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ABSTRACT 

This study uses deep neural network (DNN) to optimize the hull form of a small water-plane area twin hull 
vessel, where two pairs of NACA-shaped fin stabilizers are installed on each pontoon to keep an even keel 
condition. The vessel's target condition is a speed of 24 knots and a displacement of 120 tons. Four parameters 
are used to define the pontoon geometry, and a fixed the pontoon length of 22.5 m is adopted. A flow solver, 
STAR-CCM+, is employed to predict the resistance of the pontoon and fin stabilizer, and Rhinocero3D is used 
in the parametric pontoon design. About 1400 pontoon designs are used to train the DNN model to correlate 
the resistance with the design parameters, and 80 cases are adopted for testing, where an improvement of 
12.8% in calm-water resistance compared to the baseline design is achieved. The optimized pontoon design 
has a fore-body of 2 m, an aft-body of 5.71 m, an angle of entrance of 37°, and an angle of run of 19°.  

Keywords: Calm Water Resistance; Hull Form Optimization; Deep Neural Network; Pontoon; SWATH. 

1. INTRODUCTION 

Taiwan's topography is favorable for the development of offshore wind. As more and more offshore wind 
farms are built and planned (GWEC, 2021), there is an increasing demand for Crew Transfer Vessels (CTVs). 
This type of vessel requires sufficient stability in waves to ensure the safety and comfort of the crew in wind 
farm maintenance operations. Small Waterplane Area Twin Hull (SWATH) can easily meet these requirements 
(Y. Dalgic et al., 2015). 

SWATH is composed of the pontoon, which provides the main buoyancy of SWATH, and the strut, which 
connects the deck and the pontoon and pierces the free surface. Compared with other vessel types, SWATH is 
well-known for its excellent wave resistance in high wave conditions (S. Brizzolara, et al., 2011). However, 
due to a small waterplane area, SWATH vessels lack longitudinal restoring force, and often use fin stabilizers 
to balance the pitching moment. However, fin stabilizers also bring additional drag (E. Begovic et al., 2015). 
For SWATH, the underwater pontoon resistance mainly accounts for the total resistance. Although many 
studies use computational fluid dynamics to analyze the pontoon resistance, a parametric method for pontoon 
design has yet to be proposed (F. Pérez-Arribas et al., 2020).  

Although the computational of hardware has dramatically improved in recent years, free surface simulations 
still require relatively lengthy time. To reduce computational time, deep learning has been widely used in ship 
design and ocean engineering. There are many deep learning models, such as Recurrent Neural Networks 
(RNNs), Convolutional Neural Networks (CNNs), and Deep Neural Networks (DNNs), where the last group 



Chi-Min Wu, Yu-Tung Lin and Shiu-Wu Chau 
 

 

 2 

uses a classic feedforward network. Since the design parameters of the ship form are neither time-series data 
nor two-dimensional matrix data, DNN is selected as the deep learning model in this study. 

This study aims to propose a parametric design approach for optimizing SWATH vessel pontoon through 
minimizing the resistance and moment of the pontoon and fin stabilizers. In addition, this study also applies 
deep neural network technology to find an optimized ship form design. 

2. PARAMETRIC DESIGN OF SWATH 

2.1 Baseline Design 

An existing SWATH vessel is used as the baseline design, where the displacement is 120 tons. Figure 1 shows 
its side view, and Table 1 lists the principal dimensions of the baseline design. 

 

Table 1. Principal Dimensions of the 
Baseline Design 

𝐿!" 𝐷 𝐿#$ 𝐿%& 

26 m 5.0 m 23.4 m 23.2 m 
 

Figure 1. Side View of Baseline Design 

2.2 Resistance Calculation 

To avoid the excessive computational cost of the free surface simulations, a simplified approach is used in this 
study. 

𝑅' = 𝑅()(𝐹𝑟) + 𝑅$(𝑅𝑒) (1) 

where, 𝑅' is the total resistance, 𝑅()(𝐹𝑟) is the strut resistance, and 𝑅$(𝑅𝑒) is the resistance of the lower hull. 
𝑅() is assumed a function of the Froude number only, while 𝑅$ is assumed a function of the Reynolds number. 
Furthermore, the resistance of the lower hull 𝑅$ can be further decomposed into two components as follows: 

𝑅' =	𝑅()(𝐹𝑟) + 𝑅%&(	𝑅𝑒) + 𝑅*+&(𝑅𝑒) (2) 

where 𝑅%& is the pontoon resistance, and 𝑅*+& is the fin stabilizer resistance. Figure 2 shows the variation of 
the pontoon resistance 𝑅%& alongside its pressure and shear components with draught (𝑑). The ratio of the 
pontoon resistance at the draught 𝑑, 𝑅%&, to the pontoon resistance in the fully submerged case, 𝑅%&, , is defined 
as 𝛽. The total resistance can be represented as follows: 

𝑅' 	= 	𝑅()(𝐹𝑟) + 𝑅%&, (𝑅𝑒) · 𝛽(𝑑) + 𝑅*+&(𝑅𝑒) (3) 
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Figure 2. Pontoon Resistance vs. Draught 

2.3 Design Parameters of Pontoon 

This study proposes a parametric approach to design the pontoon by considering the pontoon as an 
axisymmetric body. The design length of the pontoon is 22.5 m. The pontoon is defined by four independent 
parameters that are the fore body length (𝐿*), the aft body length (𝐿-), the angle of entrance (𝜃%&), and the 
angle of run (𝜙%&). Figure 3 illustrates the design parameters of the pontoon, where 𝑅. is the hub radius. 𝐿* 
and 𝐿- are limited between 1.8 m and 7.8 m, and 𝜃%& and 𝜙%& are limited between 10 degrees and 60 degrees. 
 

 
Figure 3. Design Parameters of Pontoon 

2.4 Fin Stabilizer 

Because pontoons are unable to deliver longitudinal stability, fin stabilizers are necessary (D. Vieira et al., 
2010). Fin stabilizers provide the lift force to keep the ship in an even keel position, especially at high speeds. 
Figure 4 schematically shows the position of fin stabilizers and the lift provided by the fore and aft fin 
stabilizers to balance the longitudinal moment of the SWATH vessel, where 𝑀./00  is the pitch moment 
contributed by ship hull, and 𝑀*+& is the pitch moment contributed by fin stabilizers. Figure 5 shows the aspect 
ratios of the fore and aft fin stabilizers, which are 0.668 and 0.689, respectively. However, lift also accompanies 
drag, as shown in Figure 6, where the slope of the ideal 2D lift curve is 2π (O.G. Tietjens et al., 1957). As the 
angle of attack increases, the drag increases accordingly. If the pitch angle is too large, the angle of attack of 
the fin stabilizers must increase to balance the moment. Two foils, i.e., NACA0015 and NACA0030, are used 
for the aft and fore fin stabilizers, respectively. 

 

Figure 4. Position and Working Principal of Fin Stabilizers 
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(a) (b) 

Figure 5. Fin Stabilizer: (a) fore, (b) aft 

  

(a) (b) 

Figure 6. Lift and Drag Coefficient of Fin Stabilizer: (a) fore, (b) aft 

3. FLOW SOLVER 

3.1 Governing Equations 

This study uses the CFD software STAR-CCM+ to simulate the underwater pontoon’s flow field and the full 
SWATH, where a finite volume method is used to discretize the governing equations. This study mainly 
optimizes the pontoon resistance under an immersed condition.  

3.1.1 Pontoon Flow 

The pontoon flow is assumed steady and incompressible. The governing equations are the continuity and 
momentum equations, and the 𝐾 − 𝜖 turbulence model is to consider the turbulence effect. 

𝜕(𝜌𝑢)
𝜕𝑧

+
1
𝑟
∂(𝜌𝑟𝑣)
𝜕𝑟

= 0, (4) 

𝜕(𝜌𝑢𝑢)
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+
1
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= −
𝜕𝑝
𝜕𝑧
+
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+
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𝜕(𝜌𝑢𝑣)
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where 𝜌 is the fluid density, 𝑢 and 𝑣 represent the velocity component in 𝑧 and 𝑟 direction, respectively, 𝑝 is 
the pressure of the flow field, 𝜇 is the dynamic viscosity, 𝐺 is the production term of the kinetic energy of 
turbulence, 𝜇) is the turbulent dynamic viscosity, 𝛾̇ is the shear rate, and 𝑐7, 𝜎8, 𝑐45, 𝑐46, 𝜎4 are the equation 
constants of the 𝐾 − 𝜖 turbulence model. 

3.1.2 Free Surface Ship Flow 

The governing equations used to simulate the free surface flow are the continuity equation and momentum 
equations, where the fluid is assumed incompressible. 

𝜕𝑈+
𝜕𝑥+

= 0, (9) 

𝜕𝑈+
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where 𝑈+  and 𝑢+;  are the mean velocity and fluctuation of velocity in 𝑥+  direction, respectively, 𝜈  is the 
kinematic viscosity, and 𝜌𝑢:;𝑢<;_______ is the Reynold’s stress. The 𝐾 − 𝜖 turbulence model is given as follows: 

𝜕𝑈+
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, (12) 

where 𝐺3 is the production term of the kinetic energy of turbulence. To describe the free surface, a volume of 
fluid method is used. The volume fraction of fluid in a cell can be expressed as 

𝐶- =
𝑉-
𝑉
, 	𝐶> =

𝑉>
𝑉
, (13) 

where 𝑉-  is the air volume, 𝑉>  is the water volume, and 𝑉 is the total volume. The sum of all the volume 
fractions in a cell is unity, as (14): 

𝐶- + 𝐶> = 1. (14) 

𝐶- = 0 indicates that the cell does not contain air; 𝐶- = 1 indicates that the cell is filled with air; 0 < 𝐶- < 1 
indicates a free surface existing in a cell. This study defines 𝐶- = 0.5 as the location of the free surface. The 
fluid density and the dynamic viscosity are defined as follows: 

𝜌 = 𝜌-𝐶- + 𝜌>𝐶> , (15) 
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𝜇 = 𝜇-𝐶- + 𝜇>𝐶> , (16) 

where the subscript 𝑎  and 𝑤  represent air and water, respectively. The free surface equation is given as 
follows: 

𝜕𝐶-
𝜕𝑡

+ 𝑈3
𝜕𝐶-
𝜕𝑥3

+ 𝛻 ∙ X𝐶-𝑈?,-Y + 𝛻 ∙ X𝐶-(1 − 𝐶-)𝑈A,-Y = 0, (17) 

where 𝑈?,- and 𝑈A,- represents the diffusion rate and the boundary sharpening speed, respectively. 

3.2 Computational Domain and Boundary Conditions 

3.2.1 Pontoon Flow 

Figure 7 shows the computational domain for axisymmetric flows. Table 2 lists the dimensions and boundary 
conditions of the computational domain, where 𝑢( is the ship speed. The inflow boundary is 𝐿%& measured 
from the bow, and the pressure outflow boundary is 2.0 𝐿%&  measured from the stern. The radius of the 
computational domain is 𝐿%&, where 𝐿%&is 22.5 m.  

 

Table 2. Dimensions and Boundary Conditions 
of Pontoon Flow 

Region 𝐿%& Boundary Condition 
AB____ 4.0 

𝐔 = (−𝑢(, 0) BC____ 1.0 
OA_____ 1.0 𝑝 = 0 

CD____ 1.0 𝐔 = (𝑢, 𝑣) 

EO____ 2.0 𝜕𝐔
𝜕n

= 0 

DE____ 1.0 𝐔 = 0 
 

Figure 7. Computational Domain of Pontoon Flow 

3.2.2 Free Surface Ship Flow 

Figure 8 shows the computational domain for the free surface case. Since the ship has a starboard-portside 
symmetry, only half of the ship hull is considered in the simulation to reduce computational cost. The inflow 
boundary is 1.5 𝐿%& away from the bow, and the pressure outflow boundary is 3.5 𝐿%& away from the stern. 
The width and depth of the domain are both 1.5 𝐿%&. Table 3 summarizes the adopted boundary conditions. 
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Table 3. Boundary Conditions of Ship Flow 

Region Boundary Condition 
ABCD 

𝐔 = (−𝑢(, 0,0) 
BFGC 
ABFE 
EFGH 
AEDH 𝑝 = 𝑝((𝑍) 

DCGH 
𝜕𝐔
𝜕𝐧

= 0 

SWATH 𝐔 = 0 
 

Figure 8. Computational Domain of Ship Flow 

4. DEEP NEURAL NETWORKS 

4.1 Structures of DNN Model 

Deep neural networks (DNNs) consist of input, hidden, and output layers. In a DNN model, the input value 𝑛+ 
is first introduced into the input layer, then multiplied by various weights and summed with biases in the hidden 
layer neurons before being passed through an activation function to become the input for the next layer. This 
process is called forward propagation and is represented by (18) and (19).  

𝑚9.0 = 𝑇X𝑤+9.0𝑛+ + 𝑏9.0Y, (18) 

𝑦3
% = 𝑃X𝑤93B0𝑚9.0 + 𝑏3B0Y, (19) 

where 𝑤+9.0 is the weight of the hidden layer, 𝑏9.0 is the bias of the hidden layer, 𝑤93B0 is the weight of the output 
layer, 𝑏3B0 is the bias of the output layer, 𝑛+ and 𝑦3

% represent the 𝑖th input and 𝑘th output, respectively. The 
subscript 𝑖 corresponds to the 𝑖th input,	𝑗 to the 𝑗th node, and 𝑘 to the 𝑘th output. The transfer function 𝑇 is 
the Tansig function, and 𝑃  is the Purelin function. The predicted value 𝑦3

%  of the neural network is then 
compared with the actual value 𝑦3- in the data to obtain the mean squared error 𝑒, which can be represented by 
(20). 

𝑒 = uX𝑦3- − 𝑦3
%Y

6
2

3C5

, (20) 

where 𝑟 represents the number of inputs and outputs. The mean squared error is then passed back to the 
previous layer, and the weights and biases are recalculated to obtain a new error. This process is repeated 
several times until the mean squared error between 𝑦3-  and 𝑦3

%  approaches zero. This process is called 
backpropagation, and Bayesian regularized backpropagation is used in this study. 

4.2 Parameters of DNN Model 

In this study, a deep neural network model is trained using MATLAB, which consists of one input layer, five 
hidden layers, and one output layer. Each hidden layer contains eight, six, nine, five, and seven neurons, 
respectively. The structure of the DNN model is shown in Figure 9. After the model is trained, a specific range 
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of design parameters is selected and the pontoons are extracted at intervals to predict the resistance. The 
parameter ranges are listed in Table 4. 

 

Figure 9. Schematic Illustration of The Employed DNN Model 

Table 4. Pontoon range 

 𝐿* (m) 𝐿- (m) 𝜃%& (°) 𝜙%& (°) 

Upper Limit 1 4 10 10 
Lower Limit 4 8 90 90 

No. of Intervals 7 8 10 10 

4.3 Result of Trained DNN Model 

This study uses the mean absolute percentage error (MAPE) as the loss function to train about 1400 cases 
where 80 cases are used as the test data.  

MAPE =
1
𝑟
u|

𝑦3- − 𝑦3
%

𝑦3-

2

+C5

|. (21) 

The MAPE of the training data and test data are 0.21% and 0.38%, respectively. Figure 10 shows the scatter 
plot of the actual values versus predicted values, where each red dot represents a case. The closer the dot to 
the black line is, the more accurate the predicted value is. Because the MAPE is smaller than 1%, the proposed 
model is considered accurate enough. 

  
(a) (b) 

Figure 10. MAPE of DNN Model: (a) Training data, (b) Test data 
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5. RESULTS AND DISCUSSION 

5.1 CFD Validation 

In this study, the optimized pontoon parameters predicted by the DNN model are validated using a full CFD 
computation. Table 5 compares the geometric parameters between two hull forms. The optimized pontoon has 
a longer fore-body and a much shorter aft-body. Figure 11 shows the optimized shape provides a better pressure 
distribution than that of the baseline design to produce a much smaller longitudinal moment and resistance. 
Table 6 shows the resistance and moment of the pontoon, where 𝑅'DEE is predicted by the DNN model, 𝑅'FGD 
is predicted by a three-dimensional free surface ship flow,	𝑀%& is the longitudinal moment of the pontoon, 𝛼5 
and 𝛼6 represent the angle of attack of the fore and aft fin stabilizers, respectively, and 𝜃 represents the pitch 
angle. 𝛼5 and 𝛼6 of the optimized hull form are much smaller than those of the baseline design, indicating that 
the fin stabilizer drag of the optimized hull is smaller. The validation indicates that the DNN model is capable 
of predicting an optimal set of geometric parameters for a pontoon. However, some resistance prediction error 
arises due to decoupling the pontoon from the full hull form in the resistance calculation. 

 

  

(a) (b)  

Figure 11. Pressure distribution on the pontoon surface: (a) Baseline Design, (b) Optimized Design 

Table 5. Geometric Parameters of Optimized and Baseline Design 

Hull Form 𝐿* 
(m) 

𝐿H 
(m) 

𝐿- 
(m) 

𝜃%& 
(˚) 

𝜙%& 
(˚) 

Baseline 7.54 11.12 4.56 N/A N/A 

Optimized 2.00 14.79 5.71 36.67 18.88 
 

Table 6. CFD Validation 

Hull Form 𝛼5 (°) 𝛼6 (°) 𝑅'DEE (kN) 𝑅'FGD (kN) 𝑀%& (kN∙m) 

Baseline 12.49 -12.49 88.54 116.88 446.97 

Optimized 3.76 -3.76 76.30 102.83 39.39 
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CONCLUSIONS 

This study aims to optimize the calm water resistance of a 120-ton SWATH vessel at a speed of 24 knots while 
maintaining an even keel using fin stabilizers. This study neglects the resistance interaction between the 
pontoon and the ship hull to reduce computational cost and time. Approximately 1400 cases using four hull 
form parameters are used to train a deep neural network model using MATLAB, and the MAPE is used as the 
loss function This study demonstrates that the optimized hull form reduces the total hull resistance by 
approximately 12.8% compared to the baseline design. The optimized design is 𝐿* of 2 m, 𝐿- of 5.71 m, 𝜃%& 
of 37°, and 𝜙%& of 19°. The optimized design has a smaller pitch moment because of the favorable pressure 
distribution due to the pontoon shape. The result shows that the optimized design has a smaller pitch moment 
as well as a substantially smaller total resistance. 
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