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Aiming to provide an approach for finding energy-efficient routes in dynamic and stochastic transportation networks for electric
vehicles, this paper addresses the route planning problem in dynamic transportation network where the link travel times are
assumed to be random variables to minimize total energy consumption and travel time. The changeable signals are introduced to
establish state-space-time network to describe the realistic dynamic traffic network and also used to adjust the travel time according
to the signal information (signal cycle, green time, and red time). By adjusting the travel time, the electric vehicle can achieve a
nonstop driving mode during the traveling. Further, the nonstop driving mode could avoid frequent acceleration and deceleration
at the signal intersections so as to reduce the energy consumption. Therefore, the dynamically adjusted travel time can save the
energy and eliminate the waiting time. A multiobjective 0-1 integer programming model is formulated to find the optimal routes.
Two methods are presented to transform the multiobjective optimization problem into a single objective problem. To verify the
validity of the model, a specific simulation is conducted on a test network. The results indicate that the shortest travel time and the
energy consumption of the planning route can be significantly reduced, demonstrating the effectiveness of the proposed approaches.

1. Introduction

At present, with the problem of global energy shortage and
environment pollution becoming more and more serious,
it has gradually become the common choice of the world
to improve the traditional high energy consumption and
high-polluted development mode. Vigorously promoting
energy saving and emission reduction to achieve sustainable
development is also a hot spot of social concern (e.g., [1,
2]). Transportation is a series link of energy consumption
and environmental pollution. Based on the characteristics
of urban vehicle, EV is being popularized and applied in
the field of urban traffic with the stimulation of various
policy subsidies and demonstration operations (e.g., [3, 4]).
Electric vehicle has become an important technical direction
to promote the energy saving and emission reduction of
vehicles [5].

In the urban road network, the dynamic route planning
can make full use of the real-time traffic information of

the entire network to assist in decision-making (e.g., [6–8]).
The intersection signal is an important part to reflect the
dynamic of network, which has a periodical variation [9].
The real driving conditions of braking at intersection signals
will influence the energy losses. Obviously, more energy is
consumed at varying velocities than that at constant velocity.
The frequent acceleration and braking process at intersection
signals will undoubtedly increase both energy consumption
and travel time. Therefore, we shall consider the intersection
signals into the route planning problem and propose a
nonstop dynamic route planning method to achieve the
travel route with the shortest time and the lowest energy
consumption.

1.1. Literature Review. Based on numerous contributions in
route planning and the shortest path problem, this paper
focuses on the energy-efficient routing planning problem.
There exist various techniques for EV energy-efficient rout-
ing problem in literature. Chang et al. [10] proposed a
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vehicular-ad-hoc-network-based A∗ route planning algo-
rithm to calculate the route with the shortest traveling time
or the lowest energy consumption. Sachenbacher et al. [11]
introduced a solution of energy-optimal routing for electric
vehicles within the framework of A∗ search using heuristic
routing algorithm. Schneider et al. [12] proposed the electric
vehicle routing problem with time windows and battery
charging stations to avoid inefficient vehicle routes with long
detours. Fontana [13] developed an optimization formulation
based on robust optimization in uncertainty and designed
an efficient route searching algorithm for electric vehicles
to address range anxiety. Abousleiman and Rawashdeh [14]
developed amodel to solve the single constraint optimization
problem of finding the most energy-efficient route between
two points with a particle swarm optimization algorithm.
Shao et al. [15] proposed an electric vehicle routing problem
with charging time and variable travel time using dynamic
Dijkstra algorithm to find the shortest path between any two
adjacent nodes along the routes. Lu et al. [16] analyzed the
link travel times and speeds by the proposed generic agent-
based eco-system optimal dynamic traffic assignment model
to effectively generate time-dependent speeds for multiscale
emission analysis and derive a formula of marginal emission
to find system optimal eco-routing that minimizes total
vehicular emission in a congested network.

In the last several decades, lots of signal control prob-
lem and signal timing optimization have been proposed to
provide priority to transit vehicles at signalized intersections.
Aziz et al. [17] presented the system optimal approach
for dynamic traffic assignment with an embedded traffic
flow model and the signal control optimization considering
intersection delay and lost time from phase switches in the
objective function. Han et al. [18, 19] presented a traffic signal
optimization problem to illustrate the unique advantages of
applying the continuum signal model instead of the on-and-
off model. Feng et al. [20] presented a real-time adaptive
signal phase allocation algorithm using connected vehicle
data to optimize the phase sequence and duration, which
can minimize the total vehicle delay and the queue length.
Li et al. [21] presented a new signal timing optimization
approach to minimize the vehicles’ fuel consumptions uti-
lizing the Lagrangian Relaxation. Liu et al. [22] presented
a dynamical model of green-times (or red-times) in day-to-
day rerouting considering a restricted proportional-switch
adjustment process. Shi et al. [23] presented an optimization
approach for jointly determining tram schedules in a single
tram line and modifying signal timings at major controlled
intersections, which minimize the total tram travel time and
negative impacts of the transit signal priority.

The advanced intelligent transportation system can
receive real-time traffic information to provide a dynamic
traffic environment to assist in decision-making (e.g., [24,
25]). It is obvious to contrast the advantages between the
static route guidance and the dynamic route guidance.
Besides, the dynamic route planning with variable travel time
is closer to the reality. Yang and Zhou [26] addressed a class
of two-stage routingmodels tomeasure travel time reliability,
on-time arrival probability and percentile travel time in time-
dependent transportation networks. Zhou et al. [27] and Ma

et al. [28] studied a problem of designing trajectories of a
platoon of vehicles on a highway segment with advanced
connected and automated vehicle technologies that yield
the optimum traffic performance measures on mobility,
environment, and safety.Mahmassani et al. [29, 30] addressed
the departure time and route switching decisions of occupant
response to advanced traveler information system using
dynamic interactive travel simulators to study user responses
under real-time information. A dynamic traffic assignment
(DTA) system for advanced traffic network management is
also proposed to describe the evolution of traffic flowpatterns
under specific traffic measures in the network and the route
guidance information supply strategy for individual drivers.

1.2. The Proposed Method. The literatures above have made
great contributions in different fields, which provide inspira-
tions to this paper. The energy-efficient dynamic route plan-
ning for electric vehicles is proposed. The main innovative
contributions of this study are as follows.

(1) Firstly, we introduce intersection signals to the
dynamic road network.The intersection signals are changing
periodically (in red light or green light), which can control
the vehicles’ driving trajectory and influence the results of
the dynamic route planning. Further, we establish the state-
space-time network to describe the realistic road network.
In comparison to traditional strategies, the state-space-time
network reflects the dynamic characteristic not only on the
link travel time but also on the node state.

(2) Secondly, we try to control the travel velocity to
achieve the nonstopping driving when the vehicles pass
through the intersection signals. When the velocity varies
greatly, the energy consumption will increase significantly.
Therefore, if the vehicle stops at the intersection signals by
the rules, it needs to decelerate from a certain velocity to 0
and then accelerates from 0 to a certain velocity, which will
consume massive energy. By using nonstop driving mode,
the waiting time at the signalized intersection is allocated to
the driving process, which can avoid frequent starting and
stopping at signalized intersections. To a certain extent, it will
eliminate the drivers’ waiting anxiety and reduce the energy
consumption in the driving process.

(3) Thirdly, a multiobjective 0-1 integer programming
model is formulated to find the optimal nonstop driving route
in the state-space-time network. The two objective of travel
time and energy consumption are considered in this paper.
Then, we adopt two methods of constrained shortest path
(CSP) problem and membership functions by using fuzzy
theory to transform the multiobjective into a single objective
problem. The experiment results indicate that the nonstop
driving mode proposed in this paper can save the energy and
eliminate the waiting time.

The rest of paper is organized as follows. Section 2
gives a detailed problem statement, which compares the
energy consumption between stop and nonstop driving
process and further establishes a state-time-space network
to find the shortest route. In Section 3, the mathematical
model is formulated to optimize the travel route achieving
minimum energy consumption and travel time. The energy
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consumption model proposed by Haaren [31] is used to
calculate the object function. Section 4 provides an example
to illustrate the proposed energy-efficient dynamic route
planning approach and analyze the results of planning route.
Finally, Section 5 concludes with an outline of future work
directions.

2. Problem Statement

2.1. The Energy Consumption Comparison between Stop and
Nonstop Driving. The highlight of this paper is to consider
the dynamic traffic signals into the route planning, which can
reduce energy consumption and eliminate waiting time. The
following is a simple example to illustrate this problem.

Figure 1 shows the driving process of the same trajectory
under general circumstance (stop once since the red light)
andproposed approach of this paper (nonstop driving).There
are three indicator lights in the signals, indicating left turn,
go straight, and right turn. Usually, in the traveling process,
we may encounter a red light at the signalized intersection. It
needs to brake to stop until the signal lights turn green and
then starts to accelerate. In this process, additional energy
consumption and waiting time are inevitable, as shown
in Figure 1(a). In contrast, Figure 1(b) shows the driving
situation under our proposed approach, namely, nonstop
driving, which is to adjust the driving velocity by the signal
information to avoid the deceleration process to stop and the
acceleration of starting. Nonstop driving is benefit to save
energy and eliminate drivers' waiting anxieties.

In the following, wewill take travel route in the dotted box
in Figures 1(a) and 1(b) for example to concretely illustrate
how to save energy and eliminate drivers' waiting anxieties.
In Figure 1(a), we assume that the velocity of vehicle is
V1 = 60km/h and encounters a red light at the signal
intersection after 𝑡1 = 1min. At the red light intersection, it
decelerates to stop waiting for 𝑡2 = 15𝑠 and then accelerates
to V3 = 60km/h (ignoring the acceleration and deceleration
time), arriving the next intersection after 𝑡3 = 1min. In
Figure 1(b), to achieve nonstop driving, we adjust the velocity
of vehicle to V2 = 48km/h, so that it passes through the
second intersection at a constant velocity after 𝑡1 + 𝑡2. Next,
it completes the following trip with the same travel state as
Figure 1(a).

We refer to Haaren [31] to calculate the energy consump-
tion of the two cases above. It considers energy losses at
variable velocity and constant velocity. Energy loss at variable
velocity is due to change in kinetic energy, as shown in

𝐸𝑘𝑖𝑛 = 1.05 ⋅ 12𝑚 ⋅ ΔV2 (1)

where m is the total mass of the vehicle (m=1235 kg) and v is
the change of velocity (inm/s).

During acceleration phase, the electric energy is con-
verted into kinetic energy with about 80% efficiency. During
deceleration phase, a part of lost kinetic energy is recuperated
as electric energy with efficiency of around 40%. Then, the

energy losses are shown in (2) and (3), and the relationship
with the velocity is displayed in Figure 2.

𝐸𝑎𝑐𝑐 = 𝐸𝑘𝑖𝑛0.8 (2)

𝐸𝑑𝑒𝑐 = −𝐸𝑘𝑖𝑛 × 0.4 (3)

The energy loss at constant velocity is related to the
power loss and travel time. The power loss, 𝑃𝑐𝑜𝑛𝑠, is the sum
of the losses due to aerodynamics (𝑃𝑎𝑒𝑟), drive-train (𝑃𝑑𝑟),
rolling resistance (𝑃𝑟𝑟), and ancillary losses (𝑃𝑎𝑛𝑐) [31]. The
power losses from aerodynamics, drive-train, and rolling
resistance are related to various factors and are complex
expressions of velocity (unit: mph). The power losses from
ancillary losses may vary between 0.2-2.2 kW, which includes
climate control, external lights, and audio, as well as systems
necessary to regulate battery temperature, as shown in (4)-
(9).The relationship with the velocity is displayed in Figure 3.
Table 1 lists the parameters used in the energy consumption
calculation.

𝐸 (V, 𝑡) = 𝑃𝑐𝑜𝑛𝑠 ⋅ 𝑡 (4)

𝑃𝑐𝑜𝑛𝑠 = 𝑃𝑎𝑒𝑟 + 𝑃𝑑𝑟 + 𝑃𝑟𝑟 + 𝑃𝑎𝑛𝑐 (5)

𝑃𝑎𝑒𝑟 = 𝑎𝑎𝑒𝑟 ⋅ V3 (6)

𝑃𝑑𝑟 = 𝑎𝑑𝑟 ⋅ V3 + 𝛽𝑑𝑟 ⋅ V2 + 𝛾𝑑𝑟 ⋅ V + 𝑐𝑑𝑟 (7)

𝑃𝑟𝑟 = 𝑐𝑟𝑟 ⋅ 𝑁 ⋅ V (8)

𝑃𝑎𝑛𝑐 = 200 (9)

As for the travel process of two cases in Figure 1, it can
be clearly displayed in Figure 3. The energy consumptions
are divided into three parts by time segments 𝑡1, 𝑡2, and 𝑡3.
In Figure 1(a), the vehicle’s velocity is 0 during 𝑡2; thus the
energy consumption is also 0. Then, the energy losses can be
calculated as 𝐸1 = 𝐸(V1, 𝑡1) + 𝐸𝑑𝑒𝑐(V1 − 0) + 𝐸𝑎𝑐𝑐(V3 − 0) +𝐸(V3, 𝑡3).The calculation result is 256.13wh.Theenergy losses
in Figure 1(b) can be calculated as𝐸2 = 𝐸(V2, 𝑡1+𝑡2)+𝐸(V3, 𝑡3).
The calculation result is 202.90 wh, saving energy about 53
wh. The results show that nonstop driving can save energy
and avoid the waiting time.

2.2. The Shortest Route in State-Space-Time Network. Since
the intersection signals are considered in this network, the
different phrases of the signals will lead to different routes.
To distinguish the different phrases of the signals at the
intersections, we divide the intersection with signals into
different phase nodes. Therefore, the set of nodes include
physical nodes and signal phase nodes, and the problem of
route selection at signal intersection is transformed into the
selection of signal phase node. An illustrative network is
displayed in Figure 4. A physical road network is shown in
Figure 4(a) such that the node 2 and node 4 are signal inter-
sections, the phases of which correspond to the connection
relationship of adjacent nodes.Thus, the signal intersection is
split into a corresponding signal phase node according to its
phase, as shown in Figure 4(b). Node 2 connects with nodes
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Figure 1: The driving process of the same trajectory under general circumstance and our proposed approach.
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Figure 2: The energy loss during acceleration phase and deceleration phase related to velocity.

3 and 4, which represents two directions (such as go straight
and turn right) controlled by the signal phrases. Node 2 can
be split into nodes 2󸀠 and 2󸀠󸀠. As for node 4, it is connected
by nodes 2 and 3, which can be split into nodes 4󸀠 and 4󸀠󸀠 in
the same way. The number marked on the arrow is the travel
time of the link. Then, the network structure is also changed
due to the addition of nodes.

To clearly illustrate the problem of interest, the trans-
portation network is represented by a directed graph𝐺(𝑁,𝐴), where 𝑁 is the set of nodes and 𝐴 is the set of
directed links. To effectively represent the trajectorywith spa-
tial and temporal characteristics, the planning time horizon𝑇
is discretized into a set of small-time intervals with the same
length, where the set of discretized timestamps is denoted by
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Figure 4: An illustrative network.

𝑇 = {𝑡0, 𝑡0 + 𝛿, . . . , 𝑡0 +𝑀𝛿}. Parameter 𝑡 is the timestamp in
the discretized time horizon, 𝑡 ∈ 𝑇.Therefore, each link (𝑖, 𝑗)
has time-dependent travel time 𝑇𝑇𝑖𝑗𝑡𝑡󸀠 from node 𝑖 to node𝑗. The following relevant notions are listed for convenience
of formulation, which can be clearly seen in Tables 2 and
3.

We now use the illustrative network to demonstrate pri-
mary modeling features of constructed networks, as shown
in Figure 5. There are two feasible routes from node 1 to
node 5 with node sequence 1-2󸀠-4󸀠-5 (route 1) and 1-2󸀠󸀠-3-4󸀠󸀠-
5 (route 2), which are connected by bold arrows marked with
the travel time. If the signals are not considered, the travel
time of the two routes is equal to 7-time intervals. However,
the travel time will increase a part of waiting time when the
vehicle stops at the signal intersection because of the red light.

As shown in Figure 5, the EV must wait at the signal phase
node 2󸀠󸀠 at time 𝑡2 if it drives along the route 2 with the
unadjusted travel time, similarly in route 1 (see the dotted
line in Figure 5). It will spend 8-time intervals on route 2 and
9-time intervals on route 1, which will produce unnecessary
waiting time and energy consumption. Therefore, we adjust
the travel velocity to reduce the speed properly and waiting
time on the road to achieve nonstop driving. As a result, the
space-time trajectories of two routes are represented by solid
line, and the travel time of route 2 (8-time intervals) is shorter
than that of route 1 (9-time intervals).

Besides, if the state of signal phase is represented as a
state dimension, it can be represented as the state-space-time
network, as shown in Figure 6. Figure 6 can be seen as a
projection of Figure 5 on the time-space dimension.
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Table 1: Parameters of energy consumption model.

Parameters Definition Value
𝑎𝑎𝑒𝑟 The force of air friction 0.0345𝑎𝑑𝑟 Losses coefficients of the inverter 0.004𝛽𝑑𝑟 Losses coefficients of the AC induction motor, gears 0.5𝛾𝑑𝑟 Losses coefficients of the gears 29.3𝑐𝑑𝑟 The power usage of the complete drivetrain system in the vehicle without moving 375𝑐𝑟𝑟 The coefficient of rolling resistance 0.0075𝑁 The normal force (weight carried by the tire) 7460

Table 2: Notations used in formulation.

Notations Definition
𝑇 A discrete time horizon under consideration, 𝑇 = {𝑡0, 𝑡0 + 𝛿, . . . , 𝑡0 +𝑀𝛿}𝑡 The timestamp in the discretized time horizon, 𝑡 ∈ 𝑇.𝑁 Set of nodes𝐴 Set of direction links(𝑖, 𝑗, 𝑡, 𝑡󸀠) A time-dependent arc on link (𝑖, 𝑗) with departure time 𝑡 and arrival time 𝑡󸀠𝑇𝑇min
𝑖𝑗𝑡𝑡󸀠

The time-dependent travel time of link (𝑖, 𝑗, 𝑡, 𝑡󸀠) without adjusting
𝑇𝑇𝑖𝑗𝑡𝑡󸀠 The adjusted time-dependent travel time of link (𝑖, 𝑗, 𝑡, 𝑡󸀠)
𝑡𝑖 The departure time from node 𝑖𝑔𝑖𝑡 The state of signal phase node 𝑖 at time 𝑡, which is the 0-1 variable𝐶𝑖 The signal cycle at signal phase node 𝑖𝑎𝑖 The start time of red light in the first signal cycle of signal phase node 𝑖𝑏𝑖 The end time of red light in the first signal cycle of signal phase node 𝑖
V𝑖𝑗𝑡𝑡󸀠 The average travel velocity of link (𝑖, 𝑗, 𝑡, 𝑡󸀠)
𝑙𝑖𝑗 The length of link (𝑖, 𝑗)
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Figure 5: The simplified illustrative example of space-time trajectory.
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Table 3: Decision variables used in formulation.

Notations Definition

𝑥𝑖𝑗𝑡𝑡󸀠 =1, if the link (𝑖, 𝑗, 𝑡, 𝑡󸀠) is selected
=0, otherwise

By the above description, it is proved that taking the
signals into account in the route planning conforms to the
reality and can also reduce energy consumption. Therefore,
this paper presents an energy-efficient dynamic route plan-
ning method for EVs.

3. Model Formulation

In the process of formulating the model, three assumptions
used throughout the paper are explained as follows.

Assumption 1. EV can receive the traffic information includ-
ing all links' distance, traffic flow, the location, and the change
regulation of the traffic signal.

Assumption 2. During the travel, the electricity of the EV is
sufficient.

Assumption 3. The velocity is supposed to be a constant
on each link without considering specific acceleration and
deceleration processes. Thus, the travel velocity is a step
function.

This section will provide an approach to optimize energy-
efficient dynamic route planning problem. Since the signal
phrase is the focus of this study, we should start with the
description of the state of signal phase node. Next, the travel
time can be adjusted according to the state of signal phase
node.

3.1. The State of Signal Phase Node. For simplicity under-
standing, we define 𝑔𝑖𝑡 as the state of signal phase node 𝑖 at
time 𝑡, which is a binary variable, 𝑔𝑖𝑡 = 1 represents green

light of signal phase node 𝑖 at time 𝑡, and 𝑔𝑖𝑡 = 0 represents
red light of signal phase node 𝑖 at time 𝑡, as shown in

𝑔𝑖𝑡 = {{{
0, 𝑡 ∈ [𝑛 ⋅ 𝐶𝑖 + 𝑎𝑖, 𝑛 ⋅ 𝐶𝑖 + 𝑏𝑖)
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (10)

where 𝐶𝑖 represents the signal cycle at signal phase node 𝑖; 𝑎𝑖
and 𝑏𝑖 separately represent the start and end time of red light
in the first signal cycle of signal phase node 𝑖; namely, [𝑎𝑖, 𝑏𝑖) is
the first red time interval at signal phase node 𝑖; 𝑛 represents
the number of signal cycle of signal phase node 𝑖 at time 𝑡.

If it is not a signal phase node, the parameters (including
the signal cycle, the start and end time of red light in the first
signal cycle) are all set as zero and 𝑔𝑖𝑡 is always equal to 1,
which means the state of the node is always in green phrase.

3.2. The Adjustment of Actual Travel Time. If the EV arrives
at the signal intersection in the red phrase, its travel time will
be adjusted so as to realize the nonstop driving. Therefore,
according to the state of signal, it can be divided into two cases
to adjust the actual travel time.

Case 1. If the state of signal phase node 𝑗 at time 𝑡󸀠 satisfies
(11), it illustrates that the signal is a green light when the
EV arrives at the signal phase node 𝑗, and the EV can go
through this intersection without waiting. The actual travel
time cannot be adjusted, as shown in (12):

𝑔𝑗𝑡󸀠 = 1,
𝑡󸀠 = 𝑡𝑖 + 𝑇𝑇min

𝑖𝑗𝑡𝑡󸀠

(11)

𝑇𝑇𝑖𝑗𝑡𝑡󸀠 = 𝑇𝑇min
𝑖𝑗𝑡𝑡󸀠 (12)

where 𝑇𝑇min
𝑖𝑗𝑡𝑡󸀠 is the time-dependent travel time from node 𝑖

to node 𝑗 at departure time 𝑡.
Case 2. If the state of signal phase node 𝑗 at time 𝑡󸀠 satisfies
(13), it illustrates that the signal is a red light when the EV
arrives at the signal phase node 𝑗, and the EV needs to wait at
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the intersection until the end of the red light.Thus, the actual
travel time should be adjusted.

𝑔𝑗𝑡󸀠 = 0,
𝑡󸀠 = 𝑡𝑖 + 𝑇𝑇min

𝑖𝑗𝑡𝑡󸀠

(13)

Figure 7 shows the adjustment of actual travel time. The
red phrase duration at node 𝑗 is [𝑎𝑗 + 𝑛 ⋅ 𝐶𝑗, 𝑏𝑗 + 𝑛 ⋅ 𝐶𝑗). We
can see that the EV departures from node 𝑖 at time 𝑡𝑖 and
arrives in red phrase at node 𝑗 in the red phrase. To avoid the
waiting time at the intersection, the actual travel time should
be adjusted.

Thus, the actual travel time of link (𝑖, 𝑗) at time 𝑡 can be
calculated by (14) and (15).

𝑛 = ⌊𝑡𝑖 + 𝑇𝑇min
𝑖𝑗𝑡𝑡󸀠𝐶𝑖 ⌋ (14)

𝑇𝑇𝑖𝑗𝑡𝑡󸀠 = 𝑛 ⋅ 𝐶𝑖 + 𝑏𝑗 − 𝑡𝑖 (15)

To sum up, the actual travel time of the EV passing
through the link (𝑖, 𝑗) at time 𝑡 can be expressed by

𝑇𝑇𝑖𝑗𝑡𝑡󸀠 = {{{
𝑇𝑇min
𝑖𝑗𝑡𝑡󸀠 , 𝑔𝑗𝑡󸀠 = 1

𝑛 ⋅ 𝐶𝑖 + 𝑏𝑗 − 𝑡𝑖, 𝑔𝑗𝑡󸀠 = 0 (16)

Therefore, the adjusted travel time can realize nonstop
driving, as shown in

𝑛 ⋅ 𝐶𝑖 + 𝑏𝑗 − 𝑡𝑖 ≤ 𝑇𝑇𝑖𝑗𝑡𝑡󸀠 ≤ 𝑎𝑗 + (𝑛 + 1) ⋅ 𝐶𝑖 − 𝑡𝑖 (17)

The energy consumption is related to travel time and
velocity, and it is difficult to calculate vehicle energy con-
sumption by changeable velocity.Therefore, the average travel
velocity of link is adopted in this paper in the process of
calculating energy consumption in Section 3.3. Further, the
average travel velocity of link (𝑖, 𝑗) at time 𝑡 can be calculated
by

V𝑖𝑗𝑡𝑡󸀠 = 𝑙𝑖𝑗𝑇𝑇𝑖𝑗𝑡𝑡󸀠 (18)

where 𝑙𝑖𝑗 is the length of link (𝑖, 𝑗).

3.3. Mathematical Model. After adjusting the travel time,
the energy-saving route planning model can be formulated.
The two factors of travel time and energy consumption
are considered in this paper, both of which are related to
velocity, since the higher velocity corresponds to shorter
link travel time and more potential energy consumption.
Therefore, a relationship between a space-time link and
the corresponding energy consumption will be formulated.
Based on the problem description and consideration, the
route planning process can be essentially represented as a
space-time route choice process in the corresponding space-
time network. Then, a binary variable is sufficient to denote
the link selection indicator. The model can be formulated as
a linear multiobjective 0-1 integer programming model.

To minimize the energy consumption and actual travel
time, two objective functions are shown in (18) and (19), that
is, minimizing energy consumption and actual travel time.
Both two objective functions have a linear form with respect
to decision variables 𝑥𝑖𝑗𝑡𝑡󸀠 .

min 𝐸 (𝑥) = ∑
(𝑖,𝑗,𝑡,𝑡󸀠)∈𝐴

𝐸𝑖𝑗𝑡𝑡󸀠 ⋅ 𝑥𝑖𝑗𝑡𝑡󸀠 (19)

min 𝑇 (𝑥) = ∑
(𝑖,𝑗,𝑡,𝑡󸀠)∈𝐴

𝑇𝑇𝑖𝑗𝑡𝑡󸀠 ⋅ 𝑥𝑖𝑗𝑡𝑡󸀠 (20)

For the system constraints of the formulatedmodel, travel
time adjustment constraints, the flow balance constraints,
and binary variable constraints should be satisfied. For clear
description, the parameters in Table 1 are introduced into
the objective function of energy consumption in the model.
Hence, the multiobjective 0-1 integer programming model
can be formulated as

min 𝐸
= ∑
(𝑖,𝑗,𝑡,𝑡󸀠)∈𝐴

(0.0385
⋅ V3𝑖𝑗𝑡𝑡󸀠 + 0.5 ⋅ V2𝑖𝑗𝑡𝑡󸀠 + 85.25 ⋅ V𝑖𝑗𝑡𝑡󸀠 + 575) ⋅ 𝑇𝑇𝑖𝑗𝑡𝑡󸀠 ⋅
⋅ 𝑥𝑖𝑗𝑡𝑡󸀠

(21)

min 𝑇 = ∑
(𝑖,𝑗,𝑡,𝑡󸀠)∈𝐴

𝑇𝑇𝑖𝑗𝑡𝑡󸀠 ⋅ 𝑥𝑖𝑗𝑡𝑡󸀠 (22)
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s.t.
Travel time adjustment constraints

𝑛 ⋅ 𝐶𝑖 + 𝑏𝑗 − 𝑡𝑖 ≤ 𝑇𝑇𝑖𝑗𝑡𝑡󸀠 ≤ 𝑎𝑗 + (𝑛 + 1) ⋅ 𝐶𝑖 − 𝑡𝑖 (23)

Flow balance constraint

∑
(𝑖,𝑗,𝑡,𝑡󸀠)∈𝐴

𝑥𝑖𝑗𝑡𝑡󸀠 − ∑
(𝑗,𝑖,𝑡󸀠 ,𝑡)∈𝐴

𝑥𝑗𝑖󸀠𝑡󸀠𝑡 =
{{{{{{{{{

1, 𝑖 = 𝑂, 𝑡 = 𝑡𝑖
−1, 𝑖 = 𝐷, 𝑡 = 𝑡𝑗
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(24)

Binary variable constraint

𝑥𝑖𝑗𝑡𝑡󸀠 ∈ {0, 1} ∀ (𝑖, 𝑗, 𝑡, 𝑡󸀠) ∈ 𝐴 (25)

In general, the multiobjective problem should be trans-
formed to a single objective one. This paper presents two
methods to deal with thismultiobjective problem.On the one
hand, the objective of minimizing actual travel time treated
as a side constraint and a constrained shortest path model is
formulated. This constrained shortest path (CSP) problem is
to find a path from a start node to an end node thatminimizes
the total energy consumption, subject to not exceeding a
maximum travel time.Then, the objectives are unified so as to
transform the multiobjective problem into a single objective
problem as below.

min 𝐸
= ∑
(𝑖,𝑗,𝑡,𝑡󸀠)∈𝐴

(0.0385
⋅ V3𝑖𝑗𝑡𝑡󸀠 + 0.5 ⋅ V2𝑖𝑗𝑡𝑡󸀠 + 85.25 ⋅ V𝑖𝑗𝑡𝑡󸀠 + 575) ⋅ 𝑇𝑇𝑖𝑗𝑡𝑡󸀠
⋅ 𝑥𝑖𝑗𝑡𝑡󸀠

(26)

s.t.

∑
(𝑖,𝑗,𝑡,𝑡󸀠)∈𝐴

𝑇𝑇𝑖𝑗𝑡𝑡󸀠 ⋅ 𝑥𝑖𝑗𝑡𝑡󸀠 < 𝑇̂ (27)

𝑛 ⋅ 𝐶𝑖 + 𝑏𝑗 − 𝑡𝑖 ≤ 𝑇𝑇𝑖𝑗𝑡𝑡󸀠 ≤ 𝑎𝑗 + (𝑛 + 1) ⋅ 𝐶𝑖 − 𝑡𝑖 (28)

∑
(𝑖,𝑗,𝑡,𝑡󸀠)∈𝐴

𝑥𝑖𝑗𝑡𝑡󸀠 − ∑
(𝑗,𝑖,𝑡󸀠 ,𝑡)∈𝐴

𝑥𝑗𝑖󸀠𝑡󸀠𝑡 =
{{{{{{{{{

1, 𝑖 = 𝑂, 𝑡 = 𝑡𝑖
−1, 𝑖 = 𝐷, 𝑡 = 𝑡𝑗
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(29)

𝑥𝑖𝑗𝑡𝑡󸀠 ∈ {0, 1} ∀ (𝑖, 𝑗, 𝑡, 𝑡󸀠) ∈ 𝐴 (30)

Constraint (27) expresses that the actual travel time
cannot bemore than the threshold 𝑇̂. Constraint (28) ensures
that the adjusted travel time enables the electric vehicle to
avoid braking. Constraint (29) ensures the flow balance on
each vertex. Constraint (30) is the binary constraint for
decision variables, 𝑥𝑖𝑗𝑡𝑡󸀠 = 1 if the EV choose link (𝑖, 𝑗) at time𝑡; 𝑥𝑖𝑗𝑡𝑡󸀠 = 0, otherwise.

The solution of constrained shortest path problem can
be solved by improved label-setting algorithm or label-
correcting algorithm. The most remarkable feature of this

algorithm is that it can find the shortest path quickly for a rea-
sonable scale network. However, because of the “dimension
explosion” of dynamic programming, when the large number
of labels needed to be stored, it may not be well extended to
solve the problem in the large-scale networks.

The basic idea of improved label-setting algorithm is to
visit the origin node to the end node by labeling. When a
label sequence runs through the network from one node to
another, a feasible path P including visited nodes, cumulative
objective function E(P), and cumulative time consumption
t(P) is established. That is, each label sequence at the desti-
nation contains all information about the feasible paths set P
from the origin node to the end node. Without violating the
cumulative travel time threshold constraints, the algorithm
will enumerate all possible paths from the origin node to the
end node to ensure that the optimal path 𝑃∗ is found.

On the other hand, we adopt the fuzzy set theory to
deal with this multiobjective optimization problem, in which
the degree of membership function is established for each
objective function to represent the satisfaction of the objec-
tive function. By using fuzzy theory, membership functions
based on energy consumption and travel time can be obtained
respectively.

The optimal objective value of the total energy con-
sumption 𝐸 is assumed to be given in advance, and (31)
is formulated to calculate the membership degree, 𝜇𝐸(𝑥),
between the actual energy consumption and the objective
energy consumption.

𝜇𝐸 (𝑥) = {{{{{
1, 𝐸 (𝑥) ≤ 𝐸
𝐸max − 𝐸 (𝑥)
𝐸max − 𝐸 , 𝐸 (𝑥) ≥ 𝐸 (31)

Accordingly, 𝑇 is set as the optimal objective of a given
total travel time, and the membership degree between the
actual travel time and the target travel time is calculated, as
shown in

𝜇𝑇 (𝑥) = {{{{{
1, 𝑇 (𝑥) ≤ 𝑇
𝑇max − 𝑇 (𝑥)
𝑇max − 𝑇 , 𝑇 (𝑥) ≥ 𝑇 (32)

Because the membership function and the fuzzy set of
each objective are different, the intersection operation of
fuzzy sets is adopted to balance the two objective functions
according to Definition 4 [32].

Definition 4 (see [32]). If there are fuzzy sets 𝐴 and 𝐵 in the
universal set 𝑈, then the intersection operation of the fuzzy
sets 𝐴 and 𝐵 can be defined as follows:

𝜇𝐴∩𝐵 (𝑥) = min {𝜇𝐴 (𝑥) , 𝜇𝐵 (𝑥)} , ∀𝑥 ∈ 𝑈 (33)

where 𝜇𝐴(𝑥) and 𝜇𝐵(𝑥) separately represent the membership
functions of the fuzzy sets 𝐴 and 𝐵.

In this paper, we will take small operations on the
membership functions; that is, the minimum value of energy
consumption 𝐸(𝑥) and travel time 𝑇(𝑥) is used to represent
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the comprehensive satisfaction. Then, the objective function
ofmaximum satisfaction is used formodeling. Further, we set
up the following optimization problem:

max min {𝜇𝐸 (𝑥) , 𝜇𝑇 (𝑥)} (34)

subject to constraints (23) and (25).
To solve this model in fuzzy set theory, we need to

calculate the total energy consumption and total travel time.
To reflect the satisfaction of energy consumption and travel
time, the membership function is introduced. That is to say,
for the objective of total energy consumption, the nearer the
energy consumption is to the optimal target value 𝐸, the
closer the membership (or satisfaction) 𝜇𝐸 is to 1. It is the
same as the objective of total travel time. In order to establish
the membership function, the maximum andminimum total
energy consumption (or total travel time) based on system
constraints are calculated.

For example, we assume the range of total energy con-
sumption is [1000, 2000], then 𝐸 = 1000, 𝐸max = 2000,
and the membership function of total energy consumption
is obtained, as shown in

𝜇𝐸 (𝑥) = {{{{{
1, 𝐸 (𝑥) ≤ 1000
2000 − 𝐸 (𝑥)2000 − 1000 , 𝐸 (𝑥) ≥ 1000 (35)

As the same in the membership function of total travel
time, we assume the range of total travel time is [900, 1800],
then 𝑇 = 900, 𝑇max = 1800, and the membership function of
total travel time is shown in

𝜇𝑇 (𝑥) = {{{{{
1, 𝑇 (𝑥) ≤ 900
1800 − 𝑇 (𝑥)1800 − 900 , 𝑇 (𝑥) ≥ 900 (36)

Obviously, it is important to estimate the maximum
and minimum of the objectives for this kind of method to
construct the membership function. Based on the two mem-
bership functions, the objective function of comprehensive
satisfaction will be obtained. Further, this model can also be
solved by the label-correcting algorithm.

Based on above discussion, two methods of transforming
multiobjective model into a single objective one are feasible,
but the value of objective function is different. In Section 4,
we design the experiments on the constrained shortest path
model.

4. Examples and Results

Based on the proposed model, the simulation of dynamic
traffic network is constructed in Figure 8. The shadow
nodes indicate the signalized intersections. The signalized
intersections can be split into several signal nodes according
the in-degree and out-degree. Different link combinations
are formed by connecting the signal phase nodes with the
physical nodes (take nodes 2, 13, and 30 as an example), as
shown in Figure 9. The 10∗10 grid network in Figure 8 (with
100 nodes and 180 links) turns to be a new network with

Table 4: The four scenarios of signal timing.

Scenario signal cycle green time red time
1 60 30 30
2 60 40 20
3 90 50 40
4 90 60 30

212 nodes (including 160 signal phase nodes) and 324 links
(in Figure 10). We implement several numerical experiments
to show the effectiveness and efficiency of our proposed
model, which were conducted on PC environment running
Windows 10 with an Intel Core i7 2.6GHz processor and 8GB
of main memory. The algorithm is implemented in C++ and
has been compiled using Visual Studio 2015.

In the experiment, we take the time horizon from 8:00 to
9:00 into account. It is assumed that this horizon is discretized
into 600 intervals and each time interval is 6s. To simplify
the problem, four kinds of signal timing with random phase
difference are simulated in the network.The four information
scenarios of signal phase node including signal cycle, green
time, and red time are displayed in Table 4.

Suppose that the EV departures from node 1 to node 100
are at different departure time (8:00, 8:10, 8:20 and 8:30). The
travel time, energy consumption, and computational time
of the planned routes under four scenarios are shown in
Table 5. The trajectories of the planned routes are displayed
in Figure 11.

Based on the foregoing experimental data in Table 5, the
travel time and energy consumption are different at different
departure time, as well as in different scenarios, which
indicates that the value of the objective function is related to
the departure time and signal timing. Specifically, the results
of travel time and energy consumption in Scenarios 1 and 2
have shorter travel times, and less energy consumptions no
matter when to departure. However, the result in Scenario
3 has the largest travel time with more than 26min and the
highest energy consumption among the four scenarios. It is
more obvious in Figure 11 that the trajectories of the shortest
routes in Scenario 3 fluctuate greatly and the time span is
large. However, other trajectories are relatively sharp and the
fluctuation is also gentle.

According to the above results, it can be explained that
compared to Scenario 4 (with the same signal cycle, 90s),
Scenario 3 has smaller green time ratio (the green time ratio
in Scenario 4: 60/90 = 0.67; the green time ratio in Scenario
3: 50/90 = 0.56); it may increase the travel time and the
energy consumption correspondingly. Compared to Scenario
1 and Scenario 2, the signal timing in Scenario 3 has a longer
signal cycle; however, the advantage of green time ratio is
not obvious. Therefore, under the condition of short signal
cycle and large green signal ratio, the travel time and energy
consumption of the planning route can achieve a better result.

As clearly seen from Figure 11, the planned routes change
continually with different scenarios and departure times
because of the dynamic network. The specific driving nodes
are shown in Tables 6–9.
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Figure 8: The simulation of real-time traffic network.
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Figure 9: The spilt signal phase nodes (take nodes 2, 13, and 30 as an example).

Table 5: The results under four scenarios from node 1 to node 100.

Scenario 8:00 8:10 8:20 8:30
TT EC CT TT EC CT TT EC CT TT EC CT

1 18.5 0.776 3.37 18.4 0.776 2.81 21.4 0.783 3.35 23.2 0.789 3.01
2 20.1 0.786 3.01 18.5 0.778 2.96 20.3 0.782 3.02 22.1 0.784 3.34
3 27 0.803 2.93 26.1 0.800 3.26 26.6 0.802 3.47 27 0.803 2.87
4 18.3 0.786 3.33 19.1 0.782 3.19 23.9 0.795 2.82 25.7 0.801 2.91
Note: TT: travel time (min), EC: energy consumption (kwh), CT: computational time (s).
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Figure 10: The simulation of real-time traffic network with spilt signal phase nodes.

Table 6: The shortest routes from node 1 to node 100 at different departure time (in Scenario 1).

Departure time Via node Travel time (min) Energy consumption
(kwh)

8:00 1󳨀→11󳨀→12󳨀→13󳨀→23󳨀→33󳨀→34󳨀→35󳨀→36󳨀→37󳨀→
38󳨀→48󳨀→58󳨀→59󳨀→69󳨀→70󳨀→80󳨀→90󳨀→100 18.5 0.776

8:10 1󳨀→2󳨀→12󳨀→22󳨀→32󳨀→33󳨀→34󳨀→44󳨀→54󳨀→64󳨀→
65󳨀→66󳨀→76󳨀→77󳨀→78󳨀→79󳨀→89󳨀→90󳨀→100 18.4 0.776

8:20 1󳨀→2󳨀→12󳨀→13󳨀→14󳨀→15󳨀→16󳨀→26󳨀→27󳨀→28󳨀→
38󳨀→39󳨀→49󳨀→59󳨀→69󳨀→79󳨀→80󳨀→90󳨀→100 21.4 0.783

8:30 1󳨀→2󳨀→12󳨀→13󳨀→14󳨀→15󳨀→16󳨀→17󳨀→27󳨀→28󳨀→
38󳨀→48󳨀→58󳨀→59󳨀→69󳨀→79󳨀→89󳨀→99󳨀→100 23.2 0.789

To compare the energy consumption between stop
driving (Case 1) and nonstop driving (Case 2), we take the
route in Scenario 1 (departure time is 8:00) as an example
(1󳨀→11󳨀→12󳨀→13󳨀→23󳨀→33󳨀→34󳨀→35󳨀→36󳨀→37󳨀→38󳨀→48󳨀→58󳨀→59󳨀→69󳨀→70󳨀→80󳨀→90󳨀→100). As shown
in Table 10, the numbers on the arrows mean the link travel
time (unit: min, exclusion the waiting time).

The results show that the nonstop driving mode adjusts
the travel time of most sections during traveling, but theo-
retically the travel times in two cases are the same. However,
Case 1 includes 3.2 minutes of waiting time; it will increase
the driver's waiting anxiety. On the other hand, the energy
consumption inCase 2 is 26% less than that inCase 1. To avoid
further elaboration, the results of signal timing Scenario 1
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Figure 11: The shortest routes under four scenarios from node 1 to node 100 at different departure times.

Table 7: The shortest routes from node 1 to node 100 at different departure time (in Scenario 2).

Departure time Via node Travel time (min) Energy consumption
(kwh)

8:00 1󳨀→11󳨀→12󳨀→22󳨀→23󳨀→24󳨀→25󳨀→35󳨀→45󳨀→55󳨀→
56󳨀→66󳨀→76󳨀→77󳨀→78󳨀→79󳨀→80󳨀→90󳨀→100 20.1 0.786

8:10 1󳨀→11󳨀→21󳨀→22󳨀→32󳨀→33󳨀→34󳨀→35󳨀→36󳨀→37󳨀→
47󳨀→48󳨀→49󳨀→59󳨀→69󳨀→79󳨀→89󳨀→99󳨀→100 18.5 0.778

8:20 1󳨀→11󳨀→12󳨀→22󳨀→23󳨀→33󳨀→34󳨀→44󳨀→45󳨀→46󳨀→
56󳨀→57󳨀→67󳨀→68󳨀→69󳨀→79󳨀→89󳨀→90󳨀→100 20.3 0.782

8:30 1󳨀→2󳨀→12󳨀→13󳨀→14󳨀→24󳨀→25󳨀→26󳨀→27󳨀→28󳨀→
38󳨀→48󳨀→58󳨀→59󳨀→69󳨀→70󳨀→80󳨀→90󳨀→100 22.1 0.784

Table 8: The shortest routes from node 1 to node 100 at different departure time (in Scenario 3).

Departure time Via node Travel time (min) Energy consumption
(kwh)

8:00 1󳨀→2󳨀→12󳨀→13󳨀→14󳨀→24󳨀→25󳨀→26󳨀→36󳨀→37󳨀→
38󳨀→48󳨀→58󳨀→ 59󳨀→69󳨀→70󳨀→80󳨀→90󳨀→100 27 0.803

8:10 1󳨀→11󳨀→21󳨀→22󳨀→23󳨀→24󳨀→25󳨀→26󳨀→27󳨀→28󳨀→
38󳨀→48󳨀→58󳨀→59󳨀→69󳨀→79󳨀→80󳨀→90󳨀→100 26.1 0.800

8:20 1󳨀→11󳨀→12󳨀→13󳨀→23󳨀→24󳨀→25󳨀→26󳨀→27󳨀→28󳨀→
38󳨀→39󳨀→49󳨀→59󳨀→69󳨀→70󳨀→80󳨀→90󳨀→100 26.6 0.802

8:30 1󳨀→2󳨀→12󳨀→22󳨀→32󳨀→42󳨀→52󳨀→53󳨀→63󳨀→64󳨀→
65󳨀→75󳨀→76󳨀→ 77󳨀→78󳨀→79󳨀→89󳨀→99󳨀→100 27 0.803

(departure time is 8:00) in two driving modes are compared
here.The energy consumption can be reduced by 20% to 30%
at other different departure time and signal timing. The time
adjustment of the planning routes is no longer listed one by

one. The energy consumption and energy saving efficiency
are shown in Table 11. In summary, the approachwe proposed
can save the energy and eliminate the waiting time and find
the planning route with high efficiency and energy saving.
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Table 9: The shortest routes from node 1 to node 100 at different departure time (in Scenario 4).

Departure time Via node Travel time (min) Energy consumption
(kwh)

8:00 1󳨀→11󳨀→21󳨀→31󳨀→32󳨀→33󳨀→43󳨀→44󳨀→54󳨀→55󳨀→
56󳨀→66󳨀→67󳨀→77󳨀→78󳨀→79󳨀→80󳨀→90󳨀→100 18.3 0.786

8:10 1󳨀→2󳨀→12󳨀→13󳨀→14󳨀→24󳨀→34󳨀→44󳨀→54󳨀→55󳨀→
56󳨀→57󳨀→67󳨀→77󳨀→78󳨀→88󳨀→89󳨀→99󳨀→100 19.1 0.782

8:20 1󳨀→2󳨀→12󳨀→13󳨀→14󳨀→24󳨀→34󳨀→35󳨀→36󳨀→37󳨀→
47󳨀→48󳨀→49󳨀→59󳨀→69󳨀→79󳨀→89󳨀→90󳨀→100 23.9 0.795

8:30 1󳨀→2󳨀→12󳨀→13󳨀→23󳨀→24󳨀→25󳨀→26󳨀→36󳨀→37󳨀→
47󳨀→48󳨀→49󳨀→59󳨀→69󳨀→79󳨀→80󳨀→90󳨀→100 25.7 0.801

Table 10: The energy consumption in stop driving (Case 1) and nonstop driving (Case 2).

Case Via node (with travel time) Travel time (min) Energy consumption
(kwh)

1
1 1.1󳨀󳨀→ 11 0.6󳨀󳨀→ 12 0.5󳨀󳨀→ 13 1.1󳨀󳨀→ 23 1.1󳨀󳨀→ 33 1.1󳨀󳨀→ 34
0.8󳨀󳨀→ 35 0.6󳨀󳨀→ 36 0.7󳨀󳨀→ 37 0.9󳨀󳨀→ 38 0.8󳨀󳨀→ 48 0.9󳨀󳨀→ 58
0.9󳨀󳨀→ 59 0.9󳨀󳨀→ 69 0.5󳨀󳨀→ 70 0.8󳨀󳨀→ 80 0.9󳨀󳨀→ 90 1.1󳨀󳨀→ 100

18.5
(include 3.2 min
waiting time)

1.049

2
1 1.1󳨀󳨀→ 11 1󳨀→ 12 1󳨀→ 13 1.1󳨀󳨀→ 23 1.1󳨀󳨀→ 33 1.1󳨀󳨀→ 34
1󳨀→ 35 1󳨀→ 36 1󳨀→ 37 1󳨀→ 38 1󳨀→ 48 1󳨀→ 58
1󳨀→ 59 1󳨀→ 69 1󳨀→ 70 1󳨀→ 80 1󳨀→ 90 1.1󳨀󳨀→ 100

18.5 0.776

Table 11: The comparison of energy consumption in two cases under different signal timing and departure time.

Departure time Energy consumption in
Case 1 (kwh)

Energy consumption in
Case 2 (kwh) Efficient

Scenario 1
8:00 1.049 0.776 26%
8:10 1.093 0.776 29%
8:20 1.103 0.783 29%
8:30 1.012 0.789 22%

Scenario 2
8:00 1.077 0.786 27%
8:10 1.111 0.778 30%
8:20 1.071 0.782 27%
8:30 0.980 0.784 20%

Scenario 3
8:00 1.029 0.803 22%
8:10 1.053 0.800 24%
8:20 1.003 0.802 20%
8:30 1.043 0.803 23%

Scenario 4
8:00 1.123 0.786 30%
8:10 1.043 0.782 25%
8:20 1.032 0.795 23%
8:30 1.054 0.801 24%

5. Conclusions

This paper provides an energy-efficient dynamic route plan-
ning approach for EVs. The approach aims to optimize both
travel time and energy consumption by avoiding unnecessary

stopping brake. To implement the dynamic traffic environ-
ment, the state-time-space network is introduced to clearly
describe the changeable travel time and intersection signal
state in the time axis discretization.Then, amultiobjective 0-1
integer model is formulated, and twomethods are adopted to
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transform the multiobjective 0-1 integer model to the single
objective one. The improved label-correcting algorithm is
designed to solve the proposed model. The results show that
the proposed approach can save the energy and eliminate the
waiting time in finding the optimal planning route.

Future research can be further worked out from the
following aspects:

(1) To facilitate the study, we assume that the electricity
of the EV is sufficient. However, electric vehicles need to
be recharged during travel. The battery capacity of EV and
the charging station location may impact the planning route,
which will be a field for further research.

(2) In this paper, we only simulate the single vehicle with
single OD traveling in the dynamic traffic network. However,
due to the interaction of multiple vehicles, the actual traffic
situation in a realistic road network is more complex. The
multivehicle routing problem considering intersection sig-
nals will be a challenge in the future research.

(3) From the perspective of optimization of traffic flow
assignment, the energy-efficient route optimization approach
will be another interesting challenge for our future research
agenda.
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