., .. ~~- ,.,~-· """'" -

"T'l..--<·-~>

Fig. 5. Instantenaus sending rate from fastl, fast3 and fasttcp to localhost with the
same rate control interval, initial sending rate, and different RTT

Then in a congested network, we will see SABUL sender drop the sending rate
to a smaller value. After the sender recovers all the losses, the sending rate will
climb up gradually. This behavior is noticed from Figures 5.

4 Conclusion and Future Work

In this paper, we investigated performance of SABUL in both local area and
wide-area network. We focused on SABUL bandwidth utilization, and SABUL
self-fairness. The results of our experiments show that SABUL can utilize net­
work bandwidth efficiently. As expected, the main factor having an effect on
SABUL performance is rate control interval. SABUL shows a self-fairness prop­
erty that depends on rate control interval, while RTT has no effect on SABUL
self-fairness. However, we also noticed severalless desirable SABUL traits: high
large swing throughput oscillations (under certain conditions) and synchro­
nization of these oscillations when several streams are involved. This degrades
SABUL performance. We ascribe these behaviors not to the congestion control
algorithm but to the implementation.

Acknowledgements. The authors wish to thank Dr. Steven Low and Raj
Jayaram of FAST project for allowing us to use FAST project end-hosts in the
experimetns, Stanilav Shalunov of Internet2 for scheduling the tests, and Scott
Friedrich (of GT), Cas D'Angelo (of GT), David Richarson (of UW), Tommy
Jacobson (of NCNI) for allowing us to transmit a large amount of data through
their network. We would also like to thank to John Streck and John Moore of
the NC ITEC and NC State Centaur Labs for advice and support given in this
project, and Marhn Fullmer and Michael Bugaev for help. We would like to
thank the Extreme Networks for the use of a Blackdiamond switch.

References

1. P. Oothongsap, M. Vouk, Y. Viniotis, CACC Technical Report, North Carolina
State University, February 2003.

Experimental Analysis of the SABUL Congestion Control Algorithm 1439

2. S. Floyd, V. Jacobson, Random Early Detection Gateways for Congestion Avoid­
ance, IEEE/ A GM Transactions on N etworking, vol. 1, pp. 397-413, August 1993.

3. W. Feng, P. Tinnakornsrisuphap, The Failure of TCP in High Performance Com­
putational Grids, Proceedings of the Super Computing 2000, (SC2000).

4. Y. Gu, M. Mazzucco, X. Hong, R. Grossman, Rate Based Congestion Control
over High Bandwidth/Delay Links, Submitted to IEEE/ ACM Transaction on Net­
working, http: / /www.rgrossman.com/faq/sabul-faq-03.htm, download on February
2003.

5. M. Mazzucco, A. Ananthanarayan, R. Grossman, J . Levera, G. Rao, Merging Mul­
tiple Data Streams on Common Keys over High Performance Networks, SuperCom­
puting 2002, November 2002.

