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Abstract Many scientific applications deal with data from a multitude of differ-
ent sources, €.g., measurements, imaging and simulations. Each source provides an
additional perspective on the phenomenon of interest, but also comes with specific
limitations, e.g. regarding accuracy, spatial and temporal availability. Effectively
combining and analyzing such multimodal and partially incomplete data of limited
accuracy in an integrated way is challenging. In this work, we outline an approach
for an integrated analysis and visualization of the atmospheric impact of volcano
eruptions. The data sets comprise observation and imaging data from satellites as
well as results from numerical particle simulations. To analyze the clouds from the
volcano eruption in the spatiotemporal domain we apply topological methods. Ex-
tremal structures reveal structures in the data that support clustering and compar-
ison. We further discuss the robustness of those methods with respect to different
properties of the data and different parameter setups. Finally we outline open chal-
lenges for the effective integrated visualization using topological methods.

1 Introduction

The analysis of atmospheric gas and particle traces, such as of SO, or ash parti-
cles, is of fundamental importance for a better understanding of global atmospheric
processes. Specifically volcano eruption events can produce massive amounts of
such ‘tracers’ over a short time period. These substances can have severe global im-
pact and may trigger complex atmospheric interactions. To better understand those
processes an increasing number of modalities (including measurements and sim-
ulations) is utilized. One major challenge is to extract and combine the essential
information, which is spread over various, mostly (w.r.t. space and time) sparse
data sources. This requires a careful integration of information from each modality,
considering its valuableness and limitations. For instance, sparse but particularly re-
liable measurement data can be used to calibrate the simulations producing denser
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data, while simulation data provide a means to interpolate measurement data and to
fill spatial and temporal gaps. The increased amount of information available today
provides more complete representations of the physical phenomena, but increases
the complexity of the analysis; hence a main objective are effective methods for
data filtering, information reduction and abstraction. In this work we address those
challenges by applying topology-based methods. Using the example of ash clouds
we show that topological data analysis can serve as an effective tool to address es-
sential analysis tasks. We focus on the extraction of extremal graphs as means for
feature-oriented data reduction and as basis for visual comparison of the data from
different sources. Spatio-temporal clustering in the space-time domain is used for a
visual representation of the evolution of aforementioned atmospheric events. Hence,
our main contributions are:

e Integration of spatially and/or temporally sparse data into a space-time domain

e Topological analysis and visualization of features in the common domain

e Topology-based spatio-temporal segmentation of features in the space-time do-
main, and fused visualization thereof.

The specific application considered is the analysis of pollutant clouds that emerged
from volcanic eruptions. We are using data provided for the 2014 IEEE Visualiza-
tion Contest [?]. The work is a follow-up of a contest contribution [?] that focuses
on topological aspects and deepens them.

2 Related Work

Climate research is a data-intensive field. Depending on the specific application
the data comes from various sources, e.g. large-scale simulations or observations
from satellites. Accordingly, understanding and analyzing the data plays an impor-
tant role. While visualization is used on an everyday basis, it is mostly limited to
simple methods such as diagrams, statistical plots, color plots in a geographical
context. More advanced visualization tools are often not well known [?]. A particu-
larly important topic is cloud evolution, which requires identification and tracking of
clouds. Many methods have been proposed for this purpose, but they are often very
complicated and only suitable for a specific application. For example Kober et al.
follow a multi-scale approach based on image pixel displacement to track thunder-
storm clouds from satellite data [?]. Extraction of contours and isosurfaces as well
as tracking their change over time is part of multiple other approaches. Gambheer
et al. track clouds by considering the overlap of sub-level sets across time steps [?].
Isosurface cloud-tracking in VR environments was introduced by Griffith et al. [?].
An example for cumulus cloud tracking is based on region growing followed by a
space time segmentation [?].

Many of the ideas used in these papers fit well into the framework of topological
feature identification and tracking. A perspective that seems not yet to be present
in meteorology and climate research. For instance, topological methods can be very
powerful regarding abstraction, simplification and comparison of features as clouds.
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This has been shown in a recent paper, where cloud systems are tracked by employ-
ing topological segmentation for the identification of clouds and an optical flow
method for sub-scale motion tracking [?]. Topological data analysis plays an in-
creasing role in the field of visualization with many different applications. The full
topological information of a scalar field is given by its Morse decomposition or
topological graph. There are different strategies available to extract the topological
graph from sampled scalar fields. The most common approaches for its computa-
tion go back either to Edelsbrunner [?] (using a piecewise linear interpolation) or to
Forman [?] (who proposed a discrete Morse theory). Nowadays, efficient algorithms
exist implementing these approaches [?, ?, ?, ?]. In many applications it is not neces-
sary to compute the complete topological graph. A reduced structure keeping track
only of changes in the number of components is the contour tree [?]. A structure
that frequently represents features of interest is the extremal graph, which focuses
on maxima and ridge lines [?]. Overviews on topological approaches in the context
of vector fields are presented by Laramee et al. [?] and Pobitzer et al. [?]. Also track-
ing of topological structures over time has been considered. The proposed methods
can roughly be categorized according to the geometric and topological criteria they
are using to establish correspondences between features at successive time points.
Geometric methods considering overlap of regions have been used for the tracking
of burning cells [?, ?]. An example for topological tracking is mapping of critical
points across time steps defining a feature flow field [?]. Other approaches are based
on Jacobi sets [?].

3 Description of the Application and Data Sources

The aim is to analyze the atmospheric impact of volcanic eruptions covered by sev-
eral measurement modalities and simulations during the time from 30.05.2011 un-
til 07.09.2011. In the focus of the presented analysis are three dominant volcanic
events that have been recorded during this period: The eruptions of the volcanos
Puyehue-Cordén Caulle (Ranco Province, Chile), Nabro (Red Sea Region, Eritrea),
and Grimsvotn (South-East Iceland). The eruptions can be characterized by consid-
ering atmospheric tracers, like ash particles and SO, gas concentrations. The tracers
form ‘plumes’, whose spatio-temporal evolution can be observed in all modalities.
An overview of the temporal availability of the modalities is shown in Figure 1.

All data sources are inherently time-dependent and have a common geographic
reference grid (longitude, latitude, and optionally height). The presented methods
address the following questions that have been raised by the domain scientists [?]:

1. What are suitable methods to combine and relate the given modalities into a
common reference space (integrated domain)? See Section 4.1.

2. How to reduce the amount of data to focus on the phenomena of interest (i.e.,
events related to volcano eruptions)? See Section 4.2.

3. How to integrate sparse data sources, derive compact feature-oriented visualiza-
tions, and how to associate this information to specific events? See Section 5.
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Fig. 1 Overview over the temporal availability of the various data: The three eruption events and
the time span of the respective measurements or simulations are displayed. The yellow and gray
bars indicate the ‘lifetime’ of the ejected sulfur, respectively ash particles.

3.1 Input Data Sources

The first type of data was obtained using the Michelson Interferometer for Passive
Atmospheric Sounding (MIPAS) [?]. MIPAS measurements provide vertical sam-
pling profiles at altitudes between 5-70 km, with approximately 14 orbits per day.
The measuring technique is highly sensitive towards aerosol tracers and offers a
good vertical resolution. The data is stored as single trajectory, containing the sam-
pling points (longitude, latitude, altitude, and time) and values for different events
(clear sky, ice detection, ash, and sulfate aerosol detection) [?]. Note that each event
is represented as a binary value that indicates whether a predefined threshold has
been exceeded. All sampling points (~ 1.3 Million points at 48 MB, starting from
01.06.2011 until 01.09.2011) of the MIPAS data set are shown in Figure 2 a).

The second data source are simulated trajectories using the Chemical Lagrangian
Model of the Stratosphere (CLaMS) developed at the Institute for Energy and Cli-
mate Research, RWTH Aachen Univ. [?, ?]. This is an hierarchical model to de-
scribe the global chemical transport and contains a selected subset of pre-integrated
trajectories, seeded at MIPAS detections. These are sulfur detections on the northern
hemisphere for Grimsvétn and Nabro (~ 55.000 trajectories at 1GB) and MIPAS
ash detections on the southern hemisphere for Puyehue-Cordén Caulle (~ 5.800
trajectories at 62MB). The input boundary conditions for the simulations are based
on ERA interim data [?]. CLaMS trajectories are characterized by an high spatial
and temporal resolution and carry information about physical scalars (e.g., pressure,
temperature, potential vorticity). However, since numerical simulation can only ap-
proximate the real world phenomenon, the reliability of the trajectories decreases
with their temporal distance to the seeding point. The trajectories are shown in Fig-
ure 2 b).

The third data source are measurements from the Atmospheric Infrared Sounder
(AIRS), acquired by the NASA Aqua satellite. It measures thermal emissions in the
atmosphere [?]. The satellite scans horizontal cross-sections of the atmosphere at
very high resolutions and performs 14.5 orbits per day. Individual scanning samples
are organized on a high-resolution quad-strip, which has been cut into 200 segments
describing 12 hours of measurement with ~1.4 Million quads at 95 MB each (in



Topological Methods to Analyze Volcano Eruptions 5

total 19 GB). Every segment provides almost global coverage (i.e., temporal delay
produces gaps between neighboring strips) and provides index information about
SO, and ash concentrations [?]. Note that the index summarizes atmospheric infor-
mation of a vertical column, hence height information is lost during acquisition. The
original data acquired at a 12 hour interval is shown at Figure 2 c).

® (i1 (iii) (iv)
a) CLaMS trajectories seeded at MIPAS ash
b) MIPAS samples in spherical view: all detections for Nabro (iii) and Puyehue-Cordon
detections (i) and for one day (ii) Caulle (iv)
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¢) AIRS data in space-time (left) and 2D longitude, latitude projection (right) for 12 hours of
measurement. Color represents the observation time.

Fig.2 Overview of the available data sets: a) MIPAS satellite measurements, b) CLaMS simulated
trajectories, and c) AIRS satellite measurements.

4 Analysis of the Common Reference Domain

To combine and analyze the different data sources we proceed as follows: The ba-
sis is a projection of all individual data sets into one common space-time domain;
second, extremal structures for both major measurement sources are extracted for
visual comparison; finally, a space-time segmentation method is applied for a com-
bined visualization integrating standard methods as isosurfaces, trajectory rendering
for a detailed visual analysis.

4.1 Construction of the Common Reference Domain

In a first step, we sample the given data sets (Section 3.1) into a common reference
domain. It is constructed as discrete regularly-sampled 4D domain with the dimen-
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sions longitude, latitude, altitude, and time. For visualization purposes, we mainly
refer to the 3D subspace consisting of longitude, latitude, and time. Thereby, the
measurement data builds the core of the new data set. Each source adds specific in-
formation to this domain according to the characteristic of the respective modality,
e.g., SO, or ash concentrations, number of detection events. To increase the spatial
and temporal coverage we interpolate the data on basis of the simulated CLaMS
trajectories. In detail we introduce two filtering procedures:

1. Gaussian filtering of the raw data: The goal of this step is to assign a small
volume to the point measurements and to the one-dimensional trajectories. This
is achieved using a Gaussian convolution kernel, which adds an isotropic foot-
print with decreasing intensity to the samples in space and/or time. The size of
the kernel is chosen very small in the order of a couple of gird cells. After this
filtering step the field is still sparse and does not cover the entire domain.

2. Spatio-temporal interpolation using trajectories: The CLaMS particle sim-
ulation provides the necessary information for a realistic interpolation of the
sparsely filled domain. It is assumed that the detected particles roughly follow
these trajectories. This leads to a convolution of the measurements along the
CLaMS trajectories with a non-linear and anisotropic spatio-temporal footprint.
Technically, we apply an advection of the measurements along the trajectories.
The length of the chosen trajectory segment T and the decay of the signal along
the trajectory are parameters of the method. In the following we assume a linear
decay to zero within an interval [+7, —7]. For small values of 7 the accuracy of
the trajectories is high enough to obtain a reliable approximation of the particle
distribution.

If not mentioned differently, we use a sampling resolution of 720 x 360 x 800 cells
for the reference domain. Detailed views for sub-spaces of higher resolution or di-
mension may be extracted and analyzed using the same methodology. In the follow-
ing the data specific projections are described in more detail.

MIPAS Data Processing: The MIPAS samples are point samples that only carry
a flag indicating a detection. The first step to integrate the MIPAS data is to count
the number of detections per grid cell. Next, we apply at first the isotropic Gaussian
filter and then the anisotropic interpolation filter. For the Figures a kernel size of 5
cells and o = 0.4 is used. A temporal reasonable range of 7 is in the order of 48
hours (see [?, ?] for details). This result of the MIPAS integration is a scalar density
field describing the spatial and temporal distribution of the particles.

AIRS Data Processing: AIRS data has a high spatial but low temporal resolu-
tion due to the orbiting of the measuring satellite. There is no altitude information
attached to these measurements. The temporal gaps between two measurements are
in the order of 12 hours. A Gaussian filter in temporal direction provides a simple
but not very accurate solution to bridge the gaps. A more realistic result is obtained
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by interpolating the data using the CLaMS data as described above.

CLaMS Data Processing: For the particle simulation trajectories are seeded at
relevant MIPAS detections during the Puyehue-Cordén Caulle and Nabro eruptions.
The detections are pre-filtered by domain experts before the simulation [?]. Thus,
the density of the trajectories depends on the number of MIPAS samples and they
are only available at irregularly distributed locations. Its reliability is decreasing
with the simulation time. Therefor we use the CLaMS data mainly as basis for the
interpolation of the satellite observation-data via advection.

To speed up the advection procedure along the trajectories, we generate an aux-
iliary time-dependent vector field from the CLaMS trajectories. Therefor, we com-
pute a weighted average of the velocity information within each cell. The velocity
is given as the tangent directions of the trajectories passing through that cell. The
weight accounts for the decreasing reliability along the trajectories. Here we use a
linear decay along the trajectory. Note that the resulting field is not an approxima-
tion of the meteorological wind field used for the simulation, since the simulation
also accounts for chemical reactions in the atmosphere [?, ?].

4.2 Topological Analysis in the Common Reference Domain

Integration of all data into the common space-time domain yields fields that charac-
terize the spatio-temporal distribution of ash and sulfur. In our framework, topolog-
ical techniques are applied to analyze and visualize these fields. The benefit of topo-
logical analysis is an abstraction that yields explicit geometrical structures. These
are graphs, segmented volumes, or surfaces characterizing the underlying field. The
applied methods provide also access to topological simplification and filtering. The
topological features can be used to link and compare the given modalities against
each other, e.g., reference ash against SO», or advected MIPAS against AIRS. Fur-
ther they can be associated to observable phenomena, like specific volcano erup-
tions, at an abstract feature-based level. In the following we explore possibilities to
characterize physical features, as eruption plumes, using extremal structures in the
respective field. For an algorithmic outline to derive approximate topological struc-
tures similar to topological spines [?, ?] and segmentations of a scalar field s(x), see
Algorithm 1.

Extremum Graph Extraction An approximate extrema graph [?] is used to de-
scribe the spatial structure of the particle distribution for every time slice. Extrema
graphs represent the target phenomena, in our case ash and SO; plumes, as spatially
embedded graphs. They connect saddle points with extremal points (see Alg. 1) ac-
cording to the approximate Morse-Smale complex of the function s. Note that in
this step a persistence based filtering is not necessary since the construction of the
common reference domain already comprises a smoothing and down-sampling step.
Instead we define a minimum threshold #,,;, filtering out parts of the graph below
this value. The graph is used in three ways: Visualization — The graph describes the
spatial connectivity of extremal events in each time slice. It visually captures advec-
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Data: Regular scalar field s(x)
Result: Segmentation by hierarchical labels, topological graph
1) Init union-find data structure UF (G;),
where each group G; has an label j and stores a set of grid nodes
2) Sort all sample points, based on its value into sorted list L
(ascending: maxima, descending: minima features)
while L contains grid nodes g; with values larger than threshold h;, do
classify current grid node g;:
if g; is isolated extrema then
| add new group to UF
else if g; is adjacent to a single group G; then
‘ addgito G j
else if g; is adjacent to multiple groups (saddle point) then
process node g;: construct graph edge (see Sec. 4.2) or
merge two groups (see Sec. 4.2)

end
Algorithm 1: Approximated topological feature algorithm

tion patterns that are eminent in temporal snapshots in AIRS or advected MIPAS
data (see Figure 6). It also serves as basis for visual comparison of the fields from
the different modalities as illustrated in Figure 3. Filtering — The graphs are further
used as input for filtering and for measurements. This allows to focus on specific
topological events. It further supports feature-based filtering with respect to size or
the location of the plume. Space-time segmentation — The extremal graph lives by
construction in single time slices. To obtain a connected structure in space-time the
graph is further used as input for spatio-temporal clustering, see below.

Topology-based Space-Time Segmentation To capture the temporal evolution
of extremal structures we use a topological method to segment regions within the
common reference domain. This segmentation results in labels for extremal events
that can be associated to individual physical phenomena (see Figure 4 b). Two ad-
jacent groups are merged, if the difference of their maximum values is lower than a
user-defined persistence threshold p,,;,. Technically this corresponds to a watershed
algorithm [?] with a persistence-based hierarchical merging step [?]. We can obtain
one connected cluster for dominant events choosing a maximum persistence value
for pmin = max(s(x)). The results of this segmentation are shown in Figure 4.

4.3 Topology-based Analysis and Visualization

The extraction of topological features, such as graphs or segmentation surfaces
(Sec. 4.2), allows characterizing and grouping extremal features of the underlying
scalar fields. Extreme graphs capture the spatial structure, e.g., longitudinal and
lateral extents, as well as spatial connectivity of extremal regions. To enhance the
information content of the graph, we map the local values of the scalar field to its
thickness and color (see Figure 5 a)). Extremal structures can further be emphasized
by visualizing corresponding iso-surfaces in the underlying advection fields (see
Sec. 3.1).
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Fig. 3 Combining AIRS and CLaMS data: AIRS and CLaMS data describe the spatio-temporal
structure of occurring SO, events and characterize the evolution of the SO, plumes: The SO, cloud
created by the Puyehue-Cordén Caulle eruption moves rapidly eastwards, following the major jet
streams on the southern hemisphere. In contrast, the Nabro event remains ’trapped’ in a larger vor-
tex structure and is distributed across central Asia, while the Grimsvotn SO, cloud circulates to-
wards the north pole. In combination, the space-time view of multiple modalities conveys location
and time of strongest value concentrations and their distribution during the plume development.

5 Results

We use the topology-based methods from Section 4.2 to visualize characteristics of
the data in the common reference domain. Figure 5 shows a visualization of the in-
tegrated data in a space-time frame. The combination of filtering, interpolation and
topology allows to extract a set of distinct extremal objects that can be associated to
the major events of interest. The respective parameter setup allows to derive differ-
ent levels of detail. Thus, not only the three dominant volcano eruptions but also a
set of small-scale events are captured, which exhibit a much lower particle density.
To get a better impression of the movement of the particles we further augment
this visualization with CLaMS trajectory segments, illustrated in Figure 5 b). The
display of events associated to specific eruptions allows to compare ash concen-
trations based on AIRS satellite and MIPAS advected measurements. Mapping ad-
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Fig. 4 Combining AIRS and CLaMS data: The space-time segmentation of AIRS SO, graph
fields conveys location and time of largest features and their distribution during the plume devel-
opment. The segmentation determines cluster volumes (filtered such that only volumes larger than
10.000 cells remain) that can be used to classify individual events.

ditional scalar information to the geometry of the topological graphs emphasize
regions of specifically high scalar values. This is a clear advantage compared to
slice-based color plots or direct volume visualizations. The spatial connectivity of
the extremum graphs serves as a suitable description of the spatial structures of the
corresponding plumes. Figure 5 c) shows a visualization of ash events form AIRS
(red) and advected MIPAS (green) data. The higher sensitivity of the MIPAS data in
space-time, compared to AIRS ash detection is clearly visible.

Detailed visualizations of single time slices, see Figure 6, illustrate the different
characteristics of both measurement modalities. While AIRS data captures very de-
tailed transport structures of the ash cloud, the MIPAS-CLaMS combination results
in a blurred reconstruction and misses thin cloud structures. The concentration de-
rived from the binary MIPAS signal is only an approximation of the true values.
Due to its higher sensitivity, advected MIPAS better illustrates the spread of the ash
cloud during the time of observation over the southern earth hemisphere.

Figure 3 illustrates the benefits of the high spatial resolutions of the AIRS mea-
surements. Depending on the filtering scales, it is possible to detect also small-scale
volcanic eruptions. An example is the Lokon-Epung event in Indonesia around July
2011 and multiple SO, and ash emissions associated to the Etna Volcano in Sicily.
These smaller events are often not covered by the MIPAS data or are represented
only by a very small number of detections. There are also multiple additional SO,
events that are typically associated to mining or shipping trails.
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Fig. 5 Space-time AIRS, CLaMS, MIPAS: AIRS data is used to analyze SO; and ash concentra-
tion during the eruption events in space and time. In subfigures b) and c) the extremal graphs are
displayed for each time slice. They are colored and sized by AIRS field values to emphasize strong
production events. Transparent surfaces enclose the extremal graphs connecting them in temporal
direction. The extend of these surfaces in time direction (z-axis) characterizes the life time of a
plum. In c) the circulations of the tracers in the southern hemisphere can be observed nicely as
visual stripes.

5.1 Limitations

Topological analysis tools have been shown to be valuable for reduction of complex
input data to a smaller and visually assessable set of extremal structures. However,
transferring sparsely sampled data from different modalities into a common refer-
ence domain still requires multiple filtering and interpolation steps (see Sec. 4.1).
These use implicit assumptions, heuristic parametrizations and approximations of
the real world phenomena, which are not covered by the data. Critical applications,
as flight route planning after volcanic eruptions, require a more profound assessment
of the impact of those techniques w.r.t. uncertainty and sensitivity in the final results.
We assume that by using higher-order interpolation methods (e.g., for CLaMS and
AIRS data) and samplings of the integrated domain, approximations can get more
accurate, while some fundamental sources of uncertainty will remain (e.g., reliabil-
ity of the CLaMS simulation, AIRS sensitivity).
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Fig. 6 Combining AIRS, MIPAS and CLaMS: Comparison of the AIRS ash data and the ad-
vected MIPAS ash field for the Puyehue-Cordon Caulle eruption. a) shows the reference fields for
both modalities (AIRS, advected MIPAS). The detail views reveal the strengths and weaknesses
of both information sources: AIRS captures fine spatial advection patterns, but suffers a limited
detection accuracy. MIPAS advection fields are more sensitive, but do not convey information of
the strength of the detection and sometimes miss samples across thin cloud structures.

(a) AIRS & MIPAS for 6.6.2011
F - .

(c) AIRS & MIPAS for 12.6.2011 (d) AIRS & MIPAS for 25.6.2011
Fig. 7 Integrated Visualization: This image shows snapshots of an integrated visualization of
AIRS SO, (blue) and AIRS ash (red) with its corresponding graphs (scaled and colored by AIRS
value) and MIPAS advection surfaces (green transparent surfaces). Each images captures the situ-
ation of one day and highlights the different characteristics of the Puyehue-Cordon Caulle and the
Nabro eruptions, especially with respect to ash production (animation in accompanying video).
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6 Conclusion

In summary, we have described a basic procedure to construct a common data do-
main and integrated data from a variety of input modalities, including measurements
(MIPAS, AIRS) and simulations (CLaMS), to analyze volcanic eruptions. We have
showed that topological processing provides suitable toold to characterize extremal
features of such integrated data. The availability of explicit feature descriptors (i.e.,
topological graphs, segmentations) allows for improved filtering, compact visualiza-
tion, feature-based comparison and visual analysis. The presence of topology fea-
tures allows utilizing a broad set of tools known from the topology-related literature
(e.g., persistence-based filtering, topology-driven rendering, high-dimensional visu-
alization). As topological methods have been shown to scale in settings with large
amounts of data (e.g., [?, ?]) and in high-dimensional settings (e.g., [?]), similar
analysis procedures should be able to cover future high-resolution input modalities.
For future work we plan to analyze the impact of filtering methods in further detail.
Of interest are also feature-based statistics (e.g., life-time and size distributions) and
automated quantitative analytics of the data (automated event detection and classi-
fication).
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