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Summary: In order to take into account the effects of the interface between matrix and in-

clusion, an interphase is generated. A numerical homogenization process is then considered,

based on multiscale technique for estimating the effective properties of composite materials by

integrating the Lippmann-Schwinger equation. The algorithm is based on fast Fourier trans-

form (FFT). However, considering an interphase brings up problems for FFT. As the interphase

is very thin and due to inhomogeneities, the kernel (Green-kernel) must be also modified to

get more accuracy in calculation. This approach is especially suitable for high and low con-

trasts, since that the number of voxels/pixels representing the same material is limited. This

limit reduces the accuracy of FFT. In this framework, the paper studies different approaches

to overcome the interphase problem. The effective material properties are estimated by using

multilayer interphase as well as equivalent interphase in the homogenization procedure.

1. INTRODUCTION

Composite materials are present at almost every level of the industry. These materials have a

huge advantage due to a wide range of mechanical, thermal and electrical properties. Compos-

ite materials also have higher strength and modulus-to-weight ratios than traditional engineered

materials. Since the discovery of carbon nanotubes more than thirty years ago by Iijima [1],

there has been a great interest in nanocomposite technology. Compared to traditional compos-

ites, nanocomposites offer improved quality due to better contact between the matrix and the

inclusion. Much research has proven this ability of nanomaterials and nanometric structure.

[2, 3, 4, 5]

In terms of nanocomposite investigation, the scientists have worked on their properties

through theoretical analyses, numerical computations, experimental studies and most recently

artificial neural network. In [6], Cuenot et al. have measured the elastic properties of silver

nanowires of 20 to 140 nm outer diameter. In [7], Blivi et al. have investigated the influence

of particle size from 15nm to 500nm on mechanical and thermal properties. In [8], Chen et

al. have developed an analytical model calculating the elastic modulus of SiC nanoparticle re-

inforced with the consideration of the size factor and aggregated state of the nanoparticles. In

[9], Karimzadeh et al. have studied the ability of the nano-indentation method in the mechan-

ical characterization of dental restorative nanocomposite (particle size from 50nm to 5 µm)
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using experimental and finite elements approaches. In [10], Lee et al. have proposed new

approach determining the nanomechanical stress-strain parameters using the indentation force-

displacement relationship. This approach is based on the dimensional analysis and the Bayesian

regularization training algorithm of the artificial neural networks.

To calculate the properties of composite materials, researchers have employed numerical

methods such as molecular dynamics [11], finite elements method (FEM) [12], boundary ele-

ment method (BEM) [13], methods based of FFT[14]. In the framework of FFT-based method

a numerical process based on multiscale technique to estimate the effective properties by inte-

grating the Lippmann-Schwinger equation is considered. This approach has several advantages:

this method does not need to solve a linear system, time computation is reduced compared to

other methods, SEM (Scanning Electron Microscopy) images can be used directly to analyze

composite materials [15]. The FFT-based method can also deal with nonlinear behavior [16].

In [17], Lee et al. have used FFT algorithm to compute viscoplastic response under uniaxial

tension of metal-metal composite. Recently, many scientists have worked on improving FFT

algorithm, for instance, in [18], Monchiet et al. have proposed an iterative scheme based on

polarization field to improve the convergence of FFT for composite with voids or rigid inclu-

sions. In [19], Willot has presented a modified Green operator for thermal and elastic cases

with higher convergence rates and more accuracy in calculation. In [20], Nguyen et al. have

described a new Green operator for computing the effective elastic properties of periodic thin

plates.

For the modeling of the heterogeneities, it is necessary to adopt a stochastic approach con-

sidering spatial position, the orientation and the morphology of the heterogeneities as random

variables following probability laws to design NSREVs (Numerical Stochastic Representative

Element Volume) [21, 22]. In addition to take into account the random aspect in the multiscale

homogenization method, the interface effect must also be considered in the continuum mechan-

ics modeling of nanomaterials and nanostructures. This area is different because of the high

interface to volume ratio of materials, then one can consider the interface energy is compara-

ble to bulk energy. To model this effect, researchers consider the different properties in the

interaction zone via an interface or interphase. In [23], Miller et al. have used direct atomistic

simulations of nanosized structures. In [24, 25], analytical models have been introduced consid-

ering interphase layer to evaluate elastic properties of nanocomposites. In [26], Duan et al. have

proposed new frameworks to compute effective moduli of nanostructure taking into account sur-

face stress effect based on Mori Tanaka method and the generalized self-consistent method. In

[27], Dormieux et al. have introduced an equivalent inclusion combining the nanoparticle and

surrounding interface. This approach can be directly implemented in Mori-Tanaka model. In

[28], Yvonnet et al. have used the extended finite element method with the coherence interface

model to investigate the size-dependent effective properties of nanocomposites.

This article deals with the consideration of the interface effect within the framework of

the FFT-based methods for the integration of the Lippmann-Schwinger equation. We consider

an interphase representing the contact between matrix and inclusions. In section 2., we briefly

present the basics of FFT-based methods. The accelerated scheme [29] has been implemented
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to deal with the high contrast case. To obtain more precision in the calculation and for any type

of contrast, we have also implemented the modified Green operator proposed by Willot [19].

The following section shows the efficiency of the model with a simple example. Using this

approach, we evaluate the effective properties of REV (Reprentative Volume Element) contain-

ing only matrix with inclusion (perfect bonding). The results are compared with the analytical

method and FEM. In section 4, we consider the interface effect using this FFT-based method.

First, a multi-layered approach has been introduced. Then, we propose an equivalent interphase

replacing the multilayer. This approach is more efficient for FFT-based methods. The size effect

is also discussed.

2. GENERAL FORMULATIONS

2.1 FFT based method

2.1.1 Cell problem

We consider an RVE (Representative Volume Element) V . The RVE can be represented by

an image containing N ×N ×N voxels. We consider the so-called cell problem with periodic

boundary conditions. The local strain field ε(u(x)) is formed by a periodic part ε(uper(x)) and

an average strain E:

ε(u(x)) = ε(uper(x)) +E (1)

where u,uper,x represent respectively the displacement, periodic displacement, local posi-

tion respectively satisfying the zero mean on RVE: < ε(uper(x)) >V= 0. Which is equivalent

to:

u(x) = uper(x) +Ex (2)

The local problem reads:

σ(x) = C(x)ε(u(x)) = C(x)(ε(uper(x)) +E) ∀x ∈ V

divσ(x) = 0 ∀x ∈ V,uperperiodic

}

(3)

where C(x) is the local stiffness tensor. Introducing a reference stiffness tensor C0 and a

polarization field τ (x) = (C(x)− C
0)ε(u(x)) = δC(x)ε(u(x)). The equation 3 reads:

σ(x) = C
0(ε(u(x))) + τ (x) ∀x ∈ V

divσ(x) = 0 ∀x ∈ V

}

(4)

Due to the equation satisfied by the polarization field. The interested reader can refer for

example to ([30], p.251). Let us introduce periodic Green operator Γ0 associated with C
0 then

one can write:
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ε(u(x)) = −Γ
0 ∗ τ (x) +E ∀x ∈ V (5)

Where * is the convolution product. In Fourier space the previous equation also reads :

ε̂(ξ) = −Γ̂
0(ξ) : τ̂ (ξ) ∀ξ 6= 0

ε̂(0) = E

}

(6)

2.1.2 Algorithm based on FFT

Algorithm 1: Acceleration scheme in elastic

Result: ε(x)
initialization: ε0(x) = E, ǫcomp = 1., ǫeq = 1., acc = 1e−6 ;

while ǫcomp > acc & ǫeq > acc do

Compute: σ(x) = C(x)ε(x);
if ǫcomp < acc then

σ̂(ξ) = FFT (σ(x));
Compute ǫeq;

else

ǫeq = 1.;
end

τ (x) = (C(x)− C
0)ε(x) ;

τ̂ (ξ) = FFT (τ (x));

ε̂(ξ) = −Γ̂0(ξ) : τ̂ (ξ) ;

ε̂(0) = E ;

εcomp(x) = FFT−1(ε̂(ξ)) ;

ǫcomp =

√
<||ε(x)−εcomp(x)||2>

||E||
;

ε(x) = ε(x)− 2(C(x) + C
0)−1

C
0(εcomp(x)− ε(x)) ;

end

where the error ǫeq can be determined by:

ǫeq =

√

< ||divσ||2 >
|| < σ > || =

√

< ||ξ.σ̂(ξ)||2 >
||σ̂(0)|| (7)

2.2 Discrete algorithm

2.2.1 Traditional method

We discretize the unit cell into a grid of N1 ×N2 pixels in 2D and N1 ×N2 ×N3 voxels in

3D. The data and the unknowns are stored in each pixel/voxel on this grid. For instance in 2D,

the coordinates of the pixel (i1, i2) are:
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x(i1, i2) = (
i1 − 1

N1

,
i2 − 1

N2

), i1 = 1, ..., N1 i2 = 1, ..., N2

In the Fourier space, the discrete frequencies are:

ξj = 0, 1, 2, ...,
Nj

2
, (−Nj

2
+ 1), (−Nj

2
+ 2), ...,−2,−1

2.2.2 Modified Green operator

In this study, the modified Green operator [19] has been used. So, the strain field is defined

on Fourier space as follows:

εij(ξ) =
1

2
[ki(ξ)uj(ξ) + kj(ξ)ui(ξ)] (8)

where k represents discrete gradient operator.

ki(ξ) =
i

4
tan(πξi)(1 + e2πiξ1)(1 + e2πiξ2)(1 + e2πiξ3) (9)

The Green operator becomes:

Gijkl(ξ) =
(λ0 + 2µ0)(rir

∗
l δjk)sym + λ0[(rir

∗
l δjk)sym − Re(rir

∗
j ) Re(rkr

∗
l )]− µ0rirjr

∗
kr

∗
l

µ0[2(λ0 + µ0)− λ0[|r21 + r22 + r23|2]
(10)

where ri = ki/|k| and s is the symmetric second-order tensor:

sjj = 4 Im(rir
∗
k)

2, sjk = −4 Im(rkr
∗
j ) Im(rjr

∗
k), i 6= j 6= k (11)

with a∗ is the complex conjugate of a, Re, Im are respectively real part, imaginary part of

the enclosed complex quantity.

3. VALIDATION

First, in order to validate our approach, we compare the model with the analytical Mori-

Tanaka method [31]. In figure 1a, we consider a spherical void inclusion, which means that

c = 0, where c is the contrast. Three resolutions are taken into account: 128 × 128 × 128,

256× 256× 256 and 512× 512× 512. In this example, we compute the effective bulk modulus

of porous aluminum. The material parameters of the matrix are E = 70 MPa and ν = 0.32.

The estimation of effective properties has been provided by FEM [5, 28]. A perfect binding

between the matrix and the inclusion is assumed. The reference normalized effective bulk

modulus keff/kM is computed, kM is the matrix bulk modulus. For the matrix the parameters

are set up to kM = 1 and µM = 0.4.

Figure 1 depicts the results for effective bulk modulus and the error of new approach for

different resolutions and volume fraction. Compare to the classical Green-kernel , the modified
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Figure 1. Normalized effective bulk modulus as function of volume fraction

Green-kernel approach converges more quickly. We observe a good agreement with analytical

results no matter the resolution. For a contrast c = 0.1, higher value of effective bulk modulus

is obtained. For example, at f = 0.1 the normalized effective modulus keff = 0.74 for void

inclusion and keff = 0.8 for c = 0.1. The higher the resolution is, the more accurate results are

obtained. In the next section, using the modified Green operator, we investigate the influence of

interface effect to the performance of composite.

4. INTERFACE EFFECT

4.1 Multilayer

4.1.1 Modeling

Considering the interphase between the matrix and the inclusion, the material properties

change following exponential rule [32, 33, 25] as shown in the figure 2. So, for an isotropic

medium, the bulk modulus of interphase can be determined by the following relation:

k(r) = km(1 + (c− 1)(1− re1−r)) (12)

where r is the variable. r = 0 is the inclusion; r = 1 is the matrix.

4.1.2 Analytic result and FFT

First, the cylindrical inclusion model is dealt. To Describe the variation of elastic properties

in the interphase, the interphase has been discretized in N layers. Within each layers, as illus-

trated in figure 2b, the elastic properties kn, µn are proposed to be constant. These properties are

determined by the equation 12. For two adjacent layers, a perfect binding assumption has been

made. The contrast c = 0.01 is examined; this configuration gives a good rate of convergence,

moreover, for c = 0.01 the gap between the properties of the matrix and the inclusion is large

enough, so that we can observe the influence of the interface. Different numbers of layer have

been evaluated from N = 1 → 8. The numerical calculation is compared with the Mori-Tanaka
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(a) Exponential rule (b) Discretization within the

interphase

Figure 2. Variations of bulk modulus within the interphase and the discretization

method. The error is determined as follows:

Error =
|kFFT − kMT |

kMT
(13)
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Figure 3. MT vs Multilayer FFT

Figure 3 exhibits the results of effective bulk modulus and the error of FFT taking Mori-

Tanaka as reference. We observe a very good agreement of FFT method for N > 2. The

maximum error is less than 1.5 %

4.2 Equivalent interphase

It is more convenient to represent the interphase by one homogeneous layer. From the equa-

tion 12, we describe the equivalent elastic properties of the interphase by following equation:

keq =

∫

k(r)dr (14)
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From the configuration of previous example, with c = 0.01, kM = 1 we get keq = 0.7211.

The calculation is performed as in the case of three phase material. The result is compared to

the previous Mori-Tanaka result.
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Figure 4. MT vs Equivalent interphase FFT

Figure 4 shows the results of estimated effective bulk modulus and the error of equivalent

model. We observe a very good agreement between the reference and the numerical calculation.

The error is always less than 1.5 %.

4.3 Equivalent interphase model vs interface model

4.3.1 Spherical void

In this example, we consider the case of spherical void in aluminum. This case has been in-

vestigated by FEM [28] and molecular dynamic [23]. The material parameters of the matrix are

E = 70 MPa and ν = 0.32. The surface parameter obtained through the molecular dynamics:

λs = 6.842 N/m, µs = −0.375 N/m. So the surface bulk modulus k′
s = λs +2µs = 6.091 N/m.

At this configuration, the equivalent elastic properties of interphase is determined by:

keq =
k′
s

tkM
(15)

where t is the thickness of the interphase. First, we have arbitrarily chosen t = 0.1R. The

result of the FFT is validated with the analytical approach[26]. This analytical approach is ded-

icated to spherical voids with a coherent surface.

Figure 5 shows the result of effective bulk modulus and the error of equivalent model for

several resolutions. The model describes expected effect of interface between matrix and in-

clusion no matter the resolution . The results are in a good agreement with reference solutions

when f < 0.3. The gap when f > 0.3 is due to the infinite contrast and the shape of REV as

explained in [16].
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Figure 5. MT interface model vs Equivalent FFT

4.4 Size effect

We can also use this approach for a size dependent problem. Two examples have been

considered. For a constant volume fraction f = 0.2, we vary the radius of void and calculate

for each size the effective volume modulus. The material properties are the same as in section

3 for the cylindrical inclusion in figure 6a. In figure 6b, the contrast is fixed to c = 0.1.
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Figure 6. Size dependence

The figure 6 shows the expected size effect as presented in [28]. The effective properties

depend clearly on nanovoid radius for small sizes of nanovoids, but these values are not sensitive

to the radius for large sizes. A good agreement between the reference solution and the FFT-

based method is observed. Indeed, the maximum or relative error is less than 1.6%.

5. CONCLUSIONS

In this work, the interface effect has been studied by the method based on the FFT. In order

to reduce the computation time and obtain more precise results, within the framework of the

FFT approach, the accelerated scheme with modified Green operator has been implemented.

First, the new approach was validated for a perfect binding case. Next, we have considered an

9



T.A Do, P. Karamian-Surville

interphase representation to study the interface effect. For the multi-layered approach, good

agreement was obtained for the appropriate number layers. To reduce the complexity of the

problem, we have also considered the equivalent interphase. We have compared the results

with the analytical approach and FEM. The equivalent approach has proven to be efficient and

reliable. Note that this approach can also be extended to plasticity. It remains to apply the

present method to the case of the volume of stochastic representative element.
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